/* * Dynamic Audio Normalizer * Copyright (c) 2015 LoRd_MuldeR . Some rights reserved. * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Dynamic Audio Normalizer */ #include #include "libavutil/avassert.h" #include "libavutil/opt.h" #define FF_BUFQUEUE_SIZE 302 #include "libavfilter/bufferqueue.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "internal.h" typedef struct cqueue { double *elements; int size; int nb_elements; int first; } cqueue; typedef struct DynamicAudioNormalizerContext { const AVClass *class; struct FFBufQueue queue; int frame_len; int frame_len_msec; int filter_size; int dc_correction; int channels_coupled; int alt_boundary_mode; double peak_value; double max_amplification; double target_rms; double compress_factor; double *prev_amplification_factor; double *dc_correction_value; double *compress_threshold; double *fade_factors[2]; double *weights; int channels; int delay; int eof; int64_t pts; cqueue **gain_history_original; cqueue **gain_history_minimum; cqueue **gain_history_smoothed; cqueue *is_enabled; } DynamicAudioNormalizerContext; #define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption dynaudnorm_options[] = { { "framelen", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS }, { "f", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS }, { "gausssize", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS }, { "g", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS }, { "peak", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS }, { "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS }, { "maxgain", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS }, { "m", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS }, { "targetrms", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS }, { "r", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS }, { "coupling", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "n", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "correctdc", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "c", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "altboundary", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "b", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "compress", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS }, { "s", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(dynaudnorm); static av_cold int init(AVFilterContext *ctx) { DynamicAudioNormalizerContext *s = ctx->priv; if (!(s->filter_size & 1)) { av_log(ctx, AV_LOG_ERROR, "filter size %d is invalid. Must be an odd value.\n", s->filter_size); return AVERROR(EINVAL); } return 0; } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats; AVFilterChannelLayouts *layouts; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE }; int ret; layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ret = ff_set_common_formats(ctx, formats); if (ret < 0) return ret; formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); return ff_set_common_samplerates(ctx, formats); } static inline int frame_size(int sample_rate, int frame_len_msec) { const int frame_size = lrint((double)sample_rate * (frame_len_msec / 1000.0)); return frame_size + (frame_size % 2); } static void precalculate_fade_factors(double *fade_factors[2], int frame_len) { const double step_size = 1.0 / frame_len; int pos; for (pos = 0; pos < frame_len; pos++) { fade_factors[0][pos] = 1.0 - (step_size * (pos + 1.0)); fade_factors[1][pos] = 1.0 - fade_factors[0][pos]; } } static cqueue *cqueue_create(int size) { cqueue *q; q = av_malloc(sizeof(cqueue)); if (!q) return NULL; q->size = size; q->nb_elements = 0; q->first = 0; q->elements = av_malloc_array(size, sizeof(double)); if (!q->elements) { av_free(q); return NULL; } return q; } static void cqueue_free(cqueue *q) { if (q) av_free(q->elements); av_free(q); } static int cqueue_size(cqueue *q) { return q->nb_elements; } static int cqueue_empty(cqueue *q) { return !q->nb_elements; } static int cqueue_enqueue(cqueue *q, double element) { int i; av_assert2(q->nb_elements != q->size); i = (q->first + q->nb_elements) % q->size; q->elements[i] = element; q->nb_elements++; return 0; } static double cqueue_peek(cqueue *q, int index) { av_assert2(index < q->nb_elements); return q->elements[(q->first + index) % q->size]; } static int cqueue_dequeue(cqueue *q, double *element) { av_assert2(!cqueue_empty(q)); *element = q->elements[q->first]; q->first = (q->first + 1) % q->size; q->nb_elements--; return 0; } static int cqueue_pop(cqueue *q) { av_assert2(!cqueue_empty(q)); q->first = (q->first + 1) % q->size; q->nb_elements--; return 0; } static void init_gaussian_filter(DynamicAudioNormalizerContext *s) { double total_weight = 0.0; const double sigma = (((s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0); double adjust; int i; // Pre-compute constants const int offset = s->filter_size / 2; const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI)); const double c2 = 2.0 * sigma * sigma; // Compute weights for (i = 0; i < s->filter_size; i++) { const int x = i - offset; s->weights[i] = c1 * exp(-x * x / c2); total_weight += s->weights[i]; } // Adjust weights adjust = 1.0 / total_weight; for (i = 0; i < s->filter_size; i++) { s->weights[i] *= adjust; } } static av_cold void uninit(AVFilterContext *ctx) { DynamicAudioNormalizerContext *s = ctx->priv; int c; av_freep(&s->prev_amplification_factor); av_freep(&s->dc_correction_value); av_freep(&s->compress_threshold); av_freep(&s->fade_factors[0]); av_freep(&s->fade_factors[1]); for (c = 0; c < s->channels; c++) { if (s->gain_history_original) cqueue_free(s->gain_history_original[c]); if (s->gain_history_minimum) cqueue_free(s->gain_history_minimum[c]); if (s->gain_history_smoothed) cqueue_free(s->gain_history_smoothed[c]); } av_freep(&s->gain_history_original); av_freep(&s->gain_history_minimum); av_freep(&s->gain_history_smoothed); cqueue_free(s->is_enabled); s->is_enabled = NULL; av_freep(&s->weights); ff_bufqueue_discard_all(&s->queue); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; DynamicAudioNormalizerContext *s = ctx->priv; int c; uninit(ctx); s->frame_len = frame_size(inlink->sample_rate, s->frame_len_msec); av_log(ctx, AV_LOG_DEBUG, "frame len %d\n", s->frame_len); s->fade_factors[0] = av_malloc_array(s->frame_len, sizeof(*s->fade_factors[0])); s->fade_factors[1] = av_malloc_array(s->frame_len, sizeof(*s->fade_factors[1])); s->prev_amplification_factor = av_malloc_array(inlink->channels, sizeof(*s->prev_amplification_factor)); s->dc_correction_value = av_calloc(inlink->channels, sizeof(*s->dc_correction_value)); s->compress_threshold = av_calloc(inlink->channels, sizeof(*s->compress_threshold)); s->gain_history_original = av_calloc(inlink->channels, sizeof(*s->gain_history_original)); s->gain_history_minimum = av_calloc(inlink->channels, sizeof(*s->gain_history_minimum)); s->gain_history_smoothed = av_calloc(inlink->channels, sizeof(*s->gain_history_smoothed)); s->weights = av_malloc_array(s->filter_size, sizeof(*s->weights)); s->is_enabled = cqueue_create(s->filter_size); if (!s->prev_amplification_factor || !s->dc_correction_value || !s->compress_threshold || !s->fade_factors[0] || !s->fade_factors[1] || !s->gain_history_original || !s->gain_history_minimum || !s->gain_history_smoothed || !s->is_enabled || !s->weights) return AVERROR(ENOMEM); for (c = 0; c < inlink->channels; c++) { s->prev_amplification_factor[c] = 1.0; s->gain_history_original[c] = cqueue_create(s->filter_size); s->gain_history_minimum[c] = cqueue_create(s->filter_size); s->gain_history_smoothed[c] = cqueue_create(s->filter_size); if (!s->gain_history_original[c] || !s->gain_history_minimum[c] || !s->gain_history_smoothed[c]) return AVERROR(ENOMEM); } precalculate_fade_factors(s->fade_factors, s->frame_len); init_gaussian_filter(s); s->channels = inlink->channels; s->delay = s->filter_size; return 0; } static inline double fade(double prev, double next, int pos, double *fade_factors[2]) { return fade_factors[0][pos] * prev + fade_factors[1][pos] * next; } static inline double pow_2(const double value) { return value * value; } static inline double bound(const double threshold, const double val) { const double CONST = 0.8862269254527580136490837416705725913987747280611935; //sqrt(PI) / 2.0 return erf(CONST * (val / threshold)) * threshold; } static double find_peak_magnitude(AVFrame *frame, int channel) { double max = DBL_EPSILON; int c, i; if (channel == -1) { for (c = 0; c < frame->channels; c++) { double *data_ptr = (double *)frame->extended_data[c]; for (i = 0; i < frame->nb_samples; i++) max = FFMAX(max, fabs(data_ptr[i])); } } else { double *data_ptr = (double *)frame->extended_data[channel]; for (i = 0; i < frame->nb_samples; i++) max = FFMAX(max, fabs(data_ptr[i])); } return max; } static double compute_frame_rms(AVFrame *frame, int channel) { double rms_value = 0.0; int c, i; if (channel == -1) { for (c = 0; c < frame->channels; c++) { const double *data_ptr = (double *)frame->extended_data[c]; for (i = 0; i < frame->nb_samples; i++) { rms_value += pow_2(data_ptr[i]); } } rms_value /= frame->nb_samples * frame->channels; } else { const double *data_ptr = (double *)frame->extended_data[channel]; for (i = 0; i < frame->nb_samples; i++) { rms_value += pow_2(data_ptr[i]); } rms_value /= frame->nb_samples; } return FFMAX(sqrt(rms_value), DBL_EPSILON); } static double get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame, int channel) { const double maximum_gain = s->peak_value / find_peak_magnitude(frame, channel); const double rms_gain = s->target_rms > DBL_EPSILON ? (s->target_rms / compute_frame_rms(frame, channel)) : DBL_MAX; return bound(s->max_amplification, FFMIN(maximum_gain, rms_gain)); } static double minimum_filter(cqueue *q) { double min = DBL_MAX; int i; for (i = 0; i < cqueue_size(q); i++) { min = FFMIN(min, cqueue_peek(q, i)); } return min; } static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q) { double result = 0.0; int i; for (i = 0; i < cqueue_size(q); i++) { result += cqueue_peek(q, i) * s->weights[i]; } return result; } static void update_gain_history(DynamicAudioNormalizerContext *s, int channel, double current_gain_factor) { if (cqueue_empty(s->gain_history_original[channel]) || cqueue_empty(s->gain_history_minimum[channel])) { const int pre_fill_size = s->filter_size / 2; const double initial_value = s->alt_boundary_mode ? current_gain_factor : 1.0; s->prev_amplification_factor[channel] = initial_value; while (cqueue_size(s->gain_history_original[channel]) < pre_fill_size) { cqueue_enqueue(s->gain_history_original[channel], initial_value); } } cqueue_enqueue(s->gain_history_original[channel], current_gain_factor); while (cqueue_size(s->gain_history_original[channel]) >= s->filter_size) { double minimum; av_assert0(cqueue_size(s->gain_history_original[channel]) == s->filter_size); if (cqueue_empty(s->gain_history_minimum[channel])) { const int pre_fill_size = s->filter_size / 2; double initial_value = s->alt_boundary_mode ? cqueue_peek(s->gain_history_original[channel], 0) : 1.0; int input = pre_fill_size; while (cqueue_size(s->gain_history_minimum[channel]) < pre_fill_size) { input++; initial_value = FFMIN(initial_value, cqueue_peek(s->gain_history_original[channel], input)); cqueue_enqueue(s->gain_history_minimum[channel], initial_value); } } minimum = minimum_filter(s->gain_history_original[channel]); cqueue_enqueue(s->gain_history_minimum[channel], minimum); cqueue_pop(s->gain_history_original[channel]); } while (cqueue_size(s->gain_history_minimum[channel]) >= s->filter_size) { double smoothed; av_assert0(cqueue_size(s->gain_history_minimum[channel]) == s->filter_size); smoothed = gaussian_filter(s, s->gain_history_minimum[channel]); cqueue_enqueue(s->gain_history_smoothed[channel], smoothed); cqueue_pop(s->gain_history_minimum[channel]); } } static inline double update_value(double new, double old, double aggressiveness) { av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0)); return aggressiveness * new + (1.0 - aggressiveness) * old; } static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame) { const double diff = 1.0 / frame->nb_samples; int is_first_frame = cqueue_empty(s->gain_history_original[0]); int c, i; for (c = 0; c < s->channels; c++) { double *dst_ptr = (double *)frame->extended_data[c]; double current_average_value = 0.0; double prev_value; for (i = 0; i < frame->nb_samples; i++) current_average_value += dst_ptr[i] * diff; prev_value = is_first_frame ? current_average_value : s->dc_correction_value[c]; s->dc_correction_value[c] = is_first_frame ? current_average_value : update_value(current_average_value, s->dc_correction_value[c], 0.1); for (i = 0; i < frame->nb_samples; i++) { dst_ptr[i] -= fade(prev_value, s->dc_correction_value[c], i, s->fade_factors); } } } static double setup_compress_thresh(double threshold) { if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) { double current_threshold = threshold; double step_size = 1.0; while (step_size > DBL_EPSILON) { while ((llrint((current_threshold + step_size) * (UINT64_C(1) << 63)) > llrint(current_threshold * (UINT64_C(1) << 63))) && (bound(current_threshold + step_size, 1.0) <= threshold)) { current_threshold += step_size; } step_size /= 2.0; } return current_threshold; } else { return threshold; } } static double compute_frame_std_dev(DynamicAudioNormalizerContext *s, AVFrame *frame, int channel) { double variance = 0.0; int i, c; if (channel == -1) { for (c = 0; c < s->channels; c++) { const double *data_ptr = (double *)frame->extended_data[c]; for (i = 0; i < frame->nb_samples; i++) { variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero* } } variance /= (s->channels * frame->nb_samples) - 1; } else { const double *data_ptr = (double *)frame->extended_data[channel]; for (i = 0; i < frame->nb_samples; i++) { variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero* } variance /= frame->nb_samples - 1; } return FFMAX(sqrt(variance), DBL_EPSILON); } static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame) { int is_first_frame = cqueue_empty(s->gain_history_original[0]); int c, i; if (s->channels_coupled) { const double standard_deviation = compute_frame_std_dev(s, frame, -1); const double current_threshold = FFMIN(1.0, s->compress_factor * standard_deviation); const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[0]; double prev_actual_thresh, curr_actual_thresh; s->compress_threshold[0] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[0], (1.0/3.0)); prev_actual_thresh = setup_compress_thresh(prev_value); curr_actual_thresh = setup_compress_thresh(s->compress_threshold[0]); for (c = 0; c < s->channels; c++) { double *const dst_ptr = (double *)frame->extended_data[c]; for (i = 0; i < frame->nb_samples; i++) { const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors); dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]); } } } else { for (c = 0; c < s->channels; c++) { const double standard_deviation = compute_frame_std_dev(s, frame, c); const double current_threshold = setup_compress_thresh(FFMIN(1.0, s->compress_factor * standard_deviation)); const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[c]; double prev_actual_thresh, curr_actual_thresh; double *dst_ptr; s->compress_threshold[c] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[c], 1.0/3.0); prev_actual_thresh = setup_compress_thresh(prev_value); curr_actual_thresh = setup_compress_thresh(s->compress_threshold[c]); dst_ptr = (double *)frame->extended_data[c]; for (i = 0; i < frame->nb_samples; i++) { const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, s->fade_factors); dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]); } } } } static void analyze_frame(DynamicAudioNormalizerContext *s, AVFrame *frame) { if (s->dc_correction) { perform_dc_correction(s, frame); } if (s->compress_factor > DBL_EPSILON) { perform_compression(s, frame); } if (s->channels_coupled) { const double current_gain_factor = get_max_local_gain(s, frame, -1); int c; for (c = 0; c < s->channels; c++) update_gain_history(s, c, current_gain_factor); } else { int c; for (c = 0; c < s->channels; c++) update_gain_history(s, c, get_max_local_gain(s, frame, c)); } } static void amplify_frame(DynamicAudioNormalizerContext *s, AVFrame *frame, int enabled) { int c, i; for (c = 0; c < s->channels; c++) { double *dst_ptr = (double *)frame->extended_data[c]; double current_amplification_factor; cqueue_dequeue(s->gain_history_smoothed[c], ¤t_amplification_factor); for (i = 0; i < frame->nb_samples && enabled; i++) { const double amplification_factor = fade(s->prev_amplification_factor[c], current_amplification_factor, i, s->fade_factors); dst_ptr[i] *= amplification_factor; if (fabs(dst_ptr[i]) > s->peak_value) dst_ptr[i] = copysign(s->peak_value, dst_ptr[i]); } s->prev_amplification_factor[c] = current_amplification_factor; } } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; DynamicAudioNormalizerContext *s = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; int ret = 1; if (!cqueue_empty(s->gain_history_smoothed[0])) { double is_enabled; AVFrame *out = ff_bufqueue_get(&s->queue); cqueue_dequeue(s->is_enabled, &is_enabled); amplify_frame(s, out, is_enabled > 0.); ret = ff_filter_frame(outlink, out); } av_frame_make_writable(in); cqueue_enqueue(s->is_enabled, !ctx->is_disabled); analyze_frame(s, in); ff_bufqueue_add(ctx, &s->queue, in); return ret; } static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink, AVFilterLink *outlink) { AVFrame *out = ff_get_audio_buffer(outlink, s->frame_len); int c, i; if (!out) return AVERROR(ENOMEM); for (c = 0; c < s->channels; c++) { double *dst_ptr = (double *)out->extended_data[c]; for (i = 0; i < out->nb_samples; i++) { dst_ptr[i] = s->alt_boundary_mode ? DBL_EPSILON : ((s->target_rms > DBL_EPSILON) ? FFMIN(s->peak_value, s->target_rms) : s->peak_value); if (s->dc_correction) { dst_ptr[i] *= ((i % 2) == 1) ? -1 : 1; dst_ptr[i] += s->dc_correction_value[c]; } } } s->delay--; return filter_frame(inlink, out); } static int flush(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; DynamicAudioNormalizerContext *s = ctx->priv; int ret = 0; if (!cqueue_empty(s->gain_history_smoothed[0])) { ret = flush_buffer(s, ctx->inputs[0], outlink); } else if (s->queue.available) { AVFrame *out = ff_bufqueue_get(&s->queue); s->pts = out->pts; ret = ff_filter_frame(outlink, out); s->delay = s->queue.available; } return ret; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; DynamicAudioNormalizerContext *s = ctx->priv; AVFrame *in = NULL; int ret = 0, status; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (!s->eof) { ret = ff_inlink_consume_samples(inlink, s->frame_len, s->frame_len, &in); if (ret < 0) return ret; if (ret > 0) { ret = filter_frame(inlink, in); if (ret <= 0) return ret; } if (ff_inlink_queued_samples(inlink) >= s->frame_len) { ff_filter_set_ready(ctx, 10); return 0; } } if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) { if (status == AVERROR_EOF) s->eof = 1; } if (s->eof && s->delay > 0) return flush(outlink); if (s->eof && s->delay <= 0) { ff_outlink_set_status(outlink, AVERROR_EOF, s->pts); return 0; } if (!s->eof) FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static const AVFilterPad avfilter_af_dynaudnorm_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, { NULL } }; static const AVFilterPad avfilter_af_dynaudnorm_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter ff_af_dynaudnorm = { .name = "dynaudnorm", .description = NULL_IF_CONFIG_SMALL("Dynamic Audio Normalizer."), .query_formats = query_formats, .priv_size = sizeof(DynamicAudioNormalizerContext), .init = init, .uninit = uninit, .activate = activate, .inputs = avfilter_af_dynaudnorm_inputs, .outputs = avfilter_af_dynaudnorm_outputs, .priv_class = &dynaudnorm_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, };