/* * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Lookahead limiter filter */ #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/common.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "formats.h" #include "internal.h" typedef struct AudioLimiterContext { const AVClass *class; double limit; double attack; double release; double att; double level_in; double level_out; int auto_release; int auto_level; double asc; int asc_c; int asc_pos; double asc_coeff; double *buffer; int buffer_size; int pos; int *nextpos; double *nextdelta; double delta; int nextiter; int nextlen; int asc_changed; } AudioLimiterContext; #define OFFSET(x) offsetof(AudioLimiterContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM #define F AV_OPT_FLAG_FILTERING_PARAM static const AVOption alimiter_options[] = { { "level_in", "set input level", OFFSET(level_in), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, A|F }, { "level_out", "set output level", OFFSET(level_out), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, A|F }, { "limit", "set limit", OFFSET(limit), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.0625, 1, A|F }, { "attack", "set attack", OFFSET(attack), AV_OPT_TYPE_DOUBLE, {.dbl=5}, 0.1, 80, A|F }, { "release", "set release", OFFSET(release), AV_OPT_TYPE_DOUBLE, {.dbl=50}, 1, 8000, A|F }, { "asc", "enable asc", OFFSET(auto_release), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, A|F }, { "asc_level", "set asc level", OFFSET(asc_coeff), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 1, A|F }, { "level", "auto level", OFFSET(auto_level), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, A|F }, { NULL } }; AVFILTER_DEFINE_CLASS(alimiter); static av_cold int init(AVFilterContext *ctx) { AudioLimiterContext *s = ctx->priv; s->attack /= 1000.; s->release /= 1000.; s->att = 1.; s->asc_pos = -1; s->asc_coeff = pow(0.5, s->asc_coeff - 0.5) * 2 * -1; return 0; } static double get_rdelta(AudioLimiterContext *s, double release, int sample_rate, double peak, double limit, double patt, int asc) { double rdelta = (1.0 - patt) / (sample_rate * release); if (asc && s->auto_release && s->asc_c > 0) { double a_att = limit / (s->asc_coeff * s->asc) * (double)s->asc_c; if (a_att > patt) { double delta = FFMAX((a_att - patt) / (sample_rate * release), rdelta / 10); if (delta < rdelta) rdelta = delta; } } return rdelta; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AudioLimiterContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; const double *src = (const double *)in->data[0]; const int channels = inlink->channels; const int buffer_size = s->buffer_size; double *dst, *buffer = s->buffer; const double release = s->release; const double limit = s->limit; double *nextdelta = s->nextdelta; double level = s->auto_level ? 1 / limit : 1; const double level_out = s->level_out; const double level_in = s->level_in; int *nextpos = s->nextpos; AVFrame *out; double *buf; int n, c, i; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } dst = (double *)out->data[0]; for (n = 0; n < in->nb_samples; n++) { double peak = 0; for (c = 0; c < channels; c++) { double sample = src[c] * level_in; buffer[s->pos + c] = sample; peak = FFMAX(peak, fabs(sample)); } if (s->auto_release && peak > limit) { s->asc += peak; s->asc_c++; } if (peak > limit) { double patt = FFMIN(limit / peak, 1.); double rdelta = get_rdelta(s, release, inlink->sample_rate, peak, limit, patt, 0); double delta = (limit / peak - s->att) / buffer_size * channels; int found = 0; if (delta < s->delta) { s->delta = delta; nextpos[0] = s->pos; nextpos[1] = -1; nextdelta[0] = rdelta; s->nextlen = 1; s->nextiter= 0; } else { for (i = s->nextiter; i < s->nextiter + s->nextlen; i++) { int j = i % buffer_size; double ppeak, pdelta; ppeak = fabs(buffer[nextpos[j]]) > fabs(buffer[nextpos[j] + 1]) ? fabs(buffer[nextpos[j]]) : fabs(buffer[nextpos[j] + 1]); pdelta = (limit / peak - limit / ppeak) / (((buffer_size - nextpos[j] + s->pos) % buffer_size) / channels); if (pdelta < nextdelta[j]) { nextdelta[j] = pdelta; found = 1; break; } } if (found) { s->nextlen = i - s->nextiter + 1; nextpos[(s->nextiter + s->nextlen) % buffer_size] = s->pos; nextdelta[(s->nextiter + s->nextlen) % buffer_size] = rdelta; nextpos[(s->nextiter + s->nextlen + 1) % buffer_size] = -1; s->nextlen++; } } } buf = &s->buffer[(s->pos + channels) % buffer_size]; peak = 0; for (c = 0; c < channels; c++) { double sample = buf[c]; peak = FFMAX(peak, fabs(sample)); } if (s->pos == s->asc_pos && !s->asc_changed) s->asc_pos = -1; if (s->auto_release && s->asc_pos == -1 && peak > limit) { s->asc -= peak; s->asc_c--; } s->att += s->delta; for (c = 0; c < channels; c++) dst[c] = buf[c] * s->att; if ((s->pos + channels) % buffer_size == nextpos[s->nextiter]) { if (s->auto_release) { s->delta = get_rdelta(s, release, inlink->sample_rate, peak, limit, s->att, 1); if (s->nextlen > 1) { int pnextpos = nextpos[(s->nextiter + 1) % buffer_size]; double ppeak = fabs(buffer[pnextpos]) > fabs(buffer[pnextpos + 1]) ? fabs(buffer[pnextpos]) : fabs(buffer[pnextpos + 1]); double pdelta = (limit / ppeak - s->att) / (((buffer_size + pnextpos - ((s->pos + channels) % buffer_size)) % buffer_size) / channels); if (pdelta < s->delta) s->delta = pdelta; } } else { s->delta = nextdelta[s->nextiter]; s->att = limit / peak; } s->nextlen -= 1; nextpos[s->nextiter] = -1; s->nextiter = (s->nextiter + 1) % buffer_size; } if (s->att > 1.) { s->att = 1.; s->delta = 0.; s->nextiter = 0; s->nextlen = 0; nextpos[0] = -1; } if (s->att <= 0.) { s->att = 0.0000000000001; s->delta = (1.0 - s->att) / (inlink->sample_rate * release); } if (s->att != 1. && (1. - s->att) < 0.0000000000001) s->att = 1.; if (s->delta != 0. && fabs(s->delta) < 0.00000000000001) s->delta = 0.; for (c = 0; c < channels; c++) dst[c] = av_clipd(dst[c], -limit, limit) * level * level_out; s->pos = (s->pos + channels) % buffer_size; src += channels; dst += channels; } if (in != out) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats; AVFilterChannelLayouts *layouts; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; int ret; layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ret = ff_set_common_formats(ctx, formats); if (ret < 0) return ret; formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); return ff_set_common_samplerates(ctx, formats); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioLimiterContext *s = ctx->priv; int obuffer_size; obuffer_size = inlink->sample_rate * inlink->channels * 100 / 1000. + inlink->channels; if (obuffer_size < inlink->channels) return AVERROR(EINVAL); s->buffer = av_calloc(obuffer_size, sizeof(*s->buffer)); s->nextdelta = av_calloc(obuffer_size, sizeof(*s->nextdelta)); s->nextpos = av_malloc_array(obuffer_size, sizeof(*s->nextpos)); if (!s->buffer || !s->nextdelta || !s->nextpos) return AVERROR(ENOMEM); memset(s->nextpos, -1, obuffer_size * sizeof(*s->nextpos)); s->buffer_size = inlink->sample_rate * s->attack * inlink->channels; s->buffer_size -= s->buffer_size % inlink->channels; if (s->buffer_size <= 0) { av_log(ctx, AV_LOG_ERROR, "Attack is too small.\n"); return AVERROR(EINVAL); } return 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioLimiterContext *s = ctx->priv; av_freep(&s->buffer); av_freep(&s->nextdelta); av_freep(&s->nextpos); } static const AVFilterPad alimiter_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad alimiter_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter ff_af_alimiter = { .name = "alimiter", .description = NULL_IF_CONFIG_SMALL("Audio lookahead limiter."), .priv_size = sizeof(AudioLimiterContext), .priv_class = &alimiter_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = alimiter_inputs, .outputs = alimiter_outputs, };