/* * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * An arbitrary audio FIR filter */ #include #include "libavutil/common.h" #include "libavutil/float_dsp.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "libavutil/xga_font_data.h" #include "libavcodec/avfft.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "internal.h" #include "af_afir.h" static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len) { int n; for (n = 0; n < len; n++) { const float cre = c[2 * n ]; const float cim = c[2 * n + 1]; const float tre = t[2 * n ]; const float tim = t[2 * n + 1]; sum[2 * n ] += tre * cre - tim * cim; sum[2 * n + 1] += tre * cim + tim * cre; } sum[2 * n] += t[2 * n] * c[2 * n]; } static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset) { AudioFIRContext *s = ctx->priv; const float *in = (const float *)s->in[0]->extended_data[ch] + offset; float *block, *buf, *ptr = (float *)out->extended_data[ch] + offset; const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset); int n, i, j; for (int segment = 0; segment < s->nb_segments; segment++) { AudioFIRSegment *seg = &s->seg[segment]; float *src = (float *)seg->input->extended_data[ch]; float *dst = (float *)seg->output->extended_data[ch]; float *sum = (float *)seg->sum->extended_data[ch]; s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4)); emms_c(); seg->output_offset[ch] += s->min_part_size; if (seg->output_offset[ch] == seg->part_size) { seg->output_offset[ch] = 0; } else { memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src)); dst += seg->output_offset[ch]; for (n = 0; n < nb_samples; n++) { ptr[n] += dst[n]; } continue; } memset(sum, 0, sizeof(*sum) * seg->fft_length); block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size; memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size)); memcpy(block, src, sizeof(*src) * seg->part_size); av_rdft_calc(seg->rdft[ch], block); block[2 * seg->part_size] = block[1]; block[1] = 0; j = seg->part_index[ch]; for (i = 0; i < seg->nb_partitions; i++) { const int coffset = j * seg->coeff_size; const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size; const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset; s->afirdsp.fcmul_add(sum, block, (const float *)coeff, seg->part_size); if (j == 0) j = seg->nb_partitions; j--; } sum[1] = sum[2 * seg->part_size]; av_rdft_calc(seg->irdft[ch], sum); buf = (float *)seg->buffer->extended_data[ch]; for (n = 0; n < seg->part_size; n++) { buf[n] += sum[n]; } memcpy(dst, buf, seg->part_size * sizeof(*dst)); buf = (float *)seg->buffer->extended_data[ch]; memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf)); seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions; memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src)); for (n = 0; n < nb_samples; n++) { ptr[n] += dst[n]; } } s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4)); emms_c(); return 0; } static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch) { AudioFIRContext *s = ctx->priv; for (int offset = 0; offset < out->nb_samples; offset += s->min_part_size) { fir_quantum(ctx, out, ch, offset); } return 0; } static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AVFrame *out = arg; const int start = (out->channels * jobnr) / nb_jobs; const int end = (out->channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) { fir_channel(ctx, out, ch); } return 0; } static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFrame *out = NULL; out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } if (s->pts == AV_NOPTS_VALUE) s->pts = in->pts; s->in[0] = in; ctx->internal->execute(ctx, fir_channels, out, NULL, FFMIN(outlink->channels, ff_filter_get_nb_threads(ctx))); out->pts = s->pts; if (s->pts != AV_NOPTS_VALUE) s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base); av_frame_free(&in); s->in[0] = NULL; return ff_filter_frame(outlink, out); } static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color) { const uint8_t *font; int font_height; int i; font = avpriv_cga_font, font_height = 8; for (i = 0; txt[i]; i++) { int char_y, mask; uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4; for (char_y = 0; char_y < font_height; char_y++) { for (mask = 0x80; mask; mask >>= 1) { if (font[txt[i] * font_height + char_y] & mask) AV_WL32(p, color); p += 4; } p += pic->linesize[0] - 8 * 4; } } } static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color) { int dx = FFABS(x1-x0); int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1; int err = (dx>dy ? dx : -dy) / 2, e2; for (;;) { AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color); if (x0 == x1 && y0 == y1) break; e2 = err; if (e2 >-dx) { err -= dy; x0--; } if (e2 < dy) { err += dx; y0 += sy; } } } static void draw_response(AVFilterContext *ctx, AVFrame *out) { AudioFIRContext *s = ctx->priv; float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN; float min_delay = FLT_MAX, max_delay = FLT_MIN; int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1; char text[32]; int channel, i, x; memset(out->data[0], 0, s->h * out->linesize[0]); phase = av_malloc_array(s->w, sizeof(*phase)); mag = av_malloc_array(s->w, sizeof(*mag)); delay = av_malloc_array(s->w, sizeof(*delay)); if (!mag || !phase || !delay) goto end; channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1); for (i = 0; i < s->w; i++) { const float *src = (const float *)s->in[1]->extended_data[channel]; double w = i * M_PI / (s->w - 1); double div, real_num = 0., imag_num = 0., real = 0., imag = 0.; for (x = 0; x < s->nb_taps; x++) { real += cos(-x * w) * src[x]; imag += sin(-x * w) * src[x]; real_num += cos(-x * w) * src[x] * x; imag_num += sin(-x * w) * src[x] * x; } mag[i] = hypot(real, imag); phase[i] = atan2(imag, real); div = real * real + imag * imag; delay[i] = (real_num * real + imag_num * imag) / div; min = fminf(min, mag[i]); max = fmaxf(max, mag[i]); min_delay = fminf(min_delay, delay[i]); max_delay = fmaxf(max_delay, delay[i]); } for (i = 0; i < s->w; i++) { int ymag = mag[i] / max * (s->h - 1); int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1); int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1); ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1); yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1); ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1); if (prev_ymag < 0) prev_ymag = ymag; if (prev_yphase < 0) prev_yphase = yphase; if (prev_ydelay < 0) prev_ydelay = ydelay; draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF); draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00); draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF); prev_ymag = ymag; prev_yphase = yphase; prev_ydelay = ydelay; } if (s->w > 400 && s->h > 100) { drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", max); drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD); drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", min); drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD); drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", max_delay); drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD); drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", min_delay); drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD); } end: av_free(delay); av_free(phase); av_free(mag); } static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg, int offset, int nb_partitions, int part_size) { AudioFIRContext *s = ctx->priv; seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft)); seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft)); if (!seg->rdft || !seg->irdft) return AVERROR(ENOMEM); seg->fft_length = part_size * 2 + 1; seg->part_size = part_size; seg->block_size = FFALIGN(seg->fft_length, 32); seg->coeff_size = FFALIGN(seg->part_size + 1, 32); seg->nb_partitions = nb_partitions; seg->input_size = offset + s->min_part_size; seg->input_offset = offset; seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index)); seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset)); if (!seg->part_index || !seg->output_offset) return AVERROR(ENOMEM); for (int ch = 0; ch < ctx->inputs[0]->channels; ch++) { seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C); seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R); if (!seg->rdft[ch] || !seg->irdft[ch]) return AVERROR(ENOMEM); } seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length); seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size); seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size); seg->coeff = ff_get_audio_buffer(ctx->inputs[1], seg->nb_partitions * seg->coeff_size * 2); seg->input = ff_get_audio_buffer(ctx->inputs[0], seg->input_size); seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size); if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output) return AVERROR(ENOMEM); return 0; } static int convert_coeffs(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; int left, offset = 0, part_size, max_part_size; int ret, i, ch, n; float power = 0; s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]); if (s->nb_taps <= 0) return AVERROR(EINVAL); if (s->minp > s->maxp) { s->maxp = s->minp; } left = s->nb_taps; part_size = 1 << av_log2(s->minp); max_part_size = 1 << av_log2(s->maxp); s->min_part_size = part_size; for (i = 0; left > 0; i++) { int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0); int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size); s->nb_segments = i + 1; ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size); if (ret < 0) return ret; offset += nb_partitions * part_size; left -= nb_partitions * part_size; part_size *= 2; part_size = FFMIN(part_size, max_part_size); } ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]); if (ret < 0) return ret; if (ret == 0) return AVERROR_BUG; if (s->response) draw_response(ctx, s->video); s->gain = 1; switch (s->gtype) { case -1: /* nothing to do */ break; case 0: for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; for (i = 0; i < s->nb_taps; i++) power += FFABS(time[i]); } s->gain = ctx->inputs[1]->channels / power; break; case 1: for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; for (i = 0; i < s->nb_taps; i++) power += time[i]; } s->gain = ctx->inputs[1]->channels / power; break; case 2: for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; for (i = 0; i < s->nb_taps; i++) power += time[i] * time[i]; } s->gain = sqrtf(ch / power); break; default: return AVERROR_BUG; } s->gain = FFMIN(s->gain * s->ir_gain, 1.f); av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain); for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4)); } av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps); av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments); for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; int toffset = 0; for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++) time[i] = 0; av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch); for (int segment = 0; segment < s->nb_segments; segment++) { AudioFIRSegment *seg = &s->seg[segment]; float *block = (float *)seg->block->extended_data[ch]; FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch]; av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment); for (i = 0; i < seg->nb_partitions; i++) { const float scale = 1.f / seg->part_size; const int coffset = i * seg->coeff_size; const int remaining = s->nb_taps - toffset; const int size = remaining >= seg->part_size ? seg->part_size : remaining; memset(block, 0, sizeof(*block) * seg->fft_length); memcpy(block, time + toffset, size * sizeof(*block)); av_rdft_calc(seg->rdft[0], block); coeff[coffset].re = block[0] * scale; coeff[coffset].im = 0; for (n = 1; n < seg->part_size; n++) { coeff[coffset + n].re = block[2 * n] * scale; coeff[coffset + n].im = block[2 * n + 1] * scale; } coeff[coffset + seg->part_size].re = block[1] * scale; coeff[coffset + seg->part_size].im = 0; toffset += size; } av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions); av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size); av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size); av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length); av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size); av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size); av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset); } } av_frame_free(&s->in[1]); s->have_coeffs = 1; return 0; } static int check_ir(AVFilterLink *link, AVFrame *frame) { AVFilterContext *ctx = link->dst; AudioFIRContext *s = ctx->priv; int nb_taps, max_nb_taps; nb_taps = ff_inlink_queued_samples(link); max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate; if (nb_taps > max_nb_taps) { av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps); return AVERROR(EINVAL); } return 0; } static int activate(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int ret, status, available, wanted; AVFrame *in = NULL; int64_t pts; FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx); if (s->response) FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx); if (!s->eof_coeffs) { AVFrame *ir = NULL; ret = check_ir(ctx->inputs[1], ir); if (ret < 0) return ret; if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF) s->eof_coeffs = 1; if (!s->eof_coeffs) { if (ff_outlink_frame_wanted(ctx->outputs[0])) ff_inlink_request_frame(ctx->inputs[1]); else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1])) ff_inlink_request_frame(ctx->inputs[1]); return 0; } } if (!s->have_coeffs && s->eof_coeffs) { ret = convert_coeffs(ctx); if (ret < 0) return ret; } available = ff_inlink_queued_samples(ctx->inputs[0]); wanted = FFMAX(s->min_part_size, (available / s->min_part_size) * s->min_part_size); ret = ff_inlink_consume_samples(ctx->inputs[0], wanted, wanted, &in); if (ret > 0) ret = fir_frame(s, in, outlink); if (ret < 0) return ret; if (s->response && s->have_coeffs) { int64_t old_pts = s->video->pts; int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base); if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) { s->video->pts = new_pts; return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video)); } } if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) { ff_filter_set_ready(ctx, 10); return 0; } if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) { if (status == AVERROR_EOF) { ff_outlink_set_status(ctx->outputs[0], status, pts); if (s->response) ff_outlink_set_status(ctx->outputs[1], status, pts); return 0; } } if (ff_outlink_frame_wanted(ctx->outputs[0]) && !ff_outlink_get_status(ctx->inputs[0])) { ff_inlink_request_frame(ctx->inputs[0]); return 0; } if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]) && !ff_outlink_get_status(ctx->inputs[0])) { ff_inlink_request_frame(ctx->inputs[0]); return 0; } return FFERROR_NOT_READY; } static int query_formats(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; AVFilterFormats *formats; AVFilterChannelLayouts *layouts; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB0, AV_PIX_FMT_NONE }; int ret; if (s->response) { AVFilterLink *videolink = ctx->outputs[1]; formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0) return ret; } layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); if (s->ir_format) { ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; } else { AVFilterChannelLayouts *mono = NULL; ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO); if (ret) return ret; if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0) return ret; if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0) return ret; if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0) return ret; } formats = ff_make_format_list(sample_fmts); if ((ret = ff_set_common_formats(ctx, formats)) < 0) return ret; formats = ff_all_samplerates(); return ff_set_common_samplerates(ctx, formats); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioFIRContext *s = ctx->priv; s->one2many = ctx->inputs[1]->channels == 1; outlink->sample_rate = ctx->inputs[0]->sample_rate; outlink->time_base = ctx->inputs[0]->time_base; outlink->channel_layout = ctx->inputs[0]->channel_layout; outlink->channels = ctx->inputs[0]->channels; s->nb_channels = outlink->channels; s->nb_coef_channels = ctx->inputs[1]->channels; s->pts = AV_NOPTS_VALUE; return 0; } static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg) { AudioFIRContext *s = ctx->priv; if (seg->rdft) { for (int ch = 0; ch < s->nb_channels; ch++) { av_rdft_end(seg->rdft[ch]); } } av_freep(&seg->rdft); if (seg->irdft) { for (int ch = 0; ch < s->nb_channels; ch++) { av_rdft_end(seg->irdft[ch]); } } av_freep(&seg->irdft); av_freep(&seg->output_offset); av_freep(&seg->part_index); av_frame_free(&seg->block); av_frame_free(&seg->sum); av_frame_free(&seg->buffer); av_frame_free(&seg->coeff); av_frame_free(&seg->input); av_frame_free(&seg->output); seg->input_size = 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; for (int i = 0; i < s->nb_segments; i++) { uninit_segment(ctx, &s->seg[i]); } av_freep(&s->fdsp); av_frame_free(&s->in[1]); for (int i = 0; i < ctx->nb_outputs; i++) av_freep(&ctx->output_pads[i].name); av_frame_free(&s->video); } static int config_video(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioFIRContext *s = ctx->priv; outlink->sample_aspect_ratio = (AVRational){1,1}; outlink->w = s->w; outlink->h = s->h; outlink->frame_rate = s->frame_rate; outlink->time_base = av_inv_q(outlink->frame_rate); av_frame_free(&s->video); s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!s->video) return AVERROR(ENOMEM); return 0; } void ff_afir_init(AudioFIRDSPContext *dsp) { dsp->fcmul_add = fcmul_add_c; if (ARCH_X86) ff_afir_init_x86(dsp); } static av_cold int init(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; AVFilterPad pad, vpad; int ret; pad = (AVFilterPad){ .name = av_strdup("default"), .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }; if (!pad.name) return AVERROR(ENOMEM); if (s->response) { vpad = (AVFilterPad){ .name = av_strdup("filter_response"), .type = AVMEDIA_TYPE_VIDEO, .config_props = config_video, }; if (!vpad.name) return AVERROR(ENOMEM); } ret = ff_insert_outpad(ctx, 0, &pad); if (ret < 0) { av_freep(&pad.name); return ret; } if (s->response) { ret = ff_insert_outpad(ctx, 1, &vpad); if (ret < 0) { av_freep(&vpad.name); return ret; } } s->fdsp = avpriv_float_dsp_alloc(0); if (!s->fdsp) return AVERROR(ENOMEM); ff_afir_init(&s->afirdsp); return 0; } static const AVFilterPad afir_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_AUDIO, },{ .name = "ir", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define OFFSET(x) offsetof(AudioFIRContext, x) static const AVOption afir_options[] = { { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF }, { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF }, { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF }, { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" }, { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" }, { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" }, { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" }, { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" }, { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF }, { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" }, { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" }, { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" }, { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF }, { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF }, { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF }, { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF }, { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF }, { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF }, { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF }, { NULL } }; AVFILTER_DEFINE_CLASS(afir); AVFilter ff_af_afir = { .name = "afir", .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."), .priv_size = sizeof(AudioFIRContext), .priv_class = &afir_class, .query_formats = query_formats, .init = init, .activate = activate, .uninit = uninit, .inputs = afir_inputs, .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS | AVFILTER_FLAG_SLICE_THREADS, };