/* * Zip Motion Blocks Video (ZMBV) encoder * Copyright (c) 2006 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Zip Motion Blocks Video encoder */ #include #include #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "internal.h" #include /* Frame header flags */ #define ZMBV_KEYFRAME 1 #define ZMBV_DELTAPAL 2 /* Motion block width/height (maximum allowed value is 255) * Note: histogram datatype in block_cmp() must be big enough to hold values * up to (4 * ZMBV_BLOCK * ZMBV_BLOCK) */ #define ZMBV_BLOCK 16 /* Keyframe header format values */ enum ZmbvFormat { ZMBV_FMT_NONE = 0, ZMBV_FMT_1BPP = 1, ZMBV_FMT_2BPP = 2, ZMBV_FMT_4BPP = 3, ZMBV_FMT_8BPP = 4, ZMBV_FMT_15BPP = 5, ZMBV_FMT_16BPP = 6, ZMBV_FMT_24BPP = 7, ZMBV_FMT_32BPP = 8 }; /** * Encoder context */ typedef struct ZmbvEncContext { AVCodecContext *avctx; int lrange, urange; uint8_t *comp_buf, *work_buf; uint8_t pal[768]; uint32_t pal2[256]; //for quick comparisons uint8_t *prev, *prev_buf; int pstride; int comp_size; int keyint, curfrm; int bypp; enum ZmbvFormat fmt; z_stream zstream; int score_tab[ZMBV_BLOCK * ZMBV_BLOCK * 4 + 1]; } ZmbvEncContext; /** Block comparing function * XXX should be optimized and moved to DSPContext */ static inline int block_cmp(ZmbvEncContext *c, uint8_t *src, int stride, uint8_t *src2, int stride2, int bw, int bh, int *xored) { int sum = 0; int i, j; uint16_t histogram[256] = {0}; int bw_bytes = bw * c->bypp; /* Build frequency histogram of byte values for src[] ^ src2[] */ for(j = 0; j < bh; j++){ for(i = 0; i < bw_bytes; i++){ int t = src[i] ^ src2[i]; histogram[t]++; } src += stride; src2 += stride2; } /* If not all the xored values were 0, then the blocks are different */ *xored = (histogram[0] < bw_bytes * bh); /* Exit early if blocks are equal */ if (!*xored) return 0; /* Sum the entropy of all values */ for(i = 0; i < 256; i++) sum += c->score_tab[histogram[i]]; return sum; } /** Motion estimation function * TODO make better ME decisions */ static int zmbv_me(ZmbvEncContext *c, uint8_t *src, int sstride, uint8_t *prev, int pstride, int x, int y, int *mx, int *my, int *xored) { int dx, dy, txored, tv, bv, bw, bh; int mx0, my0; mx0 = *mx; my0 = *my; bw = FFMIN(ZMBV_BLOCK, c->avctx->width - x); bh = FFMIN(ZMBV_BLOCK, c->avctx->height - y); /* Try (0,0) */ bv = block_cmp(c, src, sstride, prev, pstride, bw, bh, xored); *mx = *my = 0; if(!bv) return 0; /* Try previous block's MV (if not 0,0) */ if (mx0 || my0){ tv = block_cmp(c, src, sstride, prev + mx0 * c->bypp + my0 * pstride, pstride, bw, bh, &txored); if(tv < bv){ bv = tv; *mx = mx0; *my = my0; *xored = txored; if(!bv) return 0; } } /* Try other MVs from top-to-bottom, left-to-right */ for(dy = -c->lrange; dy <= c->urange; dy++){ for(dx = -c->lrange; dx <= c->urange; dx++){ if(!dx && !dy) continue; // we already tested this block if(dx == mx0 && dy == my0) continue; // this one too tv = block_cmp(c, src, sstride, prev + dx * c->bypp + dy * pstride, pstride, bw, bh, &txored); if(tv < bv){ bv = tv; *mx = dx; *my = dy; *xored = txored; if(!bv) return 0; } } } return bv; } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { ZmbvEncContext * const c = avctx->priv_data; const AVFrame * const p = pict; uint8_t *src, *prev, *buf; uint32_t *palptr; int keyframe, chpal; int fl; int work_size = 0, pkt_size; int bw, bh; int i, j, ret; keyframe = !c->curfrm; c->curfrm++; if(c->curfrm == c->keyint) c->curfrm = 0; #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->coded_frame->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; avctx->coded_frame->key_frame = keyframe; FF_ENABLE_DEPRECATION_WARNINGS #endif palptr = (avctx->pix_fmt == AV_PIX_FMT_PAL8) ? (uint32_t *)p->data[1] : NULL; chpal = !keyframe && palptr && memcmp(palptr, c->pal2, 1024); src = p->data[0]; prev = c->prev; if(chpal){ uint8_t tpal[3]; for(i = 0; i < 256; i++){ AV_WB24(tpal, palptr[i]); c->work_buf[work_size++] = tpal[0] ^ c->pal[i * 3 + 0]; c->work_buf[work_size++] = tpal[1] ^ c->pal[i * 3 + 1]; c->work_buf[work_size++] = tpal[2] ^ c->pal[i * 3 + 2]; c->pal[i * 3 + 0] = tpal[0]; c->pal[i * 3 + 1] = tpal[1]; c->pal[i * 3 + 2] = tpal[2]; } memcpy(c->pal2, palptr, 1024); } if(keyframe){ if (palptr){ for(i = 0; i < 256; i++){ AV_WB24(c->pal+(i*3), palptr[i]); } memcpy(c->work_buf, c->pal, 768); memcpy(c->pal2, palptr, 1024); work_size = 768; } for(i = 0; i < avctx->height; i++){ memcpy(c->work_buf + work_size, src, avctx->width * c->bypp); src += p->linesize[0]; work_size += avctx->width * c->bypp; } }else{ int x, y, bh2, bw2, xored; uint8_t *tsrc, *tprev; uint8_t *mv; int mx = 0, my = 0; bw = (avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK; bh = (avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK; mv = c->work_buf + work_size; memset(c->work_buf + work_size, 0, (bw * bh * 2 + 3) & ~3); work_size += (bw * bh * 2 + 3) & ~3; /* for now just XOR'ing */ for(y = 0; y < avctx->height; y += ZMBV_BLOCK) { bh2 = FFMIN(avctx->height - y, ZMBV_BLOCK); for(x = 0; x < avctx->width; x += ZMBV_BLOCK, mv += 2) { bw2 = FFMIN(avctx->width - x, ZMBV_BLOCK); tsrc = src + x * c->bypp; tprev = prev + x * c->bypp; zmbv_me(c, tsrc, p->linesize[0], tprev, c->pstride, x, y, &mx, &my, &xored); mv[0] = (mx * 2) | !!xored; mv[1] = my * 2; tprev += mx * c->bypp + my * c->pstride; if(xored){ for(j = 0; j < bh2; j++){ for(i = 0; i < bw2 * c->bypp; i++) c->work_buf[work_size++] = tsrc[i] ^ tprev[i]; tsrc += p->linesize[0]; tprev += c->pstride; } } } src += p->linesize[0] * ZMBV_BLOCK; prev += c->pstride * ZMBV_BLOCK; } } /* save the previous frame */ src = p->data[0]; prev = c->prev; for(i = 0; i < avctx->height; i++){ memcpy(prev, src, avctx->width * c->bypp); prev += c->pstride; src += p->linesize[0]; } if (keyframe) deflateReset(&c->zstream); c->zstream.next_in = c->work_buf; c->zstream.avail_in = work_size; c->zstream.total_in = 0; c->zstream.next_out = c->comp_buf; c->zstream.avail_out = c->comp_size; c->zstream.total_out = 0; if(deflate(&c->zstream, Z_SYNC_FLUSH) != Z_OK){ av_log(avctx, AV_LOG_ERROR, "Error compressing data\n"); return -1; } pkt_size = c->zstream.total_out + 1 + 6*keyframe; if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size, 0)) < 0) return ret; buf = pkt->data; fl = (keyframe ? ZMBV_KEYFRAME : 0) | (chpal ? ZMBV_DELTAPAL : 0); *buf++ = fl; if (keyframe) { *buf++ = 0; // hi ver *buf++ = 1; // lo ver *buf++ = 1; // comp *buf++ = c->fmt; // format *buf++ = ZMBV_BLOCK; // block width *buf++ = ZMBV_BLOCK; // block height } memcpy(buf, c->comp_buf, c->zstream.total_out); pkt->flags |= AV_PKT_FLAG_KEY*keyframe; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { ZmbvEncContext * const c = avctx->priv_data; av_freep(&c->comp_buf); av_freep(&c->work_buf); deflateEnd(&c->zstream); av_freep(&c->prev_buf); return 0; } /** * Init zmbv encoder */ static av_cold int encode_init(AVCodecContext *avctx) { ZmbvEncContext * const c = avctx->priv_data; int zret; // Zlib return code int i; int lvl = 9; int prev_size, prev_offset; switch (avctx->pix_fmt) { case AV_PIX_FMT_PAL8: c->fmt = ZMBV_FMT_8BPP; c->bypp = 1; break; case AV_PIX_FMT_RGB555LE: c->fmt = ZMBV_FMT_15BPP; c->bypp = 2; break; case AV_PIX_FMT_RGB565LE: c->fmt = ZMBV_FMT_16BPP; c->bypp = 2; break; #ifdef ZMBV_ENABLE_24BPP case AV_PIX_FMT_BGR24: c->fmt = ZMBV_FMT_24BPP; c->bypp = 3; break; #endif //ZMBV_ENABLE_24BPP case AV_PIX_FMT_BGR0: c->fmt = ZMBV_FMT_32BPP; c->bypp = 4; break; default: av_log(avctx, AV_LOG_INFO, "unsupported pixel format\n"); return AVERROR(EINVAL); } /* Entropy-based score tables for comparing blocks. * Suitable for blocks up to (ZMBV_BLOCK * ZMBV_BLOCK) bytes. * Scores are nonnegative, lower is better. */ for(i = 1; i <= ZMBV_BLOCK * ZMBV_BLOCK * c->bypp; i++) c->score_tab[i] = -i * log2(i / (double)(ZMBV_BLOCK * ZMBV_BLOCK * c->bypp)) * 256; c->avctx = avctx; c->curfrm = 0; c->keyint = avctx->keyint_min; /* Motion estimation range: maximum distance is -64..63 */ c->lrange = c->urange = 8; if(avctx->me_range > 0){ c->lrange = FFMIN(avctx->me_range, 64); c->urange = FFMIN(avctx->me_range, 63); } if(avctx->compression_level >= 0) lvl = avctx->compression_level; if(lvl < 0 || lvl > 9){ av_log(avctx, AV_LOG_ERROR, "Compression level should be 0-9, not %i\n", lvl); return AVERROR(EINVAL); } // Needed if zlib unused or init aborted before deflateInit memset(&c->zstream, 0, sizeof(z_stream)); c->comp_size = avctx->width * c->bypp * avctx->height + 1024 + ((avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * ((avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * 2 + 4; if (!(c->work_buf = av_malloc(c->comp_size))) { av_log(avctx, AV_LOG_ERROR, "Can't allocate work buffer.\n"); return AVERROR(ENOMEM); } /* Conservative upper bound taken from zlib v1.2.1 source via lcl.c */ c->comp_size = c->comp_size + ((c->comp_size + 7) >> 3) + ((c->comp_size + 63) >> 6) + 11; /* Allocate compression buffer */ if (!(c->comp_buf = av_malloc(c->comp_size))) { av_log(avctx, AV_LOG_ERROR, "Can't allocate compression buffer.\n"); return AVERROR(ENOMEM); } /* Allocate prev buffer - pad around the image to allow out-of-edge ME: * - The image should be padded with `lrange` rows before and `urange` rows * after. * - The stride should be padded with `lrange` pixels, then rounded up to a * multiple of 16 bytes. * - The first row should also be padded with `lrange` pixels before, then * aligned up to a multiple of 16 bytes. */ c->pstride = FFALIGN((avctx->width + c->lrange) * c->bypp, 16); prev_size = FFALIGN(c->lrange * c->bypp, 16) + c->pstride * (c->lrange + avctx->height + c->urange); prev_offset = FFALIGN(c->lrange * c->bypp, 16) + c->pstride * c->lrange; if (!(c->prev_buf = av_mallocz(prev_size))) { av_log(avctx, AV_LOG_ERROR, "Can't allocate picture.\n"); return AVERROR(ENOMEM); } c->prev = c->prev_buf + prev_offset; c->zstream.zalloc = Z_NULL; c->zstream.zfree = Z_NULL; c->zstream.opaque = Z_NULL; zret = deflateInit(&c->zstream, lvl); if (zret != Z_OK) { av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret); return -1; } return 0; } AVCodec ff_zmbv_encoder = { .name = "zmbv", .long_name = NULL_IF_CONFIG_SMALL("Zip Motion Blocks Video"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_ZMBV, .priv_data_size = sizeof(ZmbvEncContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_PAL8, AV_PIX_FMT_RGB555LE, AV_PIX_FMT_RGB565LE, #ifdef ZMBV_ENABLE_24BPP AV_PIX_FMT_BGR24, #endif //ZMBV_ENABLE_24BPP AV_PIX_FMT_BGR0, AV_PIX_FMT_NONE }, };