/* * copyright (c) 2006 Oded Shimon * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Native Vorbis encoder. * @author Oded Shimon */ #include #include "libavutil/float_dsp.h" #include "avcodec.h" #include "internal.h" #include "fft.h" #include "mathops.h" #include "vorbis.h" #include "vorbis_enc_data.h" #include "audio_frame_queue.h" #include "libavfilter/bufferqueue.h" #define BITSTREAM_WRITER_LE #include "put_bits.h" #undef NDEBUG #include typedef struct vorbis_enc_codebook { int nentries; uint8_t *lens; uint32_t *codewords; int ndimensions; float min; float delta; int seq_p; int lookup; int *quantlist; float *dimensions; float *pow2; } vorbis_enc_codebook; typedef struct vorbis_enc_floor_class { int dim; int subclass; int masterbook; int *books; } vorbis_enc_floor_class; typedef struct vorbis_enc_floor { int partitions; int *partition_to_class; int nclasses; vorbis_enc_floor_class *classes; int multiplier; int rangebits; int values; vorbis_floor1_entry *list; } vorbis_enc_floor; typedef struct vorbis_enc_residue { int type; int begin; int end; int partition_size; int classifications; int classbook; int8_t (*books)[8]; float (*maxes)[2]; } vorbis_enc_residue; typedef struct vorbis_enc_mapping { int submaps; int *mux; int *floor; int *residue; int coupling_steps; int *magnitude; int *angle; } vorbis_enc_mapping; typedef struct vorbis_enc_mode { int blockflag; int mapping; } vorbis_enc_mode; typedef struct vorbis_enc_context { int channels; int sample_rate; int log2_blocksize[2]; FFTContext mdct[2]; const float *win[2]; int have_saved; float *saved; float *samples; float *floor; // also used for tmp values for mdct float *coeffs; // also used for residue after floor float *scratch; // used for tmp values for psy model float quality; AudioFrameQueue afq; struct FFBufQueue bufqueue; int ncodebooks; vorbis_enc_codebook *codebooks; int nfloors; vorbis_enc_floor *floors; int nresidues; vorbis_enc_residue *residues; int nmappings; vorbis_enc_mapping *mappings; int nmodes; vorbis_enc_mode *modes; int64_t next_pts; AVFloatDSPContext *fdsp; } vorbis_enc_context; #define MAX_CHANNELS 2 #define MAX_CODEBOOK_DIM 8 #define MAX_FLOOR_CLASS_DIM 4 #define NUM_FLOOR_PARTITIONS 8 #define MAX_FLOOR_VALUES (MAX_FLOOR_CLASS_DIM*NUM_FLOOR_PARTITIONS+2) #define RESIDUE_SIZE 1600 #define RESIDUE_PART_SIZE 32 #define NUM_RESIDUE_PARTITIONS (RESIDUE_SIZE/RESIDUE_PART_SIZE) static inline int put_codeword(PutBitContext *pb, vorbis_enc_codebook *cb, int entry) { av_assert2(entry >= 0); av_assert2(entry < cb->nentries); av_assert2(cb->lens[entry]); if (pb->size_in_bits - put_bits_count(pb) < cb->lens[entry]) return AVERROR(EINVAL); put_bits(pb, cb->lens[entry], cb->codewords[entry]); return 0; } static int cb_lookup_vals(int lookup, int dimensions, int entries) { if (lookup == 1) return ff_vorbis_nth_root(entries, dimensions); else if (lookup == 2) return dimensions *entries; return 0; } static int ready_codebook(vorbis_enc_codebook *cb) { int i; ff_vorbis_len2vlc(cb->lens, cb->codewords, cb->nentries); if (!cb->lookup) { cb->pow2 = cb->dimensions = NULL; } else { int vals = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries); cb->dimensions = av_malloc_array(cb->nentries, sizeof(float) * cb->ndimensions); cb->pow2 = av_mallocz_array(cb->nentries, sizeof(float)); if (!cb->dimensions || !cb->pow2) return AVERROR(ENOMEM); for (i = 0; i < cb->nentries; i++) { float last = 0; int j; int div = 1; for (j = 0; j < cb->ndimensions; j++) { int off; if (cb->lookup == 1) off = (i / div) % vals; // lookup type 1 else off = i * cb->ndimensions + j; // lookup type 2 cb->dimensions[i * cb->ndimensions + j] = last + cb->min + cb->quantlist[off] * cb->delta; if (cb->seq_p) last = cb->dimensions[i * cb->ndimensions + j]; cb->pow2[i] += cb->dimensions[i * cb->ndimensions + j] * cb->dimensions[i * cb->ndimensions + j]; div *= vals; } cb->pow2[i] /= 2.0; } } return 0; } static int ready_residue(vorbis_enc_residue *rc, vorbis_enc_context *venc) { int i; av_assert0(rc->type == 2); rc->maxes = av_mallocz_array(rc->classifications, sizeof(float[2])); if (!rc->maxes) return AVERROR(ENOMEM); for (i = 0; i < rc->classifications; i++) { int j; vorbis_enc_codebook * cb; for (j = 0; j < 8; j++) if (rc->books[i][j] != -1) break; if (j == 8) // zero continue; cb = &venc->codebooks[rc->books[i][j]]; assert(cb->ndimensions >= 2); assert(cb->lookup); for (j = 0; j < cb->nentries; j++) { float a; if (!cb->lens[j]) continue; a = fabs(cb->dimensions[j * cb->ndimensions]); if (a > rc->maxes[i][0]) rc->maxes[i][0] = a; a = fabs(cb->dimensions[j * cb->ndimensions + 1]); if (a > rc->maxes[i][1]) rc->maxes[i][1] = a; } } // small bias for (i = 0; i < rc->classifications; i++) { rc->maxes[i][0] += 0.8; rc->maxes[i][1] += 0.8; } return 0; } static av_cold int dsp_init(AVCodecContext *avctx, vorbis_enc_context *venc) { int ret = 0; venc->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!venc->fdsp) return AVERROR(ENOMEM); // init windows venc->win[0] = ff_vorbis_vwin[venc->log2_blocksize[0] - 6]; venc->win[1] = ff_vorbis_vwin[venc->log2_blocksize[1] - 6]; if ((ret = ff_mdct_init(&venc->mdct[0], venc->log2_blocksize[0], 0, 1.0)) < 0) return ret; if ((ret = ff_mdct_init(&venc->mdct[1], venc->log2_blocksize[1], 0, 1.0)) < 0) return ret; return 0; } static int create_vorbis_context(vorbis_enc_context *venc, AVCodecContext *avctx) { vorbis_enc_floor *fc; vorbis_enc_residue *rc; vorbis_enc_mapping *mc; int i, book, ret; venc->channels = avctx->channels; venc->sample_rate = avctx->sample_rate; venc->log2_blocksize[0] = venc->log2_blocksize[1] = 11; venc->ncodebooks = FF_ARRAY_ELEMS(cvectors); venc->codebooks = av_malloc(sizeof(vorbis_enc_codebook) * venc->ncodebooks); if (!venc->codebooks) return AVERROR(ENOMEM); // codebook 0..14 - floor1 book, values 0..255 // codebook 15 residue masterbook // codebook 16..29 residue for (book = 0; book < venc->ncodebooks; book++) { vorbis_enc_codebook *cb = &venc->codebooks[book]; int vals; cb->ndimensions = cvectors[book].dim; cb->nentries = cvectors[book].real_len; cb->min = cvectors[book].min; cb->delta = cvectors[book].delta; cb->lookup = cvectors[book].lookup; cb->seq_p = 0; cb->lens = av_malloc_array(cb->nentries, sizeof(uint8_t)); cb->codewords = av_malloc_array(cb->nentries, sizeof(uint32_t)); if (!cb->lens || !cb->codewords) return AVERROR(ENOMEM); memcpy(cb->lens, cvectors[book].clens, cvectors[book].len); memset(cb->lens + cvectors[book].len, 0, cb->nentries - cvectors[book].len); if (cb->lookup) { vals = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries); cb->quantlist = av_malloc_array(vals, sizeof(int)); if (!cb->quantlist) return AVERROR(ENOMEM); for (i = 0; i < vals; i++) cb->quantlist[i] = cvectors[book].quant[i]; } else { cb->quantlist = NULL; } if ((ret = ready_codebook(cb)) < 0) return ret; } venc->nfloors = 1; venc->floors = av_malloc(sizeof(vorbis_enc_floor) * venc->nfloors); if (!venc->floors) return AVERROR(ENOMEM); // just 1 floor fc = &venc->floors[0]; fc->partitions = NUM_FLOOR_PARTITIONS; fc->partition_to_class = av_malloc(sizeof(int) * fc->partitions); if (!fc->partition_to_class) return AVERROR(ENOMEM); fc->nclasses = 0; for (i = 0; i < fc->partitions; i++) { static const int a[] = {0, 1, 2, 2, 3, 3, 4, 4}; fc->partition_to_class[i] = a[i]; fc->nclasses = FFMAX(fc->nclasses, fc->partition_to_class[i]); } fc->nclasses++; fc->classes = av_malloc_array(fc->nclasses, sizeof(vorbis_enc_floor_class)); if (!fc->classes) return AVERROR(ENOMEM); for (i = 0; i < fc->nclasses; i++) { vorbis_enc_floor_class * c = &fc->classes[i]; int j, books; c->dim = floor_classes[i].dim; c->subclass = floor_classes[i].subclass; c->masterbook = floor_classes[i].masterbook; books = (1 << c->subclass); c->books = av_malloc_array(books, sizeof(int)); if (!c->books) return AVERROR(ENOMEM); for (j = 0; j < books; j++) c->books[j] = floor_classes[i].nbooks[j]; } fc->multiplier = 2; fc->rangebits = venc->log2_blocksize[1] - 1; fc->values = 2; for (i = 0; i < fc->partitions; i++) fc->values += fc->classes[fc->partition_to_class[i]].dim; fc->list = av_malloc_array(fc->values, sizeof(vorbis_floor1_entry)); if (!fc->list) return AVERROR(ENOMEM); fc->list[0].x = 0; fc->list[1].x = 1 << fc->rangebits; for (i = 2; i < fc->values; i++) { static const int a[] = { 93, 23,372, 6, 46,186,750, 14, 33, 65, 130,260,556, 3, 10, 18, 28, 39, 55, 79, 111,158,220,312,464,650,850 }; fc->list[i].x = a[i - 2]; } if (ff_vorbis_ready_floor1_list(avctx, fc->list, fc->values)) return AVERROR_BUG; venc->nresidues = 1; venc->residues = av_malloc(sizeof(vorbis_enc_residue) * venc->nresidues); if (!venc->residues) return AVERROR(ENOMEM); // single residue rc = &venc->residues[0]; rc->type = 2; rc->begin = 0; rc->end = 1600; rc->partition_size = 32; rc->classifications = 10; rc->classbook = 15; rc->books = av_malloc(sizeof(*rc->books) * rc->classifications); if (!rc->books) return AVERROR(ENOMEM); { static const int8_t a[10][8] = { { -1, -1, -1, -1, -1, -1, -1, -1, }, { -1, -1, 16, -1, -1, -1, -1, -1, }, { -1, -1, 17, -1, -1, -1, -1, -1, }, { -1, -1, 18, -1, -1, -1, -1, -1, }, { -1, -1, 19, -1, -1, -1, -1, -1, }, { -1, -1, 20, -1, -1, -1, -1, -1, }, { -1, -1, 21, -1, -1, -1, -1, -1, }, { 22, 23, -1, -1, -1, -1, -1, -1, }, { 24, 25, -1, -1, -1, -1, -1, -1, }, { 26, 27, 28, -1, -1, -1, -1, -1, }, }; memcpy(rc->books, a, sizeof a); } if ((ret = ready_residue(rc, venc)) < 0) return ret; venc->nmappings = 1; venc->mappings = av_malloc(sizeof(vorbis_enc_mapping) * venc->nmappings); if (!venc->mappings) return AVERROR(ENOMEM); // single mapping mc = &venc->mappings[0]; mc->submaps = 1; mc->mux = av_malloc(sizeof(int) * venc->channels); if (!mc->mux) return AVERROR(ENOMEM); for (i = 0; i < venc->channels; i++) mc->mux[i] = 0; mc->floor = av_malloc(sizeof(int) * mc->submaps); mc->residue = av_malloc(sizeof(int) * mc->submaps); if (!mc->floor || !mc->residue) return AVERROR(ENOMEM); for (i = 0; i < mc->submaps; i++) { mc->floor[i] = 0; mc->residue[i] = 0; } mc->coupling_steps = venc->channels == 2 ? 1 : 0; mc->magnitude = av_malloc(sizeof(int) * mc->coupling_steps); mc->angle = av_malloc(sizeof(int) * mc->coupling_steps); if (!mc->magnitude || !mc->angle) return AVERROR(ENOMEM); if (mc->coupling_steps) { mc->magnitude[0] = 0; mc->angle[0] = 1; } venc->nmodes = 2; venc->modes = av_malloc(sizeof(vorbis_enc_mode) * venc->nmodes); if (!venc->modes) return AVERROR(ENOMEM); // Short block venc->modes[0].blockflag = 0; venc->modes[0].mapping = 0; // Long block venc->modes[1].blockflag = 1; venc->modes[1].mapping = 0; venc->have_saved = 0; venc->saved = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2); venc->samples = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1])); venc->floor = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2); venc->coeffs = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2); venc->scratch = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1])); if (!venc->saved || !venc->samples || !venc->floor || !venc->coeffs || !venc->scratch) return AVERROR(ENOMEM); if ((ret = dsp_init(avctx, venc)) < 0) return ret; return 0; } static void put_float(PutBitContext *pb, float f) { int exp, mant; uint32_t res = 0; mant = (int)ldexp(frexp(f, &exp), 20); exp += 788 - 20; if (mant < 0) { res |= (1U << 31); mant = -mant; } res |= mant | (exp << 21); put_bits32(pb, res); } static void put_codebook_header(PutBitContext *pb, vorbis_enc_codebook *cb) { int i; int ordered = 0; put_bits(pb, 24, 0x564342); //magic put_bits(pb, 16, cb->ndimensions); put_bits(pb, 24, cb->nentries); for (i = 1; i < cb->nentries; i++) if (cb->lens[i] < cb->lens[i-1]) break; if (i == cb->nentries) ordered = 1; put_bits(pb, 1, ordered); if (ordered) { int len = cb->lens[0]; put_bits(pb, 5, len - 1); i = 0; while (i < cb->nentries) { int j; for (j = 0; j+i < cb->nentries; j++) if (cb->lens[j+i] != len) break; put_bits(pb, ilog(cb->nentries - i), j); i += j; len++; } } else { int sparse = 0; for (i = 0; i < cb->nentries; i++) if (!cb->lens[i]) break; if (i != cb->nentries) sparse = 1; put_bits(pb, 1, sparse); for (i = 0; i < cb->nentries; i++) { if (sparse) put_bits(pb, 1, !!cb->lens[i]); if (cb->lens[i]) put_bits(pb, 5, cb->lens[i] - 1); } } put_bits(pb, 4, cb->lookup); if (cb->lookup) { int tmp = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries); int bits = ilog(cb->quantlist[0]); for (i = 1; i < tmp; i++) bits = FFMAX(bits, ilog(cb->quantlist[i])); put_float(pb, cb->min); put_float(pb, cb->delta); put_bits(pb, 4, bits - 1); put_bits(pb, 1, cb->seq_p); for (i = 0; i < tmp; i++) put_bits(pb, bits, cb->quantlist[i]); } } static void put_floor_header(PutBitContext *pb, vorbis_enc_floor *fc) { int i; put_bits(pb, 16, 1); // type, only floor1 is supported put_bits(pb, 5, fc->partitions); for (i = 0; i < fc->partitions; i++) put_bits(pb, 4, fc->partition_to_class[i]); for (i = 0; i < fc->nclasses; i++) { int j, books; put_bits(pb, 3, fc->classes[i].dim - 1); put_bits(pb, 2, fc->classes[i].subclass); if (fc->classes[i].subclass) put_bits(pb, 8, fc->classes[i].masterbook); books = (1 << fc->classes[i].subclass); for (j = 0; j < books; j++) put_bits(pb, 8, fc->classes[i].books[j] + 1); } put_bits(pb, 2, fc->multiplier - 1); put_bits(pb, 4, fc->rangebits); for (i = 2; i < fc->values; i++) put_bits(pb, fc->rangebits, fc->list[i].x); } static void put_residue_header(PutBitContext *pb, vorbis_enc_residue *rc) { int i; put_bits(pb, 16, rc->type); put_bits(pb, 24, rc->begin); put_bits(pb, 24, rc->end); put_bits(pb, 24, rc->partition_size - 1); put_bits(pb, 6, rc->classifications - 1); put_bits(pb, 8, rc->classbook); for (i = 0; i < rc->classifications; i++) { int j, tmp = 0; for (j = 0; j < 8; j++) tmp |= (rc->books[i][j] != -1) << j; put_bits(pb, 3, tmp & 7); put_bits(pb, 1, tmp > 7); if (tmp > 7) put_bits(pb, 5, tmp >> 3); } for (i = 0; i < rc->classifications; i++) { int j; for (j = 0; j < 8; j++) if (rc->books[i][j] != -1) put_bits(pb, 8, rc->books[i][j]); } } static int put_main_header(vorbis_enc_context *venc, uint8_t **out) { int i; PutBitContext pb; int len, hlens[3]; int buffer_len = 50000; uint8_t *buffer = av_mallocz(buffer_len), *p = buffer; if (!buffer) return AVERROR(ENOMEM); // identification header init_put_bits(&pb, p, buffer_len); put_bits(&pb, 8, 1); //magic for (i = 0; "vorbis"[i]; i++) put_bits(&pb, 8, "vorbis"[i]); put_bits32(&pb, 0); // version put_bits(&pb, 8, venc->channels); put_bits32(&pb, venc->sample_rate); put_bits32(&pb, 0); // bitrate put_bits32(&pb, 0); // bitrate put_bits32(&pb, 0); // bitrate put_bits(&pb, 4, venc->log2_blocksize[0]); put_bits(&pb, 4, venc->log2_blocksize[1]); put_bits(&pb, 1, 1); // framing flush_put_bits(&pb); hlens[0] = put_bits_count(&pb) >> 3; buffer_len -= hlens[0]; p += hlens[0]; // comment header init_put_bits(&pb, p, buffer_len); put_bits(&pb, 8, 3); //magic for (i = 0; "vorbis"[i]; i++) put_bits(&pb, 8, "vorbis"[i]); put_bits32(&pb, 0); // vendor length TODO put_bits32(&pb, 0); // amount of comments put_bits(&pb, 1, 1); // framing flush_put_bits(&pb); hlens[1] = put_bits_count(&pb) >> 3; buffer_len -= hlens[1]; p += hlens[1]; // setup header init_put_bits(&pb, p, buffer_len); put_bits(&pb, 8, 5); //magic for (i = 0; "vorbis"[i]; i++) put_bits(&pb, 8, "vorbis"[i]); // codebooks put_bits(&pb, 8, venc->ncodebooks - 1); for (i = 0; i < venc->ncodebooks; i++) put_codebook_header(&pb, &venc->codebooks[i]); // time domain, reserved, zero put_bits(&pb, 6, 0); put_bits(&pb, 16, 0); // floors put_bits(&pb, 6, venc->nfloors - 1); for (i = 0; i < venc->nfloors; i++) put_floor_header(&pb, &venc->floors[i]); // residues put_bits(&pb, 6, venc->nresidues - 1); for (i = 0; i < venc->nresidues; i++) put_residue_header(&pb, &venc->residues[i]); // mappings put_bits(&pb, 6, venc->nmappings - 1); for (i = 0; i < venc->nmappings; i++) { vorbis_enc_mapping *mc = &venc->mappings[i]; int j; put_bits(&pb, 16, 0); // mapping type put_bits(&pb, 1, mc->submaps > 1); if (mc->submaps > 1) put_bits(&pb, 4, mc->submaps - 1); put_bits(&pb, 1, !!mc->coupling_steps); if (mc->coupling_steps) { put_bits(&pb, 8, mc->coupling_steps - 1); for (j = 0; j < mc->coupling_steps; j++) { put_bits(&pb, ilog(venc->channels - 1), mc->magnitude[j]); put_bits(&pb, ilog(venc->channels - 1), mc->angle[j]); } } put_bits(&pb, 2, 0); // reserved if (mc->submaps > 1) for (j = 0; j < venc->channels; j++) put_bits(&pb, 4, mc->mux[j]); for (j = 0; j < mc->submaps; j++) { put_bits(&pb, 8, 0); // reserved time configuration put_bits(&pb, 8, mc->floor[j]); put_bits(&pb, 8, mc->residue[j]); } } // modes put_bits(&pb, 6, venc->nmodes - 1); for (i = 0; i < venc->nmodes; i++) { put_bits(&pb, 1, venc->modes[i].blockflag); put_bits(&pb, 16, 0); // reserved window type put_bits(&pb, 16, 0); // reserved transform type put_bits(&pb, 8, venc->modes[i].mapping); } put_bits(&pb, 1, 1); // framing flush_put_bits(&pb); hlens[2] = put_bits_count(&pb) >> 3; len = hlens[0] + hlens[1] + hlens[2]; p = *out = av_mallocz(64 + len + len/255); if (!p) return AVERROR(ENOMEM); *p++ = 2; p += av_xiphlacing(p, hlens[0]); p += av_xiphlacing(p, hlens[1]); buffer_len = 0; for (i = 0; i < 3; i++) { memcpy(p, buffer + buffer_len, hlens[i]); p += hlens[i]; buffer_len += hlens[i]; } av_freep(&buffer); return p - *out; } static float get_floor_average(vorbis_enc_floor * fc, float *coeffs, int i) { int begin = fc->list[fc->list[FFMAX(i-1, 0)].sort].x; int end = fc->list[fc->list[FFMIN(i+1, fc->values - 1)].sort].x; int j; float average = 0; for (j = begin; j < end; j++) average += fabs(coeffs[j]); return average / (end - begin); } static void floor_fit(vorbis_enc_context *venc, vorbis_enc_floor *fc, float *coeffs, uint16_t *posts, int samples) { int range = 255 / fc->multiplier + 1; int i; float tot_average = 0.0; float averages[MAX_FLOOR_VALUES]; for (i = 0; i < fc->values; i++) { averages[i] = get_floor_average(fc, coeffs, i); tot_average += averages[i]; } tot_average /= fc->values; tot_average /= venc->quality; for (i = 0; i < fc->values; i++) { int position = fc->list[fc->list[i].sort].x; float average = averages[i]; int j; average = sqrt(tot_average * average) * pow(1.25f, position*0.005f); // MAGIC! for (j = 0; j < range - 1; j++) if (ff_vorbis_floor1_inverse_db_table[j * fc->multiplier] > average) break; posts[fc->list[i].sort] = j; } } static int render_point(int x0, int y0, int x1, int y1, int x) { return y0 + (x - x0) * (y1 - y0) / (x1 - x0); } static int floor_encode(vorbis_enc_context *venc, vorbis_enc_floor *fc, PutBitContext *pb, uint16_t *posts, float *floor, int samples) { int range = 255 / fc->multiplier + 1; int coded[MAX_FLOOR_VALUES]; // first 2 values are unused int i, counter; if (pb->size_in_bits - put_bits_count(pb) < 1 + 2 * ilog(range - 1)) return AVERROR(EINVAL); put_bits(pb, 1, 1); // non zero put_bits(pb, ilog(range - 1), posts[0]); put_bits(pb, ilog(range - 1), posts[1]); coded[0] = coded[1] = 1; for (i = 2; i < fc->values; i++) { int predicted = render_point(fc->list[fc->list[i].low].x, posts[fc->list[i].low], fc->list[fc->list[i].high].x, posts[fc->list[i].high], fc->list[i].x); int highroom = range - predicted; int lowroom = predicted; int room = FFMIN(highroom, lowroom); if (predicted == posts[i]) { coded[i] = 0; // must be used later as flag! continue; } else { if (!coded[fc->list[i].low ]) coded[fc->list[i].low ] = -1; if (!coded[fc->list[i].high]) coded[fc->list[i].high] = -1; } if (posts[i] > predicted) { if (posts[i] - predicted > room) coded[i] = posts[i] - predicted + lowroom; else coded[i] = (posts[i] - predicted) << 1; } else { if (predicted - posts[i] > room) coded[i] = predicted - posts[i] + highroom - 1; else coded[i] = ((predicted - posts[i]) << 1) - 1; } } counter = 2; for (i = 0; i < fc->partitions; i++) { vorbis_enc_floor_class * c = &fc->classes[fc->partition_to_class[i]]; int k, cval = 0, csub = 1<subclass; if (c->subclass) { vorbis_enc_codebook * book = &venc->codebooks[c->masterbook]; int cshift = 0; for (k = 0; k < c->dim; k++) { int l; for (l = 0; l < csub; l++) { int maxval = 1; if (c->books[l] != -1) maxval = venc->codebooks[c->books[l]].nentries; // coded could be -1, but this still works, cause that is 0 if (coded[counter + k] < maxval) break; } assert(l != csub); cval |= l << cshift; cshift += c->subclass; } if (put_codeword(pb, book, cval)) return AVERROR(EINVAL); } for (k = 0; k < c->dim; k++) { int book = c->books[cval & (csub-1)]; int entry = coded[counter++]; cval >>= c->subclass; if (book == -1) continue; if (entry == -1) entry = 0; if (put_codeword(pb, &venc->codebooks[book], entry)) return AVERROR(EINVAL); } } ff_vorbis_floor1_render_list(fc->list, fc->values, posts, coded, fc->multiplier, floor, samples); return 0; } static float *put_vector(vorbis_enc_codebook *book, PutBitContext *pb, float *num) { int i, entry = -1; float distance = FLT_MAX; assert(book->dimensions); for (i = 0; i < book->nentries; i++) { float * vec = book->dimensions + i * book->ndimensions, d = book->pow2[i]; int j; if (!book->lens[i]) continue; for (j = 0; j < book->ndimensions; j++) d -= vec[j] * num[j]; if (distance > d) { entry = i; distance = d; } } if (put_codeword(pb, book, entry)) return NULL; return &book->dimensions[entry * book->ndimensions]; } static int residue_encode(vorbis_enc_context *venc, vorbis_enc_residue *rc, PutBitContext *pb, float *coeffs, int samples, int real_ch) { int pass, i, j, p, k; int psize = rc->partition_size; int partitions = (rc->end - rc->begin) / psize; int channels = (rc->type == 2) ? 1 : real_ch; int classes[MAX_CHANNELS][NUM_RESIDUE_PARTITIONS]; int classwords = venc->codebooks[rc->classbook].ndimensions; av_assert0(rc->type == 2); av_assert0(real_ch == 2); for (p = 0; p < partitions; p++) { float max1 = 0.0, max2 = 0.0; int s = rc->begin + p * psize; for (k = s; k < s + psize; k += 2) { max1 = FFMAX(max1, fabs(coeffs[ k / real_ch])); max2 = FFMAX(max2, fabs(coeffs[samples + k / real_ch])); } for (i = 0; i < rc->classifications - 1; i++) if (max1 < rc->maxes[i][0] && max2 < rc->maxes[i][1]) break; classes[0][p] = i; } for (pass = 0; pass < 8; pass++) { p = 0; while (p < partitions) { if (pass == 0) for (j = 0; j < channels; j++) { vorbis_enc_codebook * book = &venc->codebooks[rc->classbook]; int entry = 0; for (i = 0; i < classwords; i++) { entry *= rc->classifications; entry += classes[j][p + i]; } if (put_codeword(pb, book, entry)) return AVERROR(EINVAL); } for (i = 0; i < classwords && p < partitions; i++, p++) { for (j = 0; j < channels; j++) { int nbook = rc->books[classes[j][p]][pass]; vorbis_enc_codebook * book = &venc->codebooks[nbook]; float *buf = coeffs + samples*j + rc->begin + p*psize; if (nbook == -1) continue; assert(rc->type == 0 || rc->type == 2); assert(!(psize % book->ndimensions)); if (rc->type == 0) { for (k = 0; k < psize; k += book->ndimensions) { int l; float *a = put_vector(book, pb, &buf[k]); if (!a) return AVERROR(EINVAL); for (l = 0; l < book->ndimensions; l++) buf[k + l] -= a[l]; } } else { int s = rc->begin + p * psize, a1, b1; a1 = (s % real_ch) * samples; b1 = s / real_ch; s = real_ch * samples; for (k = 0; k < psize; k += book->ndimensions) { int dim, a2 = a1, b2 = b1; float vec[MAX_CODEBOOK_DIM], *pv = vec; for (dim = book->ndimensions; dim--; ) { *pv++ = coeffs[a2 + b2]; if ((a2 += samples) == s) { a2 = 0; b2++; } } pv = put_vector(book, pb, vec); if (!pv) return AVERROR(EINVAL); for (dim = book->ndimensions; dim--; ) { coeffs[a1 + b1] -= *pv++; if ((a1 += samples) == s) { a1 = 0; b1++; } } } } } } } } return 0; } static int apply_window_and_mdct(vorbis_enc_context *venc) { int channel; const float * win = venc->win[1]; int window_len = 1 << (venc->log2_blocksize[1] - 1); float n = (float)(1 << venc->log2_blocksize[1]) / 4.0; AVFloatDSPContext *fdsp = venc->fdsp; for (channel = 0; channel < venc->channels; channel++) { float *offset = venc->samples + channel * window_len * 2; fdsp->vector_fmul(offset, offset, win, window_len); fdsp->vector_fmul_scalar(offset, offset, 1/n, window_len); offset += window_len; fdsp->vector_fmul_reverse(offset, offset, win, window_len); fdsp->vector_fmul_scalar(offset, offset, 1/n, window_len); venc->mdct[1].mdct_calc(&venc->mdct[1], venc->coeffs + channel * window_len, venc->samples + channel * window_len * 2); } return 1; } /* Used for padding the last encoded packet */ static AVFrame *spawn_empty_frame(AVCodecContext *avctx, int channels) { AVFrame *f = av_frame_alloc(); int ch; if (!f) return NULL; f->format = avctx->sample_fmt; f->nb_samples = avctx->frame_size; f->channel_layout = avctx->channel_layout; if (av_frame_get_buffer(f, 4)) { av_frame_free(&f); return NULL; } for (ch = 0; ch < channels; ch++) { size_t bps = av_get_bytes_per_sample(f->format); memset(f->extended_data[ch], 0, bps * f->nb_samples); } return f; } /* Set up audio samples for psy analysis and window/mdct */ static void move_audio(vorbis_enc_context *venc, int sf_size) { AVFrame *cur = NULL; int frame_size = 1 << (venc->log2_blocksize[1] - 1); int subframes = frame_size / sf_size; int sf, ch; /* Copy samples from last frame into current frame */ if (venc->have_saved) for (ch = 0; ch < venc->channels; ch++) memcpy(venc->samples + 2 * ch * frame_size, venc->saved + ch * frame_size, sizeof(float) * frame_size); else for (ch = 0; ch < venc->channels; ch++) memset(venc->samples + 2 * ch * frame_size, 0, sizeof(float) * frame_size); for (sf = 0; sf < subframes; sf++) { cur = ff_bufqueue_get(&venc->bufqueue); for (ch = 0; ch < venc->channels; ch++) { float *offset = venc->samples + 2 * ch * frame_size + frame_size; float *save = venc->saved + ch * frame_size; const float *input = (float *) cur->extended_data[ch]; const size_t len = cur->nb_samples * sizeof(float); memcpy(offset + sf*sf_size, input, len); memcpy(save + sf*sf_size, input, len); // Move samples for next frame } av_frame_free(&cur); } venc->have_saved = 1; memcpy(venc->scratch, venc->samples, 2 * venc->channels * frame_size); } static int vorbis_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr) { vorbis_enc_context *venc = avctx->priv_data; int i, ret, need_more; int frame_size = 1 << (venc->log2_blocksize[1] - 1); vorbis_enc_mode *mode; vorbis_enc_mapping *mapping; PutBitContext pb; if (frame) { AVFrame *clone; if ((ret = ff_af_queue_add(&venc->afq, frame)) < 0) return ret; clone = av_frame_clone(frame); if (!clone) return AVERROR(ENOMEM); ff_bufqueue_add(avctx, &venc->bufqueue, clone); } else if (!venc->afq.remaining_samples) return 0; need_more = venc->bufqueue.available * avctx->frame_size < frame_size; need_more = frame && need_more; if (need_more) return 0; /* Pad the bufqueue with empty frames for encoding the last packet. */ if (!frame) { if (venc->bufqueue.available * avctx->frame_size < frame_size) { int frames_needed = (frame_size/avctx->frame_size) - venc->bufqueue.available; int i; for (i = 0; i < frames_needed; i++) { AVFrame *empty = spawn_empty_frame(avctx, venc->channels); if (!empty) return AVERROR(ENOMEM); ff_bufqueue_add(avctx, &venc->bufqueue, empty); } } } move_audio(venc, avctx->frame_size); if (!apply_window_and_mdct(venc)) return 0; if ((ret = ff_alloc_packet2(avctx, avpkt, 8192, 0)) < 0) return ret; init_put_bits(&pb, avpkt->data, avpkt->size); if (pb.size_in_bits - put_bits_count(&pb) < 1 + ilog(venc->nmodes - 1)) { av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n"); return AVERROR(EINVAL); } put_bits(&pb, 1, 0); // magic bit put_bits(&pb, ilog(venc->nmodes - 1), 1); // Mode for current frame mode = &venc->modes[1]; mapping = &venc->mappings[mode->mapping]; if (mode->blockflag) { put_bits(&pb, 1, 1); // Previous windowflag put_bits(&pb, 1, 1); // Next windowflag } for (i = 0; i < venc->channels; i++) { vorbis_enc_floor *fc = &venc->floors[mapping->floor[mapping->mux[i]]]; uint16_t posts[MAX_FLOOR_VALUES]; floor_fit(venc, fc, &venc->coeffs[i * frame_size], posts, frame_size); if (floor_encode(venc, fc, &pb, posts, &venc->floor[i * frame_size], frame_size)) { av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n"); return AVERROR(EINVAL); } } for (i = 0; i < venc->channels * frame_size; i++) venc->coeffs[i] /= venc->floor[i]; for (i = 0; i < mapping->coupling_steps; i++) { float *mag = venc->coeffs + mapping->magnitude[i] * frame_size; float *ang = venc->coeffs + mapping->angle[i] * frame_size; int j; for (j = 0; j < frame_size; j++) { float a = ang[j]; ang[j] -= mag[j]; if (mag[j] > 0) ang[j] = -ang[j]; if (ang[j] < 0) mag[j] = a; } } if (residue_encode(venc, &venc->residues[mapping->residue[mapping->mux[0]]], &pb, venc->coeffs, frame_size, venc->channels)) { av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n"); return AVERROR(EINVAL); } flush_put_bits(&pb); avpkt->size = put_bits_count(&pb) >> 3; ff_af_queue_remove(&venc->afq, frame_size, &avpkt->pts, &avpkt->duration); if (frame_size > avpkt->duration) { uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10); if (!side) return AVERROR(ENOMEM); AV_WL32(&side[4], frame_size - avpkt->duration); } *got_packet_ptr = 1; return 0; } static av_cold int vorbis_encode_close(AVCodecContext *avctx) { vorbis_enc_context *venc = avctx->priv_data; int i; if (venc->codebooks) for (i = 0; i < venc->ncodebooks; i++) { av_freep(&venc->codebooks[i].lens); av_freep(&venc->codebooks[i].codewords); av_freep(&venc->codebooks[i].quantlist); av_freep(&venc->codebooks[i].dimensions); av_freep(&venc->codebooks[i].pow2); } av_freep(&venc->codebooks); if (venc->floors) for (i = 0; i < venc->nfloors; i++) { int j; if (venc->floors[i].classes) for (j = 0; j < venc->floors[i].nclasses; j++) av_freep(&venc->floors[i].classes[j].books); av_freep(&venc->floors[i].classes); av_freep(&venc->floors[i].partition_to_class); av_freep(&venc->floors[i].list); } av_freep(&venc->floors); if (venc->residues) for (i = 0; i < venc->nresidues; i++) { av_freep(&venc->residues[i].books); av_freep(&venc->residues[i].maxes); } av_freep(&venc->residues); if (venc->mappings) for (i = 0; i < venc->nmappings; i++) { av_freep(&venc->mappings[i].mux); av_freep(&venc->mappings[i].floor); av_freep(&venc->mappings[i].residue); av_freep(&venc->mappings[i].magnitude); av_freep(&venc->mappings[i].angle); } av_freep(&venc->mappings); av_freep(&venc->modes); av_freep(&venc->saved); av_freep(&venc->samples); av_freep(&venc->floor); av_freep(&venc->coeffs); av_freep(&venc->scratch); av_freep(&venc->fdsp); ff_mdct_end(&venc->mdct[0]); ff_mdct_end(&venc->mdct[1]); ff_af_queue_close(&venc->afq); ff_bufqueue_discard_all(&venc->bufqueue); av_freep(&avctx->extradata); return 0 ; } static av_cold int vorbis_encode_init(AVCodecContext *avctx) { vorbis_enc_context *venc = avctx->priv_data; int ret; if (avctx->channels != 2) { av_log(avctx, AV_LOG_ERROR, "Current FFmpeg Vorbis encoder only supports 2 channels.\n"); return -1; } if ((ret = create_vorbis_context(venc, avctx)) < 0) goto error; avctx->bit_rate = 0; if (avctx->flags & AV_CODEC_FLAG_QSCALE) venc->quality = avctx->global_quality / (float)FF_QP2LAMBDA; else venc->quality = 8; venc->quality *= venc->quality; if ((ret = put_main_header(venc, (uint8_t**)&avctx->extradata)) < 0) goto error; avctx->extradata_size = ret; avctx->frame_size = 64; ff_af_queue_init(avctx, &venc->afq); return 0; error: vorbis_encode_close(avctx); return ret; } AVCodec ff_vorbis_encoder = { .name = "vorbis", .long_name = NULL_IF_CONFIG_SMALL("Vorbis"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_VORBIS, .priv_data_size = sizeof(vorbis_enc_context), .init = vorbis_encode_init, .encode2 = vorbis_encode_frame, .close = vorbis_encode_close, .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL, .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, };