/* * Copyright (c) 2010-2011 Maxim Poliakovski * Copyright (c) 2010-2011 Elvis Presley * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444) */ //#define DEBUG #define LONG_BITSTREAM_READER #include "libavutil/internal.h" #include "avcodec.h" #include "get_bits.h" #include "idctdsp.h" #include "internal.h" #include "profiles.h" #include "simple_idct.h" #include "proresdec.h" #include "proresdata.h" #include "thread.h" static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64]) { int i; for (i = 0; i < 64; i++) dst[i] = permutation[src[i]]; } #define ALPHA_SHIFT_16_TO_10(alpha_val) (alpha_val >> 6) #define ALPHA_SHIFT_8_TO_10(alpha_val) ((alpha_val << 2) | (alpha_val >> 6)) #define ALPHA_SHIFT_16_TO_12(alpha_val) (alpha_val >> 4) #define ALPHA_SHIFT_8_TO_12(alpha_val) ((alpha_val << 4) | (alpha_val >> 4)) static void inline unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits, const int decode_precision) { const int mask = (1 << num_bits) - 1; int i, idx, val, alpha_val; idx = 0; alpha_val = mask; do { do { if (get_bits1(gb)) { val = get_bits(gb, num_bits); } else { int sign; val = get_bits(gb, num_bits == 16 ? 7 : 4); sign = val & 1; val = (val + 2) >> 1; if (sign) val = -val; } alpha_val = (alpha_val + val) & mask; if (num_bits == 16) { if (decode_precision == 10) { dst[idx++] = ALPHA_SHIFT_16_TO_10(alpha_val); } else { /* 12b */ dst[idx++] = ALPHA_SHIFT_16_TO_12(alpha_val); } } else { if (decode_precision == 10) { dst[idx++] = ALPHA_SHIFT_8_TO_10(alpha_val); } else { /* 12b */ dst[idx++] = ALPHA_SHIFT_8_TO_12(alpha_val); } } if (idx >= num_coeffs) break; } while (get_bits_left(gb)>0 && get_bits1(gb)); val = get_bits(gb, 4); if (!val) val = get_bits(gb, 11); if (idx + val > num_coeffs) val = num_coeffs - idx; if (num_bits == 16) { for (i = 0; i < val; i++) { if (decode_precision == 10) { dst[idx++] = ALPHA_SHIFT_16_TO_10(alpha_val); } else { /* 12b */ dst[idx++] = ALPHA_SHIFT_16_TO_12(alpha_val); } } } else { for (i = 0; i < val; i++) { if (decode_precision == 10) { dst[idx++] = ALPHA_SHIFT_8_TO_10(alpha_val); } else { /* 12b */ dst[idx++] = ALPHA_SHIFT_8_TO_12(alpha_val); } } } } while (idx < num_coeffs); } static void unpack_alpha_10(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits) { if (num_bits == 16) { unpack_alpha(gb, dst, num_coeffs, 16, 10); } else { /* 8 bits alpha */ unpack_alpha(gb, dst, num_coeffs, 8, 10); } } static void unpack_alpha_12(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits) { if (num_bits == 16) { unpack_alpha(gb, dst, num_coeffs, 16, 12); } else { /* 8 bits alpha */ unpack_alpha(gb, dst, num_coeffs, 8, 12); } } static av_cold int decode_init(AVCodecContext *avctx) { int ret = 0; ProresContext *ctx = avctx->priv_data; uint8_t idct_permutation[64]; avctx->bits_per_raw_sample = 10; switch (avctx->codec_tag) { case MKTAG('a','p','c','o'): avctx->profile = FF_PROFILE_PRORES_PROXY; break; case MKTAG('a','p','c','s'): avctx->profile = FF_PROFILE_PRORES_LT; break; case MKTAG('a','p','c','n'): avctx->profile = FF_PROFILE_PRORES_STANDARD; break; case MKTAG('a','p','c','h'): avctx->profile = FF_PROFILE_PRORES_HQ; break; case MKTAG('a','p','4','h'): avctx->profile = FF_PROFILE_PRORES_4444; avctx->bits_per_raw_sample = 12; break; case MKTAG('a','p','4','x'): avctx->profile = FF_PROFILE_PRORES_XQ; avctx->bits_per_raw_sample = 12; break; default: avctx->profile = FF_PROFILE_UNKNOWN; av_log(avctx, AV_LOG_WARNING, "Unknown prores profile %d\n", avctx->codec_tag); } if (avctx->bits_per_raw_sample == 10) { av_log(avctx, AV_LOG_DEBUG, "Auto bitdepth precision. Use 10b decoding based on codec tag.\n"); } else { /* 12b */ av_log(avctx, AV_LOG_DEBUG, "Auto bitdepth precision. Use 12b decoding based on codec tag.\n"); } ff_blockdsp_init(&ctx->bdsp, avctx); ret = ff_proresdsp_init(&ctx->prodsp, avctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Fail to init proresdsp for bits per raw sample %d\n", avctx->bits_per_raw_sample); return ret; } ff_init_scantable_permutation(idct_permutation, ctx->prodsp.idct_permutation_type); permute(ctx->progressive_scan, ff_prores_progressive_scan, idct_permutation); permute(ctx->interlaced_scan, ff_prores_interlaced_scan, idct_permutation); if (avctx->bits_per_raw_sample == 10){ ctx->unpack_alpha = unpack_alpha_10; } else if (avctx->bits_per_raw_sample == 12){ ctx->unpack_alpha = unpack_alpha_12; } else { av_log(avctx, AV_LOG_ERROR, "Fail to set unpack_alpha for bits per raw sample %d\n", avctx->bits_per_raw_sample); return AVERROR_BUG; } return ret; } static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx) { int hdr_size, width, height, flags; int version; const uint8_t *ptr; hdr_size = AV_RB16(buf); ff_dlog(avctx, "header size %d\n", hdr_size); if (hdr_size > data_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n"); return AVERROR_INVALIDDATA; } version = AV_RB16(buf + 2); ff_dlog(avctx, "%.4s version %d\n", buf+4, version); if (version > 1) { av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version); return AVERROR_PATCHWELCOME; } width = AV_RB16(buf + 8); height = AV_RB16(buf + 10); if (width != avctx->width || height != avctx->height) { int ret; av_log(avctx, AV_LOG_WARNING, "picture resolution change: %dx%d -> %dx%d\n", avctx->width, avctx->height, width, height); if ((ret = ff_set_dimensions(avctx, width, height)) < 0) return ret; } ctx->frame_type = (buf[12] >> 2) & 3; ctx->alpha_info = buf[17] & 0xf; if (ctx->alpha_info > 2) { av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info); return AVERROR_INVALIDDATA; } if (avctx->skip_alpha) ctx->alpha_info = 0; ff_dlog(avctx, "frame type %d\n", ctx->frame_type); if (ctx->frame_type == 0) { ctx->scan = ctx->progressive_scan; // permuted } else { ctx->scan = ctx->interlaced_scan; // permuted ctx->frame->interlaced_frame = 1; ctx->frame->top_field_first = ctx->frame_type == 1; } if (ctx->alpha_info) { if (avctx->bits_per_raw_sample == 10) { avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P10 : AV_PIX_FMT_YUVA422P10; } else { /* 12b */ avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P12 : AV_PIX_FMT_YUVA422P12; } } else { if (avctx->bits_per_raw_sample == 10) { avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10; } else { /* 12b */ avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P12 : AV_PIX_FMT_YUV422P12; } } avctx->color_primaries = buf[14]; avctx->color_trc = buf[15]; avctx->colorspace = buf[16]; avctx->color_range = AVCOL_RANGE_MPEG; ptr = buf + 20; flags = buf[19]; ff_dlog(avctx, "flags %x\n", flags); if (flags & 2) { if(buf + data_size - ptr < 64) { av_log(avctx, AV_LOG_ERROR, "Header truncated\n"); return AVERROR_INVALIDDATA; } permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr); ptr += 64; } else { memset(ctx->qmat_luma, 4, 64); } if (flags & 1) { if(buf + data_size - ptr < 64) { av_log(avctx, AV_LOG_ERROR, "Header truncated\n"); return AVERROR_INVALIDDATA; } permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr); } else { memset(ctx->qmat_chroma, 4, 64); } return hdr_size; } static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size) { ProresContext *ctx = avctx->priv_data; int i, hdr_size, slice_count; unsigned pic_data_size; int log2_slice_mb_width, log2_slice_mb_height; int slice_mb_count, mb_x, mb_y; const uint8_t *data_ptr, *index_ptr; hdr_size = buf[0] >> 3; if (hdr_size < 8 || hdr_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n"); return AVERROR_INVALIDDATA; } pic_data_size = AV_RB32(buf + 1); if (pic_data_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n"); return AVERROR_INVALIDDATA; } log2_slice_mb_width = buf[7] >> 4; log2_slice_mb_height = buf[7] & 0xF; if (log2_slice_mb_width > 3 || log2_slice_mb_height) { av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n", 1 << log2_slice_mb_width, 1 << log2_slice_mb_height); return AVERROR_INVALIDDATA; } ctx->mb_width = (avctx->width + 15) >> 4; if (ctx->frame_type) ctx->mb_height = (avctx->height + 31) >> 5; else ctx->mb_height = (avctx->height + 15) >> 4; // QT ignores the written value // slice_count = AV_RB16(buf + 5); slice_count = ctx->mb_height * ((ctx->mb_width >> log2_slice_mb_width) + av_popcount(ctx->mb_width & (1 << log2_slice_mb_width) - 1)); if (ctx->slice_count != slice_count || !ctx->slices) { av_freep(&ctx->slices); ctx->slice_count = 0; ctx->slices = av_mallocz_array(slice_count, sizeof(*ctx->slices)); if (!ctx->slices) return AVERROR(ENOMEM); ctx->slice_count = slice_count; } if (!slice_count) return AVERROR(EINVAL); if (hdr_size + slice_count*2 > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n"); return AVERROR_INVALIDDATA; } // parse slice information index_ptr = buf + hdr_size; data_ptr = index_ptr + slice_count*2; slice_mb_count = 1 << log2_slice_mb_width; mb_x = 0; mb_y = 0; for (i = 0; i < slice_count; i++) { SliceContext *slice = &ctx->slices[i]; slice->data = data_ptr; data_ptr += AV_RB16(index_ptr + i*2); while (ctx->mb_width - mb_x < slice_mb_count) slice_mb_count >>= 1; slice->mb_x = mb_x; slice->mb_y = mb_y; slice->mb_count = slice_mb_count; slice->data_size = data_ptr - slice->data; if (slice->data_size < 6) { av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n"); return AVERROR_INVALIDDATA; } mb_x += slice_mb_count; if (mb_x == ctx->mb_width) { slice_mb_count = 1 << log2_slice_mb_width; mb_x = 0; mb_y++; } if (data_ptr > buf + buf_size) { av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n"); return AVERROR_INVALIDDATA; } } if (mb_x || mb_y != ctx->mb_height) { av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n", mb_y, ctx->mb_height); return AVERROR_INVALIDDATA; } return pic_data_size; } #define DECODE_CODEWORD(val, codebook, SKIP) \ do { \ unsigned int rice_order, exp_order, switch_bits; \ unsigned int q, buf, bits; \ \ UPDATE_CACHE(re, gb); \ buf = GET_CACHE(re, gb); \ \ /* number of bits to switch between rice and exp golomb */ \ switch_bits = codebook & 3; \ rice_order = codebook >> 5; \ exp_order = (codebook >> 2) & 7; \ \ q = 31 - av_log2(buf); \ \ if (q > switch_bits) { /* exp golomb */ \ bits = exp_order - switch_bits + (q<<1); \ if (bits > FFMIN(MIN_CACHE_BITS, 31)) \ return AVERROR_INVALIDDATA; \ val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \ ((switch_bits + 1) << rice_order); \ SKIP(re, gb, bits); \ } else if (rice_order) { \ SKIP_BITS(re, gb, q+1); \ val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \ SKIP(re, gb, rice_order); \ } else { \ val = q; \ SKIP(re, gb, q+1); \ } \ } while (0) #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1))) #define FIRST_DC_CB 0xB8 static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70}; static av_always_inline int decode_dc_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice) { int16_t prev_dc; int code, i, sign; OPEN_READER(re, gb); DECODE_CODEWORD(code, FIRST_DC_CB, LAST_SKIP_BITS); prev_dc = TOSIGNED(code); out[0] = prev_dc; out += 64; // dc coeff for the next block code = 5; sign = 0; for (i = 1; i < blocks_per_slice; i++, out += 64) { DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)], LAST_SKIP_BITS); if(code) sign ^= -(code & 1); else sign = 0; prev_dc += (((code + 1) >> 1) ^ sign) - sign; out[0] = prev_dc; } CLOSE_READER(re, gb); return 0; } // adaptive codebook switching lut according to previous run/level values static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C }; static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C }; static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, int16_t *out, int blocks_per_slice) { ProresContext *ctx = avctx->priv_data; int block_mask, sign; unsigned pos, run, level; int max_coeffs, i, bits_left; int log2_block_count = av_log2(blocks_per_slice); OPEN_READER(re, gb); UPDATE_CACHE(re, gb); \ run = 4; level = 2; max_coeffs = 64 << log2_block_count; block_mask = blocks_per_slice - 1; for (pos = block_mask;;) { bits_left = gb->size_in_bits - re_index; if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left))) break; DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)], LAST_SKIP_BITS); pos += run + 1; if (pos >= max_coeffs) { av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs); return AVERROR_INVALIDDATA; } DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)], SKIP_BITS); level += 1; i = pos >> log2_block_count; sign = SHOW_SBITS(re, gb, 1); SKIP_BITS(re, gb, 1); out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign); } CLOSE_READER(re, gb); return 0; } static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat) { ProresContext *ctx = avctx->priv_data; LOCAL_ALIGNED_32(int16_t, blocks, [8*4*64]); int16_t *block; GetBitContext gb; int i, blocks_per_slice = slice->mb_count<<2; int ret; for (i = 0; i < blocks_per_slice; i++) ctx->bdsp.clear_block(blocks+(i<<6)); init_get_bits(&gb, buf, buf_size << 3); if ((ret = decode_dc_coeffs(&gb, blocks, blocks_per_slice)) < 0) return ret; if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0) return ret; block = blocks; for (i = 0; i < slice->mb_count; i++) { ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat); ctx->prodsp.idct_put(dst +8, dst_stride, block+(1<<6), qmat); ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat); ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat); block += 4*64; dst += 16; } return 0; } static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat, int log2_blocks_per_mb) { ProresContext *ctx = avctx->priv_data; LOCAL_ALIGNED_32(int16_t, blocks, [8*4*64]); int16_t *block; GetBitContext gb; int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb; int ret; for (i = 0; i < blocks_per_slice; i++) ctx->bdsp.clear_block(blocks+(i<<6)); init_get_bits(&gb, buf, buf_size << 3); if ((ret = decode_dc_coeffs(&gb, blocks, blocks_per_slice)) < 0) return ret; if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0) return ret; block = blocks; for (i = 0; i < slice->mb_count; i++) { for (j = 0; j < log2_blocks_per_mb; j++) { ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat); ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat); block += 2*64; dst += 8; } } return 0; } /** * Decode alpha slice plane. */ static void decode_slice_alpha(ProresContext *ctx, uint16_t *dst, int dst_stride, const uint8_t *buf, int buf_size, int blocks_per_slice) { GetBitContext gb; int i; LOCAL_ALIGNED_32(int16_t, blocks, [8*4*64]); int16_t *block; for (i = 0; i < blocks_per_slice<<2; i++) ctx->bdsp.clear_block(blocks+(i<<6)); init_get_bits(&gb, buf, buf_size << 3); if (ctx->alpha_info == 2) { ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16); } else { ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8); } block = blocks; for (i = 0; i < 16; i++) { memcpy(dst, block, 16 * blocks_per_slice * sizeof(*dst)); dst += dst_stride >> 1; block += 16 * blocks_per_slice; } } static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { ProresContext *ctx = avctx->priv_data; SliceContext *slice = &ctx->slices[jobnr]; const uint8_t *buf = slice->data; AVFrame *pic = ctx->frame; int i, hdr_size, qscale, log2_chroma_blocks_per_mb; int luma_stride, chroma_stride; int y_data_size, u_data_size, v_data_size, a_data_size; uint8_t *dest_y, *dest_u, *dest_v, *dest_a; LOCAL_ALIGNED_16(int16_t, qmat_luma_scaled, [64]); LOCAL_ALIGNED_16(int16_t, qmat_chroma_scaled,[64]); int mb_x_shift; int ret; uint16_t val_no_chroma; slice->ret = -1; //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n", // jobnr, slice->mb_count, slice->mb_x, slice->mb_y); // slice header hdr_size = buf[0] >> 3; qscale = av_clip(buf[1], 1, 224); qscale = qscale > 128 ? qscale - 96 << 2: qscale; y_data_size = AV_RB16(buf + 2); u_data_size = AV_RB16(buf + 4); v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size; if (hdr_size > 7) v_data_size = AV_RB16(buf + 6); a_data_size = slice->data_size - y_data_size - u_data_size - v_data_size - hdr_size; if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0 || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){ av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n"); return AVERROR_INVALIDDATA; } buf += hdr_size; for (i = 0; i < 64; i++) { qmat_luma_scaled [i] = ctx->qmat_luma [i] * qscale; qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale; } if (ctx->frame_type == 0) { luma_stride = pic->linesize[0]; chroma_stride = pic->linesize[1]; } else { luma_stride = pic->linesize[0] << 1; chroma_stride = pic->linesize[1] << 1; } if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10 || avctx->pix_fmt == AV_PIX_FMT_YUV444P12 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P12) { mb_x_shift = 5; log2_chroma_blocks_per_mb = 2; } else { mb_x_shift = 4; log2_chroma_blocks_per_mb = 1; } dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5); dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift); dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift); dest_a = pic->data[3] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5); if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) { dest_y += pic->linesize[0]; dest_u += pic->linesize[1]; dest_v += pic->linesize[2]; dest_a += pic->linesize[3]; } ret = decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride, buf, y_data_size, qmat_luma_scaled); if (ret < 0) return ret; if (!(avctx->flags & AV_CODEC_FLAG_GRAY) && (u_data_size + v_data_size) > 0) { ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride, buf + y_data_size, u_data_size, qmat_chroma_scaled, log2_chroma_blocks_per_mb); if (ret < 0) return ret; ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride, buf + y_data_size + u_data_size, v_data_size, qmat_chroma_scaled, log2_chroma_blocks_per_mb); if (ret < 0) return ret; } else { size_t mb_max_x = slice->mb_count << (mb_x_shift - 1); size_t i, j; if (avctx->bits_per_raw_sample == 10) { val_no_chroma = 511; } else { /* 12b */ val_no_chroma = 511 * 4; } for (i = 0; i < 16; ++i) for (j = 0; j < mb_max_x; ++j) { *(uint16_t*)(dest_u + (i * chroma_stride) + (j << 1)) = val_no_chroma; *(uint16_t*)(dest_v + (i * chroma_stride) + (j << 1)) = val_no_chroma; } } /* decode alpha plane if available */ if (ctx->alpha_info && pic->data[3] && a_data_size) decode_slice_alpha(ctx, (uint16_t*)dest_a, luma_stride, buf + y_data_size + u_data_size + v_data_size, a_data_size, slice->mb_count); slice->ret = 0; return 0; } static int decode_picture(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; int i; int error = 0; avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count); for (i = 0; i < ctx->slice_count; i++) error += ctx->slices[i].ret < 0; if (error) ctx->frame->decode_error_flags = FF_DECODE_ERROR_INVALID_BITSTREAM; if (error < ctx->slice_count) return 0; return ctx->slices[0].ret; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { ProresContext *ctx = avctx->priv_data; ThreadFrame tframe = { .f = data }; AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int frame_hdr_size, pic_size, ret; if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) { av_log(avctx, AV_LOG_ERROR, "invalid frame header\n"); return AVERROR_INVALIDDATA; } ctx->frame = frame; ctx->frame->pict_type = AV_PICTURE_TYPE_I; ctx->frame->key_frame = 1; ctx->first_field = 1; buf += 8; buf_size -= 8; frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); if (frame_hdr_size < 0) return frame_hdr_size; buf += frame_hdr_size; buf_size -= frame_hdr_size; decode_picture: pic_size = decode_picture_header(avctx, buf, buf_size); if (pic_size < 0) { av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n"); return pic_size; } if (ctx->first_field) if ((ret = ff_thread_get_buffer(avctx, &tframe, 0)) < 0) return ret; if ((ret = decode_picture(avctx)) < 0) { av_log(avctx, AV_LOG_ERROR, "error decoding picture\n"); return ret; } buf += pic_size; buf_size -= pic_size; if (ctx->frame_type && buf_size > 0 && ctx->first_field) { ctx->first_field = 0; goto decode_picture; } *got_frame = 1; return avpkt->size; } #if HAVE_THREADS static int decode_init_thread_copy(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; ctx->slices = NULL; return 0; } #endif static av_cold int decode_close(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; av_freep(&ctx->slices); return 0; } AVCodec ff_prores_decoder = { .name = "prores", .long_name = NULL_IF_CONFIG_SMALL("ProRes (iCodec Pro)"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_PRORES, .priv_data_size = sizeof(ProresContext), .init = decode_init, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .close = decode_close, .decode = decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, .profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles), };