/* * Copyright (c) 2002 Dieter Shirley * * dct_unquantize_h263_altivec: * Copyright (c) 2003 Romain Dolbeau * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "../dsputil.h" #include "../mpegvideo.h" #include "gcc_fixes.h" #include "dsputil_altivec.h" // Swaps two variables (used for altivec registers) #define SWAP(a,b) \ do { \ __typeof__(a) swap_temp=a; \ a=b; \ b=swap_temp; \ } while (0) // transposes a matrix consisting of four vectors with four elements each #define TRANSPOSE4(a,b,c,d) \ do { \ __typeof__(a) _trans_ach = vec_mergeh(a, c); \ __typeof__(a) _trans_acl = vec_mergel(a, c); \ __typeof__(a) _trans_bdh = vec_mergeh(b, d); \ __typeof__(a) _trans_bdl = vec_mergel(b, d); \ \ a = vec_mergeh(_trans_ach, _trans_bdh); \ b = vec_mergel(_trans_ach, _trans_bdh); \ c = vec_mergeh(_trans_acl, _trans_bdl); \ d = vec_mergel(_trans_acl, _trans_bdl); \ } while (0) // Loads a four-byte value (int or float) from the target address // into every element in the target vector. Only works if the // target address is four-byte aligned (which should be always). #define LOAD4(vec, address) \ { \ __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ vec = vec_ld(0, _load_addr); \ vec = vec_perm(vec, vec, _perm_vec); \ vec = vec_splat(vec, 0); \ } #ifdef CONFIG_DARWIN #define FOUROF(a) (a) #else // slower, for dumb non-apple GCC #define FOUROF(a) {a,a,a,a} #endif int dct_quantize_altivec(MpegEncContext* s, DCTELEM* data, int n, int qscale, int* overflow) { int lastNonZero; vector float row0, row1, row2, row3, row4, row5, row6, row7; vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7; const_vector float zero = (const_vector float)FOUROF(0.); // used after quantise step int oldBaseValue = 0; // Load the data into the row/alt vectors { vector signed short data0, data1, data2, data3, data4, data5, data6, data7; data0 = vec_ld(0, data); data1 = vec_ld(16, data); data2 = vec_ld(32, data); data3 = vec_ld(48, data); data4 = vec_ld(64, data); data5 = vec_ld(80, data); data6 = vec_ld(96, data); data7 = vec_ld(112, data); // Transpose the data before we start TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); // load the data into floating point vectors. We load // the high half of each row into the main row vectors // and the low half into the alt vectors. row0 = vec_ctf(vec_unpackh(data0), 0); alt0 = vec_ctf(vec_unpackl(data0), 0); row1 = vec_ctf(vec_unpackh(data1), 0); alt1 = vec_ctf(vec_unpackl(data1), 0); row2 = vec_ctf(vec_unpackh(data2), 0); alt2 = vec_ctf(vec_unpackl(data2), 0); row3 = vec_ctf(vec_unpackh(data3), 0); alt3 = vec_ctf(vec_unpackl(data3), 0); row4 = vec_ctf(vec_unpackh(data4), 0); alt4 = vec_ctf(vec_unpackl(data4), 0); row5 = vec_ctf(vec_unpackh(data5), 0); alt5 = vec_ctf(vec_unpackl(data5), 0); row6 = vec_ctf(vec_unpackh(data6), 0); alt6 = vec_ctf(vec_unpackl(data6), 0); row7 = vec_ctf(vec_unpackh(data7), 0); alt7 = vec_ctf(vec_unpackl(data7), 0); } // The following block could exist as a separate an altivec dct // function. However, if we put it inline, the DCT data can remain // in the vector local variables, as floats, which we'll use during the // quantize step... { const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f); const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f); const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f); const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f); const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f); const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); int whichPass, whichHalf; for(whichPass = 1; whichPass<=2; whichPass++) { for(whichHalf = 1; whichHalf<=2; whichHalf++) { vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; vector float tmp10, tmp11, tmp12, tmp13; vector float z1, z2, z3, z4, z5; tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7]; tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7]; tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4]; tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4]; tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6]; tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6]; tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5]; tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5]; tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3; tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3; tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2; tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2; // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); row0 = vec_add(tmp10, tmp11); // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); row4 = vec_sub(tmp10, tmp11); // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero); // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), // CONST_BITS-PASS1_BITS); row2 = vec_madd(tmp13, vec_0_765366865, z1); // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), // CONST_BITS-PASS1_BITS); row6 = vec_madd(tmp12, vec_1_847759065, z1); z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7; z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6; z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6; z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7; // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero); // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z3 = vec_madd(z3, vec_1_961570560, z5); // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z4 = vec_madd(z4, vec_0_390180644, z5); // The following adds are rolled into the multiplies above // z3 = vec_add(z3, z5); // z3 += z5; // z4 = vec_add(z4, z5); // z4 += z5; // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ // Wow! It's actually more effecient to roll this multiply // into the adds below, even thought the multiply gets done twice! // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero); // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ // Same with this one... // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero); // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); // Swap the row values with the alts. If this is the first half, // this sets up the low values to be acted on in the second half. // If this is the second half, it puts the high values back in // the row values where they are expected to be when we're done. SWAP(row0, alt0); SWAP(row1, alt1); SWAP(row2, alt2); SWAP(row3, alt3); SWAP(row4, alt4); SWAP(row5, alt5); SWAP(row6, alt6); SWAP(row7, alt7); } if (whichPass == 1) { // transpose the data for the second pass // First, block transpose the upper right with lower left. SWAP(row4, alt0); SWAP(row5, alt1); SWAP(row6, alt2); SWAP(row7, alt3); // Now, transpose each block of four TRANSPOSE4(row0, row1, row2, row3); TRANSPOSE4(row4, row5, row6, row7); TRANSPOSE4(alt0, alt1, alt2, alt3); TRANSPOSE4(alt4, alt5, alt6, alt7); } } } // perform the quantise step, using the floating point data // still in the row/alt registers { const int* biasAddr; const vector signed int* qmat; vector float bias, negBias; if (s->mb_intra) { vector signed int baseVector; // We must cache element 0 in the intra case // (it needs special handling). baseVector = vec_cts(vec_splat(row0, 0), 0); vec_ste(baseVector, 0, &oldBaseValue); qmat = (vector signed int*)s->q_intra_matrix[qscale]; biasAddr = &(s->intra_quant_bias); } else { qmat = (vector signed int*)s->q_inter_matrix[qscale]; biasAddr = &(s->inter_quant_bias); } // Load the bias vector (We add 0.5 to the bias so that we're // rounding when we convert to int, instead of flooring.) { vector signed int biasInt; const vector float negOneFloat = (vector float)FOUROF(-1.0f); LOAD4(biasInt, biasAddr); bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); negBias = vec_madd(bias, negOneFloat, zero); } { vector float q0, q1, q2, q3, q4, q5, q6, q7; q0 = vec_ctf(qmat[0], QMAT_SHIFT); q1 = vec_ctf(qmat[2], QMAT_SHIFT); q2 = vec_ctf(qmat[4], QMAT_SHIFT); q3 = vec_ctf(qmat[6], QMAT_SHIFT); q4 = vec_ctf(qmat[8], QMAT_SHIFT); q5 = vec_ctf(qmat[10], QMAT_SHIFT); q6 = vec_ctf(qmat[12], QMAT_SHIFT); q7 = vec_ctf(qmat[14], QMAT_SHIFT); row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), vec_cmpgt(row0, zero)); row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), vec_cmpgt(row1, zero)); row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), vec_cmpgt(row2, zero)); row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), vec_cmpgt(row3, zero)); row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), vec_cmpgt(row4, zero)); row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), vec_cmpgt(row5, zero)); row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), vec_cmpgt(row6, zero)); row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), vec_cmpgt(row7, zero)); q0 = vec_ctf(qmat[1], QMAT_SHIFT); q1 = vec_ctf(qmat[3], QMAT_SHIFT); q2 = vec_ctf(qmat[5], QMAT_SHIFT); q3 = vec_ctf(qmat[7], QMAT_SHIFT); q4 = vec_ctf(qmat[9], QMAT_SHIFT); q5 = vec_ctf(qmat[11], QMAT_SHIFT); q6 = vec_ctf(qmat[13], QMAT_SHIFT); q7 = vec_ctf(qmat[15], QMAT_SHIFT); alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), vec_cmpgt(alt0, zero)); alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), vec_cmpgt(alt1, zero)); alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), vec_cmpgt(alt2, zero)); alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), vec_cmpgt(alt3, zero)); alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), vec_cmpgt(alt4, zero)); alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), vec_cmpgt(alt5, zero)); alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), vec_cmpgt(alt6, zero)); alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), vec_cmpgt(alt7, zero)); } } // Store the data back into the original block { vector signed short data0, data1, data2, data3, data4, data5, data6, data7; data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); { // Clamp for overflow vector signed int max_q_int, min_q_int; vector signed short max_q, min_q; LOAD4(max_q_int, &(s->max_qcoeff)); LOAD4(min_q_int, &(s->min_qcoeff)); max_q = vec_pack(max_q_int, max_q_int); min_q = vec_pack(min_q_int, min_q_int); data0 = vec_max(vec_min(data0, max_q), min_q); data1 = vec_max(vec_min(data1, max_q), min_q); data2 = vec_max(vec_min(data2, max_q), min_q); data4 = vec_max(vec_min(data4, max_q), min_q); data5 = vec_max(vec_min(data5, max_q), min_q); data6 = vec_max(vec_min(data6, max_q), min_q); data7 = vec_max(vec_min(data7, max_q), min_q); } { vector bool char zero_01, zero_23, zero_45, zero_67; vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; vector signed char negOne = vec_splat_s8(-1); vector signed char* scanPtr = (vector signed char*)(s->intra_scantable.inverse); signed char lastNonZeroChar; // Determine the largest non-zero index. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), vec_cmpeq(data1, (vector signed short)zero)); zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), vec_cmpeq(data3, (vector signed short)zero)); zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), vec_cmpeq(data5, (vector signed short)zero)); zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), vec_cmpeq(data7, (vector signed short)zero)); // 64 biggest values scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01); scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23); scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45); scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67); // 32 largest values scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); // 16 largest values scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); // 8 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // 4 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // 2 largest values scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); // largest value scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), vec_mergel(scanIndices_01, negOne)); scanIndices_01 = vec_splat(scanIndices_01, 0); vec_ste(scanIndices_01, 0, &lastNonZeroChar); lastNonZero = lastNonZeroChar; // While the data is still in vectors we check for the transpose IDCT permute // and handle it using the vector unit if we can. This is the permute used // by the altivec idct, so it is common when using the altivec dct. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) { TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); } vec_st(data0, 0, data); vec_st(data1, 16, data); vec_st(data2, 32, data); vec_st(data3, 48, data); vec_st(data4, 64, data); vec_st(data5, 80, data); vec_st(data6, 96, data); vec_st(data7, 112, data); } } // special handling of block[0] if (s->mb_intra) { if (!s->h263_aic) { if (n < 4) oldBaseValue /= s->y_dc_scale; else oldBaseValue /= s->c_dc_scale; } // Divide by 8, rounding the result data[0] = (oldBaseValue + 4) >> 3; } // We handled the tranpose permutation above and we don't // need to permute the "no" permutation case. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) { ff_block_permute(data, s->dsp.idct_permutation, s->intra_scantable.scantable, lastNonZero); } return lastNonZero; } #undef FOUROF /* AltiVec version of dct_unquantize_h263 this code assumes `block' is 16 bytes-aligned */ void dct_unquantize_h263_altivec(MpegEncContext *s, DCTELEM *block, int n, int qscale) { POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1); int i, level, qmul, qadd; int nCoeffs; assert(s->block_last_index[n]>=0); POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1); qadd = (qscale - 1) | 1; qmul = qscale << 1; if (s->mb_intra) { if (!s->h263_aic) { if (n < 4) block[0] = block[0] * s->y_dc_scale; else block[0] = block[0] * s->c_dc_scale; }else qadd = 0; i = 1; nCoeffs= 63; //does not allways use zigzag table } else { i = 0; nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ]; } { register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0); short __attribute__ ((aligned(16))) qmul8[] = { qmul, qmul, qmul, qmul, qmul, qmul, qmul, qmul }; short __attribute__ ((aligned(16))) qadd8[] = { qadd, qadd, qadd, qadd, qadd, qadd, qadd, qadd }; short __attribute__ ((aligned(16))) nqadd8[] = { -qadd, -qadd, -qadd, -qadd, -qadd, -qadd, -qadd, -qadd }; register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; register vector bool short blockv_null, blockv_neg; register short backup_0 = block[0]; register int j = 0; qmulv = vec_ld(0, qmul8); qaddv = vec_ld(0, qadd8); nqaddv = vec_ld(0, nqadd8); #if 0 // block *is* 16 bytes-aligned, it seems. // first make sure block[j] is 16 bytes-aligned for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) { level = block[j]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[j] = level; } } #endif // vectorize all the 16 bytes-aligned blocks // of 8 elements for(; (j + 7) <= nCoeffs ; j+=8) { blockv = vec_ld(j << 1, block); blockv_neg = vec_cmplt(blockv, vczero); blockv_null = vec_cmpeq(blockv, vczero); // choose between +qadd or -qadd as the third operand temp1 = vec_sel(qaddv, nqaddv, blockv_neg); // multiply & add (block{i,i+7} * qmul [+-] qadd) temp1 = vec_mladd(blockv, qmulv, temp1); // put 0 where block[{i,i+7} used to have 0 blockv = vec_sel(temp1, blockv, blockv_null); vec_st(blockv, j << 1, block); } // if nCoeffs isn't a multiple of 8, finish the job // using good old scalar units. // (we could do it using a truncated vector, // but I'm not sure it's worth the hassle) for(; j <= nCoeffs ; j++) { level = block[j]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[j] = level; } } if (i == 1) { // cheat. this avoid special-casing the first iteration block[0] = backup_0; } } POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63); }