/* * Copyright (c) 2002 Brian Foley * Copyright (c) 2002 Dieter Shirley * Copyright (c) 2003-2004 Romain Dolbeau * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "libavutil/attributes.h" #include "libavutil/cpu.h" #include "libavutil/ppc/cpu.h" #include "libavutil/ppc/util_altivec.h" #include "libavcodec/avcodec.h" #include "libavcodec/mpegvideo.h" #include "libavcodec/me_cmp.h" #if HAVE_ALTIVEC #if HAVE_BIGENDIAN #define GET_PERM(per1, per2, pix) {\ per1 = vec_lvsl(0, pix);\ per2 = vec_add(per1, vec_splat_u8(1));\ } #define LOAD_PIX(v, iv, pix, per1, per2) {\ vector unsigned char pix2l = vec_ld(0, pix);\ vector unsigned char pix2r = vec_ld(16, pix);\ v = vec_perm(pix2l, pix2r, per1);\ iv = vec_perm(pix2l, pix2r, per2);\ } #else #define GET_PERM(per1, per2, pix) {} #define LOAD_PIX(v, iv, pix, per1, per2) {\ v = vec_vsx_ld(0, pix);\ iv = vec_vsx_ld(1, pix);\ } #endif static int sad16_x2_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s = 0; const vector unsigned char zero = (const vector unsigned char) vec_splat_u8(0); vector unsigned int sad = (vector unsigned int) vec_splat_u32(0); vector signed int sumdiffs; vector unsigned char perm1, perm2, pix2v, pix2iv; GET_PERM(perm1, perm2, pix2); for (i = 0; i < h; i++) { /* Read unaligned pixels into our vectors. The vectors are as follows: * pix1v: pix1[0] - pix1[15] * pix2v: pix2[0] - pix2[15] pix2iv: pix2[1] - pix2[16] */ vector unsigned char pix1v = vec_ld(0, pix1); LOAD_PIX(pix2v, pix2iv, pix2, perm1, perm2); /* Calculate the average vector. */ vector unsigned char avgv = vec_avg(pix2v, pix2iv); /* Calculate a sum of abs differences vector. */ vector unsigned char t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv)); /* Add each 4 pixel group together and put 4 results into sad. */ sad = vec_sum4s(t5, sad); pix1 += stride; pix2 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero); sumdiffs = vec_splat(sumdiffs, 3); vec_ste(sumdiffs, 0, &s); return s; } static int sad16_y2_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s = 0; const vector unsigned char zero = (const vector unsigned char) vec_splat_u8(0); vector unsigned char pix1v, pix3v, avgv, t5; vector unsigned int sad = (vector unsigned int) vec_splat_u32(0); vector signed int sumdiffs; uint8_t *pix3 = pix2 + stride; /* Due to the fact that pix3 = pix2 + stride, the pix3 of one * iteration becomes pix2 in the next iteration. We can use this * fact to avoid a potentially expensive unaligned read, each * time around the loop. * Read unaligned pixels into our vectors. The vectors are as follows: * pix2v: pix2[0] - pix2[15] * Split the pixel vectors into shorts. */ vector unsigned char pix2v = VEC_LD(0, pix2); for (i = 0; i < h; i++) { /* Read unaligned pixels into our vectors. The vectors are as follows: * pix1v: pix1[0] - pix1[15] * pix3v: pix3[0] - pix3[15] */ pix1v = vec_ld(0, pix1); pix3v = VEC_LD(0, pix3); /* Calculate the average vector. */ avgv = vec_avg(pix2v, pix3v); /* Calculate a sum of abs differences vector. */ t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv)); /* Add each 4 pixel group together and put 4 results into sad. */ sad = vec_sum4s(t5, sad); pix1 += stride; pix2v = pix3v; pix3 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero); sumdiffs = vec_splat(sumdiffs, 3); vec_ste(sumdiffs, 0, &s); return s; } static int sad16_xy2_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s = 0; uint8_t *pix3 = pix2 + stride; const vector unsigned char zero = (const vector unsigned char) vec_splat_u8(0); const vector unsigned short two = (const vector unsigned short) vec_splat_u16(2); vector unsigned char avgv, t5; vector unsigned char pix1v, pix3v, pix3iv; vector unsigned short pix3lv, pix3hv, pix3ilv, pix3ihv; vector unsigned short avghv, avglv; vector unsigned int sad = (vector unsigned int) vec_splat_u32(0); vector signed int sumdiffs; vector unsigned char perm1, perm2, pix2v, pix2iv; GET_PERM(perm1, perm2, pix2); /* Due to the fact that pix3 = pix2 + stride, the pix3 of one * iteration becomes pix2 in the next iteration. We can use this * fact to avoid a potentially expensive unaligned read, as well * as some splitting, and vector addition each time around the loop. * Read unaligned pixels into our vectors. The vectors are as follows: * pix2v: pix2[0] - pix2[15] pix2iv: pix2[1] - pix2[16] * Split the pixel vectors into shorts. */ LOAD_PIX(pix2v, pix2iv, pix2, perm1, perm2); vector unsigned short pix2hv = (vector unsigned short) VEC_MERGEH(zero, pix2v); vector unsigned short pix2lv = (vector unsigned short) VEC_MERGEL(zero, pix2v); vector unsigned short pix2ihv = (vector unsigned short) VEC_MERGEH(zero, pix2iv); vector unsigned short pix2ilv = (vector unsigned short) VEC_MERGEL(zero, pix2iv); vector unsigned short t1 = vec_add(pix2hv, pix2ihv); vector unsigned short t2 = vec_add(pix2lv, pix2ilv); vector unsigned short t3, t4; for (i = 0; i < h; i++) { /* Read unaligned pixels into our vectors. The vectors are as follows: * pix1v: pix1[0] - pix1[15] * pix3v: pix3[0] - pix3[15] pix3iv: pix3[1] - pix3[16] */ pix1v = vec_ld(0, pix1); LOAD_PIX(pix3v, pix3iv, pix3, perm1, perm2); /* Note that AltiVec does have vec_avg, but this works on vector pairs * and rounds up. We could do avg(avg(a, b), avg(c, d)), but the * rounding would mean that, for example, avg(3, 0, 0, 1) = 2, when * it should be 1. Instead, we have to split the pixel vectors into * vectors of shorts and do the averaging by hand. */ /* Split the pixel vectors into shorts. */ pix3hv = (vector unsigned short) VEC_MERGEH(zero, pix3v); pix3lv = (vector unsigned short) VEC_MERGEL(zero, pix3v); pix3ihv = (vector unsigned short) VEC_MERGEH(zero, pix3iv); pix3ilv = (vector unsigned short) VEC_MERGEL(zero, pix3iv); /* Do the averaging on them. */ t3 = vec_add(pix3hv, pix3ihv); t4 = vec_add(pix3lv, pix3ilv); avghv = vec_sr(vec_add(vec_add(t1, t3), two), two); avglv = vec_sr(vec_add(vec_add(t2, t4), two), two); /* Pack the shorts back into a result. */ avgv = vec_pack(avghv, avglv); /* Calculate a sum of abs differences vector. */ t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv)); /* Add each 4 pixel group together and put 4 results into sad. */ sad = vec_sum4s(t5, sad); pix1 += stride; pix3 += stride; /* Transfer the calculated values for pix3 into pix2. */ t1 = t3; t2 = t4; } /* Sum up the four partial sums, and put the result into s. */ sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero); sumdiffs = vec_splat(sumdiffs, 3); vec_ste(sumdiffs, 0, &s); return s; } static int sad16_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s; const vector unsigned int zero = (const vector unsigned int) vec_splat_u32(0); vector unsigned int sad = (vector unsigned int) vec_splat_u32(0); vector signed int sumdiffs; for (i = 0; i < h; i++) { /* Read potentially unaligned pixels into t1 and t2. */ vector unsigned char t1 =vec_ld(0, pix1); vector unsigned char t2 = VEC_LD(0, pix2); /* Calculate a sum of abs differences vector. */ vector unsigned char t3 = vec_max(t1, t2); vector unsigned char t4 = vec_min(t1, t2); vector unsigned char t5 = vec_sub(t3, t4); /* Add each 4 pixel group together and put 4 results into sad. */ sad = vec_sum4s(t5, sad); pix1 += stride; pix2 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero); sumdiffs = vec_splat(sumdiffs, 3); vec_ste(sumdiffs, 0, &s); return s; } static int sad8_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s; const vector unsigned int zero = (const vector unsigned int) vec_splat_u32(0); const vector unsigned char permclear = (vector unsigned char) { 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0 }; vector unsigned int sad = (vector unsigned int) vec_splat_u32(0); vector signed int sumdiffs; for (i = 0; i < h; i++) { /* Read potentially unaligned pixels into t1 and t2. * Since we're reading 16 pixels, and actually only want 8, * mask out the last 8 pixels. The 0s don't change the sum. */ vector unsigned char pix1l = VEC_LD(0, pix1); vector unsigned char pix2l = VEC_LD(0, pix2); vector unsigned char t1 = vec_and(pix1l, permclear); vector unsigned char t2 = vec_and(pix2l, permclear); /* Calculate a sum of abs differences vector. */ vector unsigned char t3 = vec_max(t1, t2); vector unsigned char t4 = vec_min(t1, t2); vector unsigned char t5 = vec_sub(t3, t4); /* Add each 4 pixel group together and put 4 results into sad. */ sad = vec_sum4s(t5, sad); pix1 += stride; pix2 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero); sumdiffs = vec_splat(sumdiffs, 3); vec_ste(sumdiffs, 0, &s); return s; } /* Sum of Squared Errors for an 8x8 block, AltiVec-enhanced. * It's the sad8_altivec code above w/ squaring added. */ static int sse8_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s; const vector unsigned int zero = (const vector unsigned int) vec_splat_u32(0); const vector unsigned char permclear = (vector unsigned char) { 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0 }; vector unsigned int sum = (vector unsigned int) vec_splat_u32(0); vector signed int sumsqr; for (i = 0; i < h; i++) { /* Read potentially unaligned pixels into t1 and t2. * Since we're reading 16 pixels, and actually only want 8, * mask out the last 8 pixels. The 0s don't change the sum. */ vector unsigned char t1 = vec_and(VEC_LD(0, pix1), permclear); vector unsigned char t2 = vec_and(VEC_LD(0, pix2), permclear); /* Since we want to use unsigned chars, we can take advantage * of the fact that abs(a - b) ^ 2 = (a - b) ^ 2. */ /* Calculate abs differences vector. */ vector unsigned char t3 = vec_max(t1, t2); vector unsigned char t4 = vec_min(t1, t2); vector unsigned char t5 = vec_sub(t3, t4); /* Square the values and add them to our sum. */ sum = vec_msum(t5, t5, sum); pix1 += stride; pix2 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumsqr = vec_sums((vector signed int) sum, (vector signed int) zero); sumsqr = vec_splat(sumsqr, 3); vec_ste(sumsqr, 0, &s); return s; } /* Sum of Squared Errors for a 16x16 block, AltiVec-enhanced. * It's the sad16_altivec code above w/ squaring added. */ static int sse16_altivec(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t stride, int h) { int i; int __attribute__((aligned(16))) s; const vector unsigned int zero = (const vector unsigned int) vec_splat_u32(0); vector unsigned int sum = (vector unsigned int) vec_splat_u32(0); vector signed int sumsqr; for (i = 0; i < h; i++) { /* Read potentially unaligned pixels into t1 and t2. */ vector unsigned char t1 = vec_ld(0, pix1); vector unsigned char t2 = VEC_LD(0, pix2); /* Since we want to use unsigned chars, we can take advantage * of the fact that abs(a - b) ^ 2 = (a - b) ^ 2. */ /* Calculate abs differences vector. */ vector unsigned char t3 = vec_max(t1, t2); vector unsigned char t4 = vec_min(t1, t2); vector unsigned char t5 = vec_sub(t3, t4); /* Square the values and add them to our sum. */ sum = vec_msum(t5, t5, sum); pix1 += stride; pix2 += stride; } /* Sum up the four partial sums, and put the result into s. */ sumsqr = vec_sums((vector signed int) sum, (vector signed int) zero); sumsqr = vec_splat(sumsqr, 3); vec_ste(sumsqr, 0, &s); return s; } static int hadamard8_diff8x8_altivec(MpegEncContext *s, uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h) { int __attribute__((aligned(16))) sum; register const vector unsigned char vzero = (const vector unsigned char) vec_splat_u8(0); register vector signed short temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; { register const vector signed short vprod1 = (const vector signed short) { 1, -1, 1, -1, 1, -1, 1, -1 }; register const vector signed short vprod2 = (const vector signed short) { 1, 1, -1, -1, 1, 1, -1, -1 }; register const vector signed short vprod3 = (const vector signed short) { 1, 1, 1, 1, -1, -1, -1, -1 }; register const vector unsigned char perm1 = (const vector unsigned char) { 0x02, 0x03, 0x00, 0x01, 0x06, 0x07, 0x04, 0x05, 0x0A, 0x0B, 0x08, 0x09, 0x0E, 0x0F, 0x0C, 0x0D }; register const vector unsigned char perm2 = (const vector unsigned char) { 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x0C, 0x0D, 0x0E, 0x0F, 0x08, 0x09, 0x0A, 0x0B }; register const vector unsigned char perm3 = (const vector unsigned char) { 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; #define ONEITERBUTTERFLY(i, res) \ { \ register vector unsigned char srcO = unaligned_load(stride * i, src); \ register vector unsigned char dstO = unaligned_load(stride * i, dst);\ \ /* Promote the unsigned chars to signed shorts. */ \ /* We're in the 8x8 function, we only care for the first 8. */ \ register vector signed short srcV = \ (vector signed short) VEC_MERGEH((vector signed char) vzero, \ (vector signed char) srcO); \ register vector signed short dstV = \ (vector signed short) VEC_MERGEH((vector signed char) vzero, \ (vector signed char) dstO); \ \ /* subtractions inside the first butterfly */ \ register vector signed short but0 = vec_sub(srcV, dstV); \ register vector signed short op1 = vec_perm(but0, but0, perm1); \ register vector signed short but1 = vec_mladd(but0, vprod1, op1); \ register vector signed short op2 = vec_perm(but1, but1, perm2); \ register vector signed short but2 = vec_mladd(but1, vprod2, op2); \ register vector signed short op3 = vec_perm(but2, but2, perm3); \ res = vec_mladd(but2, vprod3, op3); \ } ONEITERBUTTERFLY(0, temp0); ONEITERBUTTERFLY(1, temp1); ONEITERBUTTERFLY(2, temp2); ONEITERBUTTERFLY(3, temp3); ONEITERBUTTERFLY(4, temp4); ONEITERBUTTERFLY(5, temp5); ONEITERBUTTERFLY(6, temp6); ONEITERBUTTERFLY(7, temp7); } #undef ONEITERBUTTERFLY { register vector signed int vsum; register vector signed short line0 = vec_add(temp0, temp1); register vector signed short line1 = vec_sub(temp0, temp1); register vector signed short line2 = vec_add(temp2, temp3); register vector signed short line3 = vec_sub(temp2, temp3); register vector signed short line4 = vec_add(temp4, temp5); register vector signed short line5 = vec_sub(temp4, temp5); register vector signed short line6 = vec_add(temp6, temp7); register vector signed short line7 = vec_sub(temp6, temp7); register vector signed short line0B = vec_add(line0, line2); register vector signed short line2B = vec_sub(line0, line2); register vector signed short line1B = vec_add(line1, line3); register vector signed short line3B = vec_sub(line1, line3); register vector signed short line4B = vec_add(line4, line6); register vector signed short line6B = vec_sub(line4, line6); register vector signed short line5B = vec_add(line5, line7); register vector signed short line7B = vec_sub(line5, line7); register vector signed short line0C = vec_add(line0B, line4B); register vector signed short line4C = vec_sub(line0B, line4B); register vector signed short line1C = vec_add(line1B, line5B); register vector signed short line5C = vec_sub(line1B, line5B); register vector signed short line2C = vec_add(line2B, line6B); register vector signed short line6C = vec_sub(line2B, line6B); register vector signed short line3C = vec_add(line3B, line7B); register vector signed short line7C = vec_sub(line3B, line7B); vsum = vec_sum4s(vec_abs(line0C), vec_splat_s32(0)); vsum = vec_sum4s(vec_abs(line1C), vsum); vsum = vec_sum4s(vec_abs(line2C), vsum); vsum = vec_sum4s(vec_abs(line3C), vsum); vsum = vec_sum4s(vec_abs(line4C), vsum); vsum = vec_sum4s(vec_abs(line5C), vsum); vsum = vec_sum4s(vec_abs(line6C), vsum); vsum = vec_sum4s(vec_abs(line7C), vsum); vsum = vec_sums(vsum, (vector signed int) vzero); vsum = vec_splat(vsum, 3); vec_ste(vsum, 0, &sum); } return sum; } /* * 16x8 works with 16 elements; it can avoid replicating loads, and * gives the compiler more room for scheduling. It's only used from * inside hadamard8_diff16_altivec. * * Unfortunately, it seems gcc-3.3 is a bit dumb, and the compiled code has * a LOT of spill code, it seems gcc (unlike xlc) cannot keep everything in * registers by itself. The following code includes hand-made register * allocation. It's not clean, but on a 7450 the resulting code is much faster * (best case falls from 700+ cycles to 550). * * xlc doesn't add spill code, but it doesn't know how to schedule for the * 7450, and its code isn't much faster than gcc-3.3 on the 7450 (but uses * 25% fewer instructions...) * * On the 970, the hand-made RA is still a win (around 690 vs. around 780), * but xlc goes to around 660 on the regular C code... */ static int hadamard8_diff16x8_altivec(MpegEncContext *s, uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h) { int __attribute__((aligned(16))) sum; register vector signed short temp0 __asm__ ("v0"), temp1 __asm__ ("v1"), temp2 __asm__ ("v2"), temp3 __asm__ ("v3"), temp4 __asm__ ("v4"), temp5 __asm__ ("v5"), temp6 __asm__ ("v6"), temp7 __asm__ ("v7"); register vector signed short temp0S __asm__ ("v8"), temp1S __asm__ ("v9"), temp2S __asm__ ("v10"), temp3S __asm__ ("v11"), temp4S __asm__ ("v12"), temp5S __asm__ ("v13"), temp6S __asm__ ("v14"), temp7S __asm__ ("v15"); register const vector unsigned char vzero __asm__ ("v31") = (const vector unsigned char) vec_splat_u8(0); { register const vector signed short vprod1 __asm__ ("v16") = (const vector signed short) { 1, -1, 1, -1, 1, -1, 1, -1 }; register const vector signed short vprod2 __asm__ ("v17") = (const vector signed short) { 1, 1, -1, -1, 1, 1, -1, -1 }; register const vector signed short vprod3 __asm__ ("v18") = (const vector signed short) { 1, 1, 1, 1, -1, -1, -1, -1 }; register const vector unsigned char perm1 __asm__ ("v19") = (const vector unsigned char) { 0x02, 0x03, 0x00, 0x01, 0x06, 0x07, 0x04, 0x05, 0x0A, 0x0B, 0x08, 0x09, 0x0E, 0x0F, 0x0C, 0x0D }; register const vector unsigned char perm2 __asm__ ("v20") = (const vector unsigned char) { 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x0C, 0x0D, 0x0E, 0x0F, 0x08, 0x09, 0x0A, 0x0B }; register const vector unsigned char perm3 __asm__ ("v21") = (const vector unsigned char) { 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; #define ONEITERBUTTERFLY(i, res1, res2) \ { \ register vector unsigned char srcO __asm__ ("v22") = \ unaligned_load(stride * i, src); \ register vector unsigned char dstO __asm__ ("v23") = \ unaligned_load(stride * i, dst);\ \ /* Promote the unsigned chars to signed shorts. */ \ register vector signed short srcV __asm__ ("v24") = \ (vector signed short) VEC_MERGEH((vector signed char) vzero, \ (vector signed char) srcO); \ register vector signed short dstV __asm__ ("v25") = \ (vector signed short) VEC_MERGEH((vector signed char) vzero, \ (vector signed char) dstO); \ register vector signed short srcW __asm__ ("v26") = \ (vector signed short) VEC_MERGEL((vector signed char) vzero, \ (vector signed char) srcO); \ register vector signed short dstW __asm__ ("v27") = \ (vector signed short) VEC_MERGEL((vector signed char) vzero, \ (vector signed char) dstO); \ \ /* subtractions inside the first butterfly */ \ register vector signed short but0 __asm__ ("v28") = \ vec_sub(srcV, dstV); \ register vector signed short but0S __asm__ ("v29") = \ vec_sub(srcW, dstW); \ register vector signed short op1 __asm__ ("v30") = \ vec_perm(but0, but0, perm1); \ register vector signed short but1 __asm__ ("v22") = \ vec_mladd(but0, vprod1, op1); \ register vector signed short op1S __asm__ ("v23") = \ vec_perm(but0S, but0S, perm1); \ register vector signed short but1S __asm__ ("v24") = \ vec_mladd(but0S, vprod1, op1S); \ register vector signed short op2 __asm__ ("v25") = \ vec_perm(but1, but1, perm2); \ register vector signed short but2 __asm__ ("v26") = \ vec_mladd(but1, vprod2, op2); \ register vector signed short op2S __asm__ ("v27") = \ vec_perm(but1S, but1S, perm2); \ register vector signed short but2S __asm__ ("v28") = \ vec_mladd(but1S, vprod2, op2S); \ register vector signed short op3 __asm__ ("v29") = \ vec_perm(but2, but2, perm3); \ register vector signed short op3S __asm__ ("v30") = \ vec_perm(but2S, but2S, perm3); \ res1 = vec_mladd(but2, vprod3, op3); \ res2 = vec_mladd(but2S, vprod3, op3S); \ } ONEITERBUTTERFLY(0, temp0, temp0S); ONEITERBUTTERFLY(1, temp1, temp1S); ONEITERBUTTERFLY(2, temp2, temp2S); ONEITERBUTTERFLY(3, temp3, temp3S); ONEITERBUTTERFLY(4, temp4, temp4S); ONEITERBUTTERFLY(5, temp5, temp5S); ONEITERBUTTERFLY(6, temp6, temp6S); ONEITERBUTTERFLY(7, temp7, temp7S); } #undef ONEITERBUTTERFLY { register vector signed int vsum; register vector signed short line0 = vec_add(temp0, temp1); register vector signed short line1 = vec_sub(temp0, temp1); register vector signed short line2 = vec_add(temp2, temp3); register vector signed short line3 = vec_sub(temp2, temp3); register vector signed short line4 = vec_add(temp4, temp5); register vector signed short line5 = vec_sub(temp4, temp5); register vector signed short line6 = vec_add(temp6, temp7); register vector signed short line7 = vec_sub(temp6, temp7); register vector signed short line0B = vec_add(line0, line2); register vector signed short line2B = vec_sub(line0, line2); register vector signed short line1B = vec_add(line1, line3); register vector signed short line3B = vec_sub(line1, line3); register vector signed short line4B = vec_add(line4, line6); register vector signed short line6B = vec_sub(line4, line6); register vector signed short line5B = vec_add(line5, line7); register vector signed short line7B = vec_sub(line5, line7); register vector signed short line0C = vec_add(line0B, line4B); register vector signed short line4C = vec_sub(line0B, line4B); register vector signed short line1C = vec_add(line1B, line5B); register vector signed short line5C = vec_sub(line1B, line5B); register vector signed short line2C = vec_add(line2B, line6B); register vector signed short line6C = vec_sub(line2B, line6B); register vector signed short line3C = vec_add(line3B, line7B); register vector signed short line7C = vec_sub(line3B, line7B); register vector signed short line0S = vec_add(temp0S, temp1S); register vector signed short line1S = vec_sub(temp0S, temp1S); register vector signed short line2S = vec_add(temp2S, temp3S); register vector signed short line3S = vec_sub(temp2S, temp3S); register vector signed short line4S = vec_add(temp4S, temp5S); register vector signed short line5S = vec_sub(temp4S, temp5S); register vector signed short line6S = vec_add(temp6S, temp7S); register vector signed short line7S = vec_sub(temp6S, temp7S); register vector signed short line0BS = vec_add(line0S, line2S); register vector signed short line2BS = vec_sub(line0S, line2S); register vector signed short line1BS = vec_add(line1S, line3S); register vector signed short line3BS = vec_sub(line1S, line3S); register vector signed short line4BS = vec_add(line4S, line6S); register vector signed short line6BS = vec_sub(line4S, line6S); register vector signed short line5BS = vec_add(line5S, line7S); register vector signed short line7BS = vec_sub(line5S, line7S); register vector signed short line0CS = vec_add(line0BS, line4BS); register vector signed short line4CS = vec_sub(line0BS, line4BS); register vector signed short line1CS = vec_add(line1BS, line5BS); register vector signed short line5CS = vec_sub(line1BS, line5BS); register vector signed short line2CS = vec_add(line2BS, line6BS); register vector signed short line6CS = vec_sub(line2BS, line6BS); register vector signed short line3CS = vec_add(line3BS, line7BS); register vector signed short line7CS = vec_sub(line3BS, line7BS); vsum = vec_sum4s(vec_abs(line0C), vec_splat_s32(0)); vsum = vec_sum4s(vec_abs(line1C), vsum); vsum = vec_sum4s(vec_abs(line2C), vsum); vsum = vec_sum4s(vec_abs(line3C), vsum); vsum = vec_sum4s(vec_abs(line4C), vsum); vsum = vec_sum4s(vec_abs(line5C), vsum); vsum = vec_sum4s(vec_abs(line6C), vsum); vsum = vec_sum4s(vec_abs(line7C), vsum); vsum = vec_sum4s(vec_abs(line0CS), vsum); vsum = vec_sum4s(vec_abs(line1CS), vsum); vsum = vec_sum4s(vec_abs(line2CS), vsum); vsum = vec_sum4s(vec_abs(line3CS), vsum); vsum = vec_sum4s(vec_abs(line4CS), vsum); vsum = vec_sum4s(vec_abs(line5CS), vsum); vsum = vec_sum4s(vec_abs(line6CS), vsum); vsum = vec_sum4s(vec_abs(line7CS), vsum); vsum = vec_sums(vsum, (vector signed int) vzero); vsum = vec_splat(vsum, 3); vec_ste(vsum, 0, &sum); } return sum; } static int hadamard8_diff16_altivec(MpegEncContext *s, uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h) { int score = hadamard8_diff16x8_altivec(s, dst, src, stride, 8); if (h == 16) { dst += 8 * stride; src += 8 * stride; score += hadamard8_diff16x8_altivec(s, dst, src, stride, 8); } return score; } #endif /* HAVE_ALTIVEC */ av_cold void ff_me_cmp_init_ppc(MECmpContext *c, AVCodecContext *avctx) { #if HAVE_ALTIVEC if (!PPC_ALTIVEC(av_get_cpu_flags())) return; c->pix_abs[0][1] = sad16_x2_altivec; c->pix_abs[0][2] = sad16_y2_altivec; c->pix_abs[0][3] = sad16_xy2_altivec; c->pix_abs[0][0] = sad16_altivec; c->pix_abs[1][0] = sad8_altivec; c->sad[0] = sad16_altivec; c->sad[1] = sad8_altivec; c->sse[0] = sse16_altivec; c->sse[1] = sse8_altivec; c->hadamard8_diff[0] = hadamard8_diff16_altivec; c->hadamard8_diff[1] = hadamard8_diff8x8_altivec; #endif /* HAVE_ALTIVEC */ }