/* * Opus encoder * Copyright (c) 2017 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "opusenc_psy.h" #include "opus_pvq.h" #include "opustab.h" #include "mdct15.h" #include "libavutil/qsort.h" static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band, float *bits, float lambda) { int i, b = 0; uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; const int band_size = ff_celt_freq_range[band] << f->size; float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176]; float dist, cost, err_x = 0.0f, err_y = 0.0f; float *X = buf; float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size); float *Y = (f->channels == 2) ? &buf[176] : NULL; float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size); OPUS_RC_CHECKPOINT_SPAWN(rc); memcpy(X, X_orig, band_size*sizeof(float)); if (Y) memcpy(Y, Y_orig, band_size*sizeof(float)); f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1; if (band <= f->coded_bands - 1) { int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band); b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14); } if (f->dual_stereo) { pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL, f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]); pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL, f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]); } else { pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size, norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); } for (i = 0; i < band_size; i++) { err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]); if (Y) err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]); } dist = sqrtf(err_x) + sqrtf(err_y); cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f; *bits += cost; OPUS_RC_CHECKPOINT_ROLLBACK(rc); return lambda*dist*cost; } /* Populate metrics without taking into consideration neighbouring steps */ static void step_collect_psy_metrics(OpusPsyContext *s, int index) { int silence = 0, ch, i, j; OpusPsyStep *st = s->steps[index]; st->index = index; for (ch = 0; ch < s->avctx->channels; ch++) { const int lap_size = (1 << s->bsize_analysis); for (i = 1; i <= FFMIN(lap_size, index); i++) { const int offset = i*120; AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i); memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float)); } for (i = 0; i < lap_size; i++) { const int offset = i*120 + lap_size; AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i); memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float)); } s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis], (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1)); s->mdct[s->bsize_analysis]->mdct(s->mdct[s->bsize_analysis], st->coeffs[ch], s->scratch, 1); for (i = 0; i < CELT_MAX_BANDS; i++) st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis]; } for (ch = 0; ch < s->avctx->channels; ch++) { for (i = 0; i < CELT_MAX_BANDS; i++) { float avg_c_s, energy = 0.0f, dist_dev = 0.0f; const int range = ff_celt_freq_range[i] << s->bsize_analysis; const float *coeffs = st->bands[ch][i]; for (j = 0; j < range; j++) energy += coeffs[j]*coeffs[j]; st->energy[ch][i] += sqrtf(energy); silence |= !!st->energy[ch][i]; avg_c_s = energy / range; for (j = 0; j < range; j++) { const float c_s = coeffs[j]*coeffs[j]; dist_dev += (avg_c_s - c_s)*(avg_c_s - c_s); } st->tone[ch][i] += sqrtf(dist_dev); } } st->silence = !silence; if (s->avctx->channels > 1) { for (i = 0; i < CELT_MAX_BANDS; i++) { float incompat = 0.0f; const float *coeffs1 = st->bands[0][i]; const float *coeffs2 = st->bands[1][i]; const int range = ff_celt_freq_range[i] << s->bsize_analysis; for (j = 0; j < range; j++) incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]); st->stereo[i] = sqrtf(incompat); } } for (ch = 0; ch < s->avctx->channels; ch++) { for (i = 0; i < CELT_MAX_BANDS; i++) { OpusBandExcitation *ex = &s->ex[ch][i]; float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]); bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e); bp_e *= bp_e; if (bp_e > ex->excitation) { st->change_amp[ch][i] = bp_e - ex->excitation; st->total_change += st->change_amp[ch][i]; ex->excitation = ex->excitation_init = bp_e; ex->excitation_dist = 0.0f; } if (ex->excitation > 0.0f) { ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09); ex->excitation = FFMAX(ex->excitation, 0.0f); ex->excitation_dist += 1.0f; } } } } static void search_for_change_points(OpusPsyContext *s, float tgt_change, int offset_s, int offset_e, int resolution, int level) { int i; float c_change = 0.0f; if ((offset_e - offset_s) <= resolution) return; for (i = offset_s; i < offset_e; i++) { c_change += s->steps[i]->total_change; if (c_change > tgt_change) break; } if (i == offset_e) return; search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1); s->inflection_points[s->inflection_points_count++] = i; search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1); } static int flush_silent_frames(OpusPsyContext *s) { int fsize, silent_frames; for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++) if (!s->steps[silent_frames]->silence) break; if (--silent_frames < 0) return 0; for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) { if ((1 << fsize) > silent_frames) continue; s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize); s->p.framesize = fsize; return 1; } return 0; } /* Main function which decides frame size and frames per current packet */ static void psy_output_groups(OpusPsyContext *s) { int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000; int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960); /* These don't change for now */ s->p.mode = OPUS_MODE_CELT; s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND; /* Flush silent frames ASAP */ if (s->steps[0]->silence && flush_silent_frames(s)) return; s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960); s->p.frames = 1; } int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p) { int i; float total_energy_change = 0.0f; if (s->buffered_steps < s->max_steps && !s->eof) { const int awin = (1 << s->bsize_analysis); if (++s->steps_to_process >= awin) { step_collect_psy_metrics(s, s->buffered_steps - awin + 1); s->steps_to_process = 0; } if ((++s->buffered_steps) < s->max_steps) return 1; } for (i = 0; i < s->buffered_steps; i++) total_energy_change += s->steps[i]->total_change; search_for_change_points(s, total_energy_change / 2.0f, 0, s->buffered_steps, 1, 0); psy_output_groups(s); p->frames = s->p.frames; p->framesize = s->p.framesize; p->mode = s->p.mode; p->bandwidth = s->p.bandwidth; return 0; } void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index) { int i, neighbouring_points = 0, start_offset = 0; int radius = (1 << s->p.framesize), step_offset = radius*index; int silence = 1; f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0; f->end_band = ff_celt_band_end[s->p.bandwidth]; f->channels = s->avctx->channels; f->size = s->p.framesize; for (i = 0; i < (1 << f->size); i++) silence &= s->steps[index*(1 << f->size) + i]->silence; f->silence = silence; if (f->silence) { f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */ return; } for (i = 0; i < s->inflection_points_count; i++) { if (s->inflection_points[i] >= step_offset) { start_offset = i; break; } } for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) { if (s->inflection_points[i] < (step_offset + radius)) { neighbouring_points++; } } /* Transient flagging */ f->transient = neighbouring_points > 0; f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1; /* Some sane defaults */ f->pfilter = 0; f->pf_gain = 0.5f; f->pf_octave = 2; f->pf_period = 1; f->pf_tapset = 2; /* More sane defaults */ f->tf_select = 0; f->anticollapse = 1; f->alloc_trim = 5; f->skip_band_floor = f->end_band; f->intensity_stereo = f->end_band; f->dual_stereo = 0; f->spread = CELT_SPREAD_NORMAL; memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS); memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS); } static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f_out) { int i, f, ch; int frame_size = OPUS_BLOCK_SIZE(s->p.framesize); float rate, frame_bits = 0; /* Used for the global ROTATE flag */ float tonal = 0.0f; /* Pseudo-weights */ float band_score[CELT_MAX_BANDS] = { 0 }; float max_score = 1.0f; /* Pass one - one loop around each band, computing unquant stuff */ for (i = 0; i < CELT_MAX_BANDS; i++) { float weight = 0.0f; float tonal_contrib = 0.0f; for (f = 0; f < (1 << s->p.framesize); f++) { weight = start[f]->stereo[i]; for (ch = 0; ch < s->avctx->channels; ch++) { weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i]; tonal_contrib += start[f]->tone[ch][i]; } } tonal += tonal_contrib; band_score[i] = weight; } tonal /= (float)CELT_MAX_BANDS; for (i = 0; i < CELT_MAX_BANDS; i++) { if (band_score[i] > max_score) max_score = band_score[i]; } for (i = 0; i < CELT_MAX_BANDS; i++) { f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f); frame_bits += band_score[i]*8.0f; } tonal /= 1333136.0f; f_out->spread = av_clip_uintp2(lrintf(tonal), 2); rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16; rate *= s->lambda; rate /= s->avctx->sample_rate/frame_size; f_out->framebits = lrintf(rate); f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_PACKET_SIZE*8); f_out->framebits = FFALIGN(f_out->framebits, 8); } static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist) { int i, tdist = 0.0f; OpusRangeCoder dump; ff_opus_rc_enc_init(&dump); ff_celt_bitalloc(f, &dump, 1); for (i = 0; i < CELT_MAX_BANDS; i++) { float bits = 0.0f; float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda); tdist += dist; } *total_dist = tdist; return 0; } static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f) { float td1, td2; f->dual_stereo = 0; if (s->avctx->channels < 2) return; bands_dist(s, f, &td1); f->dual_stereo = 1; bands_dist(s, f, &td2); f->dual_stereo = td2 < td1; s->dual_stereo_used += td2 < td1; } static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f) { int i, best_band = CELT_MAX_BANDS - 1; float dist, best_dist = FLT_MAX; /* TODO: fix, make some heuristic up here using the lambda value */ float end_band = 0; if (s->avctx->channels < 2) return; for (i = f->end_band; i >= end_band; i--) { f->intensity_stereo = i; bands_dist(s, f, &dist); if (best_dist > dist) { best_dist = dist; best_band = i; } } f->intensity_stereo = best_band; s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f; } static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f) { int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } }; float score[2] = { 0 }; for (cway = 0; cway < 2; cway++) { int mag[2]; int base = f->transient ? 120 : 960; for (i = 0; i < 2; i++) { int c = ff_celt_tf_select[f->size][f->transient][cway][i]; mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c); } for (i = 0; i < CELT_MAX_BANDS; i++) { float iscore0 = 0.0f; float iscore1 = 0.0f; for (j = 0; j < (1 << f->size); j++) { for (k = 0; k < s->avctx->channels; k++) { iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0]; iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1]; } } config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f); score[cway] += config[cway][i] ? iscore1 : iscore0; } } f->tf_select = score[0] < score[1]; memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS); return 0; } int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index) { int start_transient_flag = f->transient; OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)]; if (f->silence) return 0; celt_gauge_psy_weight(s, start, f); celt_search_for_intensity(s, f); celt_search_for_dual_stereo(s, f); celt_search_for_tf(s, start, f); if (f->transient != start_transient_flag) { f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1; s->redo_analysis = 1; return 1; } s->redo_analysis = 0; return 0; } void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc) { int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize); int steps_out = s->p.frames*(frame_size/120); void *tmp[FF_BUFQUEUE_SIZE]; float ideal_fbits; for (i = 0; i < steps_out; i++) memset(s->steps[i], 0, sizeof(OpusPsyStep)); for (i = 0; i < s->max_steps; i++) tmp[i] = s->steps[i]; for (i = 0; i < s->max_steps; i++) { const int i_new = i - steps_out; s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i]; } for (i = steps_out; i < s->buffered_steps; i++) s->steps[i]->index -= steps_out; ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size); for (i = 0; i < s->p.frames; i++) { s->avg_is_band += f[i].intensity_stereo; s->lambda *= ideal_fbits / f[i].framebits; } s->avg_is_band /= (s->p.frames + 1); s->cs_num = 0; s->steps_to_process = 0; s->buffered_steps -= steps_out; s->total_packets_out += s->p.frames; s->inflection_points_count = 0; } av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx, struct FFBufQueue *bufqueue, OpusEncOptions *options) { int i, ch, ret; s->redo_analysis = 0; s->lambda = 1.0f; s->options = options; s->avctx = avctx; s->bufqueue = bufqueue; s->max_steps = ceilf(s->options->max_delay_ms/2.5f); s->bsize_analysis = CELT_BLOCK_960; s->avg_is_band = CELT_MAX_BANDS - 1; s->inflection_points_count = 0; s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps); if (!s->inflection_points) { ret = AVERROR(ENOMEM); goto fail; } s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!s->dsp) { ret = AVERROR(ENOMEM); goto fail; } for (ch = 0; ch < s->avctx->channels; ch++) { for (i = 0; i < CELT_MAX_BANDS; i++) { bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1); bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0); } } for (i = 0; i < s->max_steps; i++) { s->steps[i] = av_mallocz(sizeof(OpusPsyStep)); if (!s->steps[i]) { ret = AVERROR(ENOMEM); goto fail; } } for (i = 0; i < CELT_BLOCK_NB; i++) { float tmp; const int len = OPUS_BLOCK_SIZE(i); s->window[i] = av_malloc(2*len*sizeof(float)); if (!s->window[i]) { ret = AVERROR(ENOMEM); goto fail; } generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp); if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i)))) goto fail; } return 0; fail: av_freep(&s->inflection_points); av_freep(&s->dsp); for (i = 0; i < CELT_BLOCK_NB; i++) { ff_mdct15_uninit(&s->mdct[i]); av_freep(&s->window[i]); } for (i = 0; i < s->max_steps; i++) av_freep(&s->steps[i]); return ret; } void ff_opus_psy_signal_eof(OpusPsyContext *s) { s->eof = 1; } av_cold int ff_opus_psy_end(OpusPsyContext *s) { int i; av_freep(&s->inflection_points); av_freep(&s->dsp); for (i = 0; i < CELT_BLOCK_NB; i++) { ff_mdct15_uninit(&s->mdct[i]); av_freep(&s->window[i]); } for (i = 0; i < s->max_steps; i++) av_freep(&s->steps[i]); av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band); av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f); return 0; }