/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG-4 part10 macroblock decoding */ #include #include "config.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "h264dec.h" #include "h264_ps.h" #include "qpeldsp.h" #include "thread.h" static inline int get_lowest_part_list_y(H264SliceContext *sl, int n, int height, int y_offset, int list) { int raw_my = sl->mv_cache[list][scan8[n]][1]; int filter_height_down = (raw_my & 3) ? 3 : 0; int full_my = (raw_my >> 2) + y_offset; int bottom = full_my + filter_height_down + height; av_assert2(height >= 0); return FFMAX(0, bottom); } static inline void get_lowest_part_y(const H264Context *h, H264SliceContext *sl, int16_t refs[2][48], int n, int height, int y_offset, int list0, int list1, int *nrefs) { int my; y_offset += 16 * (sl->mb_y >> MB_FIELD(sl)); if (list0) { int ref_n = sl->ref_cache[0][scan8[n]]; H264Ref *ref = &sl->ref_list[0][ref_n]; // Error resilience puts the current picture in the ref list. // Don't try to wait on these as it will cause a deadlock. // Fields can wait on each other, though. if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data || (ref->reference & 3) != h->picture_structure) { my = get_lowest_part_list_y(sl, n, height, y_offset, 0); if (refs[0][ref_n] < 0) nrefs[0] += 1; refs[0][ref_n] = FFMAX(refs[0][ref_n], my); } } if (list1) { int ref_n = sl->ref_cache[1][scan8[n]]; H264Ref *ref = &sl->ref_list[1][ref_n]; if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data || (ref->reference & 3) != h->picture_structure) { my = get_lowest_part_list_y(sl, n, height, y_offset, 1); if (refs[1][ref_n] < 0) nrefs[1] += 1; refs[1][ref_n] = FFMAX(refs[1][ref_n], my); } } } /** * Wait until all reference frames are available for MC operations. * * @param h the H.264 context */ static void await_references(const H264Context *h, H264SliceContext *sl) { const int mb_xy = sl->mb_xy; const int mb_type = h->cur_pic.mb_type[mb_xy]; int16_t refs[2][48]; int nrefs[2] = { 0 }; int ref, list; memset(refs, -1, sizeof(refs)); if (IS_16X16(mb_type)) { get_lowest_part_y(h, sl, refs, 0, 16, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); } else if (IS_16X8(mb_type)) { get_lowest_part_y(h, sl, refs, 0, 8, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); get_lowest_part_y(h, sl, refs, 8, 8, 8, IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); } else if (IS_8X16(mb_type)) { get_lowest_part_y(h, sl, refs, 0, 16, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); get_lowest_part_y(h, sl, refs, 4, 16, 0, IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); } else { int i; av_assert2(IS_8X8(mb_type)); for (i = 0; i < 4; i++) { const int sub_mb_type = sl->sub_mb_type[i]; const int n = 4 * i; int y_offset = (i & 2) << 2; if (IS_SUB_8X8(sub_mb_type)) { get_lowest_part_y(h, sl, refs, n, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else if (IS_SUB_8X4(sub_mb_type)) { get_lowest_part_y(h, sl, refs, n, 4, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); get_lowest_part_y(h, sl, refs, n + 2, 4, y_offset + 4, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else if (IS_SUB_4X8(sub_mb_type)) { get_lowest_part_y(h, sl, refs, n, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); get_lowest_part_y(h, sl, refs, n + 1, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else { int j; av_assert2(IS_SUB_4X4(sub_mb_type)); for (j = 0; j < 4; j++) { int sub_y_offset = y_offset + 2 * (j & 2); get_lowest_part_y(h, sl, refs, n + j, 4, sub_y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } } } } for (list = sl->list_count - 1; list >= 0; list--) for (ref = 0; ref < 48 && nrefs[list]; ref++) { int row = refs[list][ref]; if (row >= 0) { H264Ref *ref_pic = &sl->ref_list[list][ref]; int ref_field = ref_pic->reference - 1; int ref_field_picture = ref_pic->parent->field_picture; int pic_height = 16 * h->mb_height >> ref_field_picture; row <<= MB_MBAFF(sl); nrefs[list]--; if (!FIELD_PICTURE(h) && ref_field_picture) { // frame referencing two fields av_assert2((ref_pic->parent->reference & 3) == 3); ff_thread_await_progress(&ref_pic->parent->tf, FFMIN((row >> 1) - !(row & 1), pic_height - 1), 1); ff_thread_await_progress(&ref_pic->parent->tf, FFMIN((row >> 1), pic_height - 1), 0); } else if (FIELD_PICTURE(h) && !ref_field_picture) { // field referencing one field of a frame ff_thread_await_progress(&ref_pic->parent->tf, FFMIN(row * 2 + ref_field, pic_height - 1), 0); } else if (FIELD_PICTURE(h)) { ff_thread_await_progress(&ref_pic->parent->tf, FFMIN(row, pic_height - 1), ref_field); } else { ff_thread_await_progress(&ref_pic->parent->tf, FFMIN(row, pic_height - 1), 0); } } } } static av_always_inline void mc_dir_part(const H264Context *h, H264SliceContext *sl, H264Ref *pic, int n, int square, int height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, const qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, int pixel_shift, int chroma_idc) { const int mx = sl->mv_cache[list][scan8[n]][0] + src_x_offset * 8; int my = sl->mv_cache[list][scan8[n]][1] + src_y_offset * 8; const int luma_xy = (mx & 3) + ((my & 3) << 2); ptrdiff_t offset = (mx >> 2) * (1 << pixel_shift) + (my >> 2) * sl->mb_linesize; uint8_t *src_y = pic->data[0] + offset; uint8_t *src_cb, *src_cr; int extra_width = 0; int extra_height = 0; int emu = 0; const int full_mx = mx >> 2; const int full_my = my >> 2; const int pic_width = 16 * h->mb_width; const int pic_height = 16 * h->mb_height >> MB_FIELD(sl); int ysh; if (mx & 7) extra_width -= 3; if (my & 7) extra_height -= 3; if (full_mx < 0 - extra_width || full_my < 0 - extra_height || full_mx + 16 /*FIXME*/ > pic_width + extra_width || full_my + 16 /*FIXME*/ > pic_height + extra_height) { h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_y - (2 << pixel_shift) - 2 * sl->mb_linesize, sl->mb_linesize, sl->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_y = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize; emu = 1; } qpix_op[luma_xy](dest_y, src_y, sl->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_y + delta, src_y + delta, sl->mb_linesize); if (CONFIG_GRAY && h->flags & AV_CODEC_FLAG_GRAY) return; if (chroma_idc == 3 /* yuv444 */) { src_cb = pic->data[1] + offset; if (emu) { h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2 * sl->mb_linesize, sl->mb_linesize, sl->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_cb = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize; } qpix_op[luma_xy](dest_cb, src_cb, sl->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_cb + delta, src_cb + delta, sl->mb_linesize); src_cr = pic->data[2] + offset; if (emu) { h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2 * sl->mb_linesize, sl->mb_linesize, sl->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_cr = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize; } qpix_op[luma_xy](dest_cr, src_cr, sl->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_cr + delta, src_cr + delta, sl->mb_linesize); return; } ysh = 3 - (chroma_idc == 2 /* yuv422 */); if (chroma_idc == 1 /* yuv420 */ && MB_FIELD(sl)) { // chroma offset when predicting from a field of opposite parity my += 2 * ((sl->mb_y & 1) - (pic->reference - 1)); emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1); } src_cb = pic->data[1] + ((mx >> 3) * (1 << pixel_shift)) + (my >> ysh) * sl->mb_uvlinesize; src_cr = pic->data[2] + ((mx >> 3) * (1 << pixel_shift)) + (my >> ysh) * sl->mb_uvlinesize; if (emu) { h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cb, sl->mb_uvlinesize, sl->mb_uvlinesize, 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); src_cb = sl->edge_emu_buffer; } chroma_op(dest_cb, src_cb, sl->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7); if (emu) { h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cr, sl->mb_uvlinesize, sl->mb_uvlinesize, 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); src_cr = sl->edge_emu_buffer; } chroma_op(dest_cr, src_cr, sl->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7); } static av_always_inline void mc_part_std(const H264Context *h, H264SliceContext *sl, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, const qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, const qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1, int pixel_shift, int chroma_idc) { const qpel_mc_func *qpix_op = qpix_put; h264_chroma_mc_func chroma_op = chroma_put; dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; if (chroma_idc == 3 /* yuv444 */) { dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; } else if (chroma_idc == 2 /* yuv422 */) { dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize; } else { /* yuv420 */ dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize; } x_offset += 8 * sl->mb_x; y_offset += 8 * (sl->mb_y >> MB_FIELD(sl)); if (list0) { H264Ref *ref = &sl->ref_list[0][sl->ref_cache[0][scan8[n]]]; mc_dir_part(h, sl, ref, n, square, height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, pixel_shift, chroma_idc); qpix_op = qpix_avg; chroma_op = chroma_avg; } if (list1) { H264Ref *ref = &sl->ref_list[1][sl->ref_cache[1][scan8[n]]]; mc_dir_part(h, sl, ref, n, square, height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, pixel_shift, chroma_idc); } } static av_always_inline void mc_part_weighted(const H264Context *h, H264SliceContext *sl, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, const qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, int list0, int list1, int pixel_shift, int chroma_idc) { int chroma_height; dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; if (chroma_idc == 3 /* yuv444 */) { chroma_height = height; chroma_weight_avg = luma_weight_avg; chroma_weight_op = luma_weight_op; dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize; } else if (chroma_idc == 2 /* yuv422 */) { chroma_height = height; dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize; } else { /* yuv420 */ chroma_height = height >> 1; dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize; } x_offset += 8 * sl->mb_x; y_offset += 8 * (sl->mb_y >> MB_FIELD(sl)); if (list0 && list1) { /* don't optimize for luma-only case, since B-frames usually * use implicit weights => chroma too. */ uint8_t *tmp_cb = sl->bipred_scratchpad; uint8_t *tmp_cr = sl->bipred_scratchpad + (16 << pixel_shift); uint8_t *tmp_y = sl->bipred_scratchpad + 16 * sl->mb_uvlinesize; int refn0 = sl->ref_cache[0][scan8[n]]; int refn1 = sl->ref_cache[1][scan8[n]]; mc_dir_part(h, sl, &sl->ref_list[0][refn0], n, square, height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); mc_dir_part(h, sl, &sl->ref_list[1][refn1], n, square, height, delta, 1, tmp_y, tmp_cb, tmp_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); if (sl->pwt.use_weight == 2) { int weight0 = sl->pwt.implicit_weight[refn0][refn1][sl->mb_y & 1]; int weight1 = 64 - weight0; luma_weight_avg(dest_y, tmp_y, sl->mb_linesize, height, 5, weight0, weight1, 0); if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize, chroma_height, 5, weight0, weight1, 0); chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize, chroma_height, 5, weight0, weight1, 0); } } else { luma_weight_avg(dest_y, tmp_y, sl->mb_linesize, height, sl->pwt.luma_log2_weight_denom, sl->pwt.luma_weight[refn0][0][0], sl->pwt.luma_weight[refn1][1][0], sl->pwt.luma_weight[refn0][0][1] + sl->pwt.luma_weight[refn1][1][1]); if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize, chroma_height, sl->pwt.chroma_log2_weight_denom, sl->pwt.chroma_weight[refn0][0][0][0], sl->pwt.chroma_weight[refn1][1][0][0], sl->pwt.chroma_weight[refn0][0][0][1] + sl->pwt.chroma_weight[refn1][1][0][1]); chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize, chroma_height, sl->pwt.chroma_log2_weight_denom, sl->pwt.chroma_weight[refn0][0][1][0], sl->pwt.chroma_weight[refn1][1][1][0], sl->pwt.chroma_weight[refn0][0][1][1] + sl->pwt.chroma_weight[refn1][1][1][1]); } } } else { int list = list1 ? 1 : 0; int refn = sl->ref_cache[list][scan8[n]]; H264Ref *ref = &sl->ref_list[list][refn]; mc_dir_part(h, sl, ref, n, square, height, delta, list, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); luma_weight_op(dest_y, sl->mb_linesize, height, sl->pwt.luma_log2_weight_denom, sl->pwt.luma_weight[refn][list][0], sl->pwt.luma_weight[refn][list][1]); if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { if (sl->pwt.use_weight_chroma) { chroma_weight_op(dest_cb, sl->mb_uvlinesize, chroma_height, sl->pwt.chroma_log2_weight_denom, sl->pwt.chroma_weight[refn][list][0][0], sl->pwt.chroma_weight[refn][list][0][1]); chroma_weight_op(dest_cr, sl->mb_uvlinesize, chroma_height, sl->pwt.chroma_log2_weight_denom, sl->pwt.chroma_weight[refn][list][1][0], sl->pwt.chroma_weight[refn][list][1][1]); } } } } static av_always_inline void prefetch_motion(const H264Context *h, H264SliceContext *sl, int list, int pixel_shift, int chroma_idc) { /* fetch pixels for estimated mv 4 macroblocks ahead * optimized for 64byte cache lines */ const int refn = sl->ref_cache[list][scan8[0]]; if (refn >= 0) { const int mx = (sl->mv_cache[list][scan8[0]][0] >> 2) + 16 * sl->mb_x + 8; const int my = (sl->mv_cache[list][scan8[0]][1] >> 2) + 16 * sl->mb_y; uint8_t **src = sl->ref_list[list][refn].data; int off = mx * (1<< pixel_shift) + (my + (sl->mb_x & 3) * 4) * sl->mb_linesize + (64 << pixel_shift); h->vdsp.prefetch(src[0] + off, sl->linesize, 4); if (chroma_idc == 3 /* yuv444 */) { h->vdsp.prefetch(src[1] + off, sl->linesize, 4); h->vdsp.prefetch(src[2] + off, sl->linesize, 4); } else { off= ((mx>>1)+64) * (1<>1) + (sl->mb_x&7))*sl->uvlinesize; h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2); } } } static av_always_inline void xchg_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int chroma444, int simple, int pixel_shift) { int deblock_topleft; int deblock_top; int top_idx = 1; uint8_t *top_border_m1; uint8_t *top_border; if (!simple && FRAME_MBAFF(h)) { if (sl->mb_y & 1) { if (!MB_MBAFF(sl)) return; } else { top_idx = MB_MBAFF(sl) ? 0 : 1; } } if (sl->deblocking_filter == 2) { deblock_topleft = h->slice_table[sl->mb_xy - 1 - h->mb_stride] == sl->slice_num; deblock_top = sl->top_type; } else { deblock_topleft = (sl->mb_x > 0); deblock_top = (sl->mb_y > !!MB_FIELD(sl)); } src_y -= linesize + 1 + pixel_shift; src_cb -= uvlinesize + 1 + pixel_shift; src_cr -= uvlinesize + 1 + pixel_shift; top_border_m1 = sl->top_borders[top_idx][sl->mb_x - 1]; top_border = sl->top_borders[top_idx][sl->mb_x]; #define XCHG(a, b, xchg) \ if (pixel_shift) { \ if (xchg) { \ AV_SWAP64(b + 0, a + 0); \ AV_SWAP64(b + 8, a + 8); \ } else { \ AV_COPY128(b, a); \ } \ } else if (xchg) \ AV_SWAP64(b, a); \ else \ AV_COPY64(b, a); if (deblock_top) { if (deblock_topleft) { XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1); } XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg); XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1); if (sl->mb_x + 1 < h->mb_width) { XCHG(sl->top_borders[top_idx][sl->mb_x + 1], src_y + (17 << pixel_shift), 1); } if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) { if (chroma444) { if (deblock_topleft) { XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1); XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1); } XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg); XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1); XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg); XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1); if (sl->mb_x + 1 < h->mb_width) { XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1); XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1); } } else { if (deblock_topleft) { XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1); XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1); } XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1); XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1); } } } } static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth, int index) { if (high_bit_depth) { return AV_RN32A(((int32_t *)mb) + index); } else return AV_RN16A(mb + index); } static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth, int index, int value) { if (high_bit_depth) { AV_WN32A(((int32_t *)mb) + index, value); } else AV_WN16A(mb + index, value); } static av_always_inline void hl_decode_mb_predict_luma(const H264Context *h, H264SliceContext *sl, int mb_type, int simple, int transform_bypass, int pixel_shift, const int *block_offset, int linesize, uint8_t *dest_y, int p) { void (*idct_add)(uint8_t *dst, int16_t *block, int stride); void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride); int i; int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1]; block_offset += 16 * p; if (IS_INTRA4x4(mb_type)) { if (IS_8x8DCT(mb_type)) { if (transform_bypass) { idct_dc_add = idct_add = h->h264dsp.h264_add_pixels8_clear; } else { idct_dc_add = h->h264dsp.h264_idct8_dc_add; idct_add = h->h264dsp.h264_idct8_add; } for (i = 0; i < 16; i += 4) { uint8_t *const ptr = dest_y + block_offset[i]; const int dir = sl->intra4x4_pred_mode_cache[scan8[i]]; if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) { if (h->x264_build < 151U) { h->hpc.pred8x8l_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else h->hpc.pred8x8l_filter_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), (sl-> topleft_samples_available << i) & 0x8000, (sl->topright_samples_available << i) & 0x4000, linesize); } else { const int nnz = sl->non_zero_count_cache[scan8[i + p * 16]]; h->hpc.pred8x8l[dir](ptr, (sl->topleft_samples_available << i) & 0x8000, (sl->topright_samples_available << i) & 0x4000, linesize); if (nnz) { if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256)) idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); else idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } } } } else { if (transform_bypass) { idct_dc_add = idct_add = h->h264dsp.h264_add_pixels4_clear; } else { idct_dc_add = h->h264dsp.h264_idct_dc_add; idct_add = h->h264dsp.h264_idct_add; } for (i = 0; i < 16; i++) { uint8_t *const ptr = dest_y + block_offset[i]; const int dir = sl->intra4x4_pred_mode_cache[scan8[i]]; if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) { h->hpc.pred4x4_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else { uint8_t *topright; int nnz, tr; uint64_t tr_high; if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) { const int topright_avail = (sl->topright_samples_available << i) & 0x8000; av_assert2(sl->mb_y || linesize <= block_offset[i]); if (!topright_avail) { if (pixel_shift) { tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL; topright = (uint8_t *)&tr_high; } else { tr = ptr[3 - linesize] * 0x01010101u; topright = (uint8_t *)&tr; } } else topright = ptr + (4 << pixel_shift) - linesize; } else topright = NULL; h->hpc.pred4x4[dir](ptr, topright, linesize); nnz = sl->non_zero_count_cache[scan8[i + p * 16]]; if (nnz) { if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256)) idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); else idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } } } } } else { h->hpc.pred16x16[sl->intra16x16_pred_mode](dest_y, linesize); if (sl->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) { if (!transform_bypass) h->h264dsp.h264_luma_dc_dequant_idct(sl->mb + (p * 256 << pixel_shift), sl->mb_luma_dc[p], h->ps.pps->dequant4_coeff[p][qscale][0]); else { static const uint8_t dc_mapping[16] = { 0 * 16, 1 * 16, 4 * 16, 5 * 16, 2 * 16, 3 * 16, 6 * 16, 7 * 16, 8 * 16, 9 * 16, 12 * 16, 13 * 16, 10 * 16, 11 * 16, 14 * 16, 15 * 16 }; for (i = 0; i < 16; i++) dctcoef_set(sl->mb + (p * 256 << pixel_shift), pixel_shift, dc_mapping[i], dctcoef_get(sl->mb_luma_dc[p], pixel_shift, i)); } } } } static av_always_inline void hl_decode_mb_idct_luma(const H264Context *h, H264SliceContext *sl, int mb_type, int simple, int transform_bypass, int pixel_shift, const int *block_offset, int linesize, uint8_t *dest_y, int p) { void (*idct_add)(uint8_t *dst, int16_t *block, int stride); int i; block_offset += 16 * p; if (!IS_INTRA4x4(mb_type)) { if (IS_INTRA16x16(mb_type)) { if (transform_bypass) { if (h->ps.sps->profile_idc == 244 && (sl->intra16x16_pred_mode == VERT_PRED8x8 || sl->intra16x16_pred_mode == HOR_PRED8x8)) { h->hpc.pred16x16_add[sl->intra16x16_pred_mode](dest_y, block_offset, sl->mb + (p * 256 << pixel_shift), linesize); } else { for (i = 0; i < 16; i++) if (sl->non_zero_count_cache[scan8[i + p * 16]] || dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256)) h->h264dsp.h264_add_pixels4_clear(dest_y + block_offset[i], sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } } else { h->h264dsp.h264_idct_add16intra(dest_y, block_offset, sl->mb + (p * 256 << pixel_shift), linesize, sl->non_zero_count_cache + p * 5 * 8); } } else if (sl->cbp & 15) { if (transform_bypass) { const int di = IS_8x8DCT(mb_type) ? 4 : 1; idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8_clear : h->h264dsp.h264_add_pixels4_clear; for (i = 0; i < 16; i += di) if (sl->non_zero_count_cache[scan8[i + p * 16]]) idct_add(dest_y + block_offset[i], sl->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else { if (IS_8x8DCT(mb_type)) h->h264dsp.h264_idct8_add4(dest_y, block_offset, sl->mb + (p * 256 << pixel_shift), linesize, sl->non_zero_count_cache + p * 5 * 8); else h->h264dsp.h264_idct_add16(dest_y, block_offset, sl->mb + (p * 256 << pixel_shift), linesize, sl->non_zero_count_cache + p * 5 * 8); } } } } #define BITS 8 #define SIMPLE 1 #include "h264_mb_template.c" #undef BITS #define BITS 16 #include "h264_mb_template.c" #undef SIMPLE #define SIMPLE 0 #include "h264_mb_template.c" void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl) { const int mb_xy = sl->mb_xy; const int mb_type = h->cur_pic.mb_type[mb_xy]; int is_complex = CONFIG_SMALL || sl->is_complex || IS_INTRA_PCM(mb_type) || sl->qscale == 0; if (CHROMA444(h)) { if (is_complex || h->pixel_shift) hl_decode_mb_444_complex(h, sl); else hl_decode_mb_444_simple_8(h, sl); } else if (is_complex) { hl_decode_mb_complex(h, sl); } else if (h->pixel_shift) { hl_decode_mb_simple_16(h, sl); } else hl_decode_mb_simple_8(h, sl); }