/* * (I)DCT Transforms * Copyright (c) 2009 Peter Ross * Copyright (c) 2010 Alex Converse * Copyright (c) 2010 Vitor Sessak * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * (Inverse) Discrete Cosine Transforms. These are also known as the * type II and type III DCTs respectively. */ #include #include #include "libavutil/mathematics.h" #include "dct.h" #include "dct32.h" /* sin((M_PI * x / (2 * n)) */ #define SIN(s, n, x) (s->costab[(n) - (x)]) /* cos((M_PI * x / (2 * n)) */ #define COS(s, n, x) (s->costab[x]) static void dst_calc_I_c(DCTContext *ctx, FFTSample *data) { int n = 1 << ctx->nbits; int i; data[0] = 0; for (i = 1; i < n / 2; i++) { float tmp1 = data[i ]; float tmp2 = data[n - i]; float s = SIN(ctx, n, 2 * i); s *= tmp1 + tmp2; tmp1 = (tmp1 - tmp2) * 0.5f; data[i] = s + tmp1; data[n - i] = s - tmp1; } data[n / 2] *= 2; ctx->rdft.rdft_calc(&ctx->rdft, data); data[0] *= 0.5f; for (i = 1; i < n - 2; i += 2) { data[i + 1] += data[i - 1]; data[i] = -data[i + 2]; } data[n - 1] = 0; } static void dct_calc_I_c(DCTContext *ctx, FFTSample *data) { int n = 1 << ctx->nbits; int i; float next = -0.5f * (data[0] - data[n]); for (i = 0; i < n / 2; i++) { float tmp1 = data[i]; float tmp2 = data[n - i]; float s = SIN(ctx, n, 2 * i); float c = COS(ctx, n, 2 * i); c *= tmp1 - tmp2; s *= tmp1 - tmp2; next += c; tmp1 = (tmp1 + tmp2) * 0.5f; data[i] = tmp1 - s; data[n - i] = tmp1 + s; } ctx->rdft.rdft_calc(&ctx->rdft, data); data[n] = data[1]; data[1] = next; for (i = 3; i <= n; i += 2) data[i] = data[i - 2] - data[i]; } static void dct_calc_III_c(DCTContext *ctx, FFTSample *data) { int n = 1 << ctx->nbits; int i; float next = data[n - 1]; float inv_n = 1.0f / n; for (i = n - 2; i >= 2; i -= 2) { float val1 = data[i]; float val2 = data[i - 1] - data[i + 1]; float c = COS(ctx, n, i); float s = SIN(ctx, n, i); data[i] = c * val1 + s * val2; data[i + 1] = s * val1 - c * val2; } data[1] = 2 * next; ctx->rdft.rdft_calc(&ctx->rdft, data); for (i = 0; i < n / 2; i++) { float tmp1 = data[i] * inv_n; float tmp2 = data[n - i - 1] * inv_n; float csc = ctx->csc2[i] * (tmp1 - tmp2); tmp1 += tmp2; data[i] = tmp1 + csc; data[n - i - 1] = tmp1 - csc; } } static void dct_calc_II_c(DCTContext *ctx, FFTSample *data) { int n = 1 << ctx->nbits; int i; float next; for (i = 0; i < n / 2; i++) { float tmp1 = data[i]; float tmp2 = data[n - i - 1]; float s = SIN(ctx, n, 2 * i + 1); s *= tmp1 - tmp2; tmp1 = (tmp1 + tmp2) * 0.5f; data[i] = tmp1 + s; data[n-i-1] = tmp1 - s; } ctx->rdft.rdft_calc(&ctx->rdft, data); next = data[1] * 0.5; data[1] *= -1; for (i = n - 2; i >= 0; i -= 2) { float inr = data[i ]; float ini = data[i + 1]; float c = COS(ctx, n, i); float s = SIN(ctx, n, i); data[i] = c * inr + s * ini; data[i + 1] = next; next += s * inr - c * ini; } } static void dct32_func(DCTContext *ctx, FFTSample *data) { ctx->dct32(data, data); } av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse) { int n = 1 << nbits; int i; int ret; memset(s, 0, sizeof(*s)); s->nbits = nbits; s->inverse = inverse; if (inverse == DCT_II && nbits == 5) { s->dct_calc = dct32_func; } else { ff_init_ff_cos_tabs(nbits + 2); s->costab = ff_cos_tabs[nbits + 2]; s->csc2 = av_malloc_array(n / 2, sizeof(FFTSample)); if (!s->csc2) return AVERROR(ENOMEM); if ((ret = ff_rdft_init(&s->rdft, nbits, inverse == DCT_III)) < 0) { av_freep(&s->csc2); return ret; } for (i = 0; i < n / 2; i++) s->csc2[i] = 0.5 / sin((M_PI / (2 * n) * (2 * i + 1))); switch (inverse) { case DCT_I : s->dct_calc = dct_calc_I_c; break; case DCT_II : s->dct_calc = dct_calc_II_c; break; case DCT_III: s->dct_calc = dct_calc_III_c; break; case DST_I : s->dct_calc = dst_calc_I_c; break; } } s->dct32 = ff_dct32_float; if (ARCH_X86) ff_dct_init_x86(s); return 0; } av_cold void ff_dct_end(DCTContext *s) { ff_rdft_end(&s->rdft); av_freep(&s->csc2); }