/* * Copyright (C) 2016 foo86 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "dcadec.h" #include "dcadata.h" #include "dcamath.h" #include "dca_syncwords.h" #include "unary.h" static int get_linear(GetBitContext *gb, int n) { unsigned int v = get_bits_long(gb, n); return (v >> 1) ^ -(v & 1); } static int get_rice_un(GetBitContext *gb, int k) { unsigned int v = get_unary(gb, 1, get_bits_left(gb)); return (v << k) | get_bits_long(gb, k); } static int get_rice(GetBitContext *gb, int k) { unsigned int v = get_rice_un(gb, k); return (v >> 1) ^ -(v & 1); } static void get_array(GetBitContext *gb, int32_t *array, int size, int n) { int i; for (i = 0; i < size; i++) array[i] = get_bits(gb, n); } static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n) { int i; if (n == 0) memset(array, 0, sizeof(*array) * size); else for (i = 0; i < size; i++) array[i] = get_linear(gb, n); } static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k) { int i; for (i = 0; i < size; i++) array[i] = get_rice(gb, k); } static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c) { // Size of downmix coefficient matrix int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs; int i, j, *coeff_ptr = c->dmix_coeff; for (i = 0; i < m; i++) { int code, sign, coeff, scale, scale_inv = 0; unsigned int index; // Downmix scale (only for non-primary channel sets) if (!c->primary_chset) { code = get_bits(&s->gb, 9); sign = (code >> 8) - 1; index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET; if (index >= FF_DCA_INV_DMIXTABLE_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n"); return AVERROR_INVALIDDATA; } scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET]; scale_inv = ff_dca_inv_dmixtable[index]; c->dmix_scale[i] = (scale ^ sign) - sign; c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign; } // Downmix coefficients for (j = 0; j < c->nchannels; j++) { code = get_bits(&s->gb, 9); sign = (code >> 8) - 1; index = code & 0xff; if (index >= FF_DCA_DMIXTABLE_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n"); return AVERROR_INVALIDDATA; } coeff = ff_dca_dmixtable[index]; if (!c->primary_chset) // Multiply by |InvDmixScale| to get |UndoDmixScale| coeff = mul16(scale_inv, coeff); *coeff_ptr++ = (coeff ^ sign) - sign; } } return 0; } static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset) { int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb); DCAXllChSet *p = &s->chset[0]; DCAXllBand *b; // Size of channel set sub-header header_size = get_bits(&s->gb, 10) + 1; // Check CRC if (ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n"); return AVERROR_INVALIDDATA; } // Number of channels in the channel set c->nchannels = get_bits(&s->gb, 4) + 1; if (c->nchannels > DCA_XLL_CHANNELS_MAX) { avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels); return AVERROR_PATCHWELCOME; } // Residual type c->residual_encode = get_bits(&s->gb, c->nchannels); // PCM bit resolution c->pcm_bit_res = get_bits(&s->gb, 5) + 1; // Storage unit width c->storage_bit_res = get_bits(&s->gb, 5) + 1; if (c->storage_bit_res != 16 && c->storage_bit_res != 20 && c->storage_bit_res != 24) { avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res); return AVERROR_PATCHWELCOME; } if (c->pcm_bit_res > c->storage_bit_res) { av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res); return AVERROR_INVALIDDATA; } // Original sampling frequency c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)]; if (c->freq > 192000) { avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq); return AVERROR_PATCHWELCOME; } // Sampling frequency modifier if (get_bits(&s->gb, 2)) { avpriv_request_sample(s->avctx, "XLL sampling frequency modifier"); return AVERROR_PATCHWELCOME; } // Which replacement set this channel set is member of if (get_bits(&s->gb, 2)) { avpriv_request_sample(s->avctx, "XLL replacement set"); return AVERROR_PATCHWELCOME; } if (asset->one_to_one_map_ch_to_spkr) { // Primary channel set flag c->primary_chset = get_bits1(&s->gb); if (c->primary_chset != (c == p)) { av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n"); return AVERROR_INVALIDDATA; } // Downmix coefficients present in stream c->dmix_coeffs_present = get_bits1(&s->gb); // Downmix already performed by encoder c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb); // Downmix type if (c->dmix_coeffs_present && c->primary_chset) { c->dmix_type = get_bits(&s->gb, 3); if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n"); return AVERROR_INVALIDDATA; } } // Whether the channel set is part of a hierarchy c->hier_chset = get_bits1(&s->gb); if (!c->hier_chset && s->nchsets != 1) { avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy"); return AVERROR_PATCHWELCOME; } // Downmix coefficients if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0) return ret; // Channel mask enabled if (!get_bits1(&s->gb)) { avpriv_request_sample(s->avctx, "Disabled XLL channel mask"); return AVERROR_PATCHWELCOME; } // Channel mask for set c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits); if (av_popcount(c->ch_mask) != c->nchannels) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n"); return AVERROR_INVALIDDATA; } // Build the channel to speaker map for (i = 0, j = 0; i < s->ch_mask_nbits; i++) if (c->ch_mask & (1U << i)) c->ch_remap[j++] = i; } else { // Mapping coeffs present flag if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) { avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping"); return AVERROR_PATCHWELCOME; } // Setup for LtRt decoding c->primary_chset = 1; c->dmix_coeffs_present = 0; c->dmix_embedded = 0; c->hier_chset = 0; c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO; c->ch_remap[0] = DCA_SPEAKER_L; c->ch_remap[1] = DCA_SPEAKER_R; } if (c->freq > 96000) { // Extra frequency bands flag if (get_bits1(&s->gb)) { avpriv_request_sample(s->avctx, "Extra XLL frequency bands"); return AVERROR_PATCHWELCOME; } c->nfreqbands = 2; } else { c->nfreqbands = 1; } // Set the sampling frequency to that of the first frequency band. // Frequency will be doubled again after bands assembly. c->freq >>= c->nfreqbands - 1; // Verify that all channel sets have the same audio characteristics if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq || c->pcm_bit_res != p->pcm_bit_res || c->storage_bit_res != p->storage_bit_res)) { avpriv_request_sample(s->avctx, "Different XLL audio characteristics"); return AVERROR_PATCHWELCOME; } // Determine number of bits to read bit allocation coding parameter if (c->storage_bit_res > 16) c->nabits = 5; else if (c->storage_bit_res > 8) c->nabits = 4; else c->nabits = 3; // Account for embedded downmix and decimator saturation if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5) c->nabits++; for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) { // Pairwise channel decorrelation if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) { int ch_nbits = av_ceil_log2(c->nchannels); // Original channel order for (i = 0; i < c->nchannels; i++) { b->orig_order[i] = get_bits(&s->gb, ch_nbits); if (b->orig_order[i] >= c->nchannels) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n"); return AVERROR_INVALIDDATA; } } // Pairwise channel coefficients for (i = 0; i < c->nchannels / 2; i++) b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0; } else { for (i = 0; i < c->nchannels; i++) b->orig_order[i] = i; for (i = 0; i < c->nchannels / 2; i++) b->decor_coeff[i] = 0; } // Adaptive predictor order b->highest_pred_order = 0; for (i = 0; i < c->nchannels; i++) { b->adapt_pred_order[i] = get_bits(&s->gb, 4); if (b->adapt_pred_order[i] > b->highest_pred_order) b->highest_pred_order = b->adapt_pred_order[i]; } if (b->highest_pred_order > s->nsegsamples) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n"); return AVERROR_INVALIDDATA; } // Fixed predictor order for (i = 0; i < c->nchannels; i++) b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2); // Adaptive predictor quantized reflection coefficients for (i = 0; i < c->nchannels; i++) { for (j = 0; j < b->adapt_pred_order[i]; j++) { k = get_linear(&s->gb, 8); if (k == -128) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n"); return AVERROR_INVALIDDATA; } if (k < 0) b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k]; else b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k]; } } // Downmix performed by encoder in extension frequency band b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb)); // MSB/LSB split flag in extension frequency band if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) { // Size of LSB section in any segment b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits); if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) { av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n"); return AVERROR_INVALIDDATA; } // Account for optional CRC bytes after LSB section if (b->lsb_section_size && (s->band_crc_present > 2 || (band == 0 && s->band_crc_present > 1))) b->lsb_section_size += 2; // Number of bits to represent the samples in LSB part for (i = 0; i < c->nchannels; i++) { b->nscalablelsbs[i] = get_bits(&s->gb, 4); if (b->nscalablelsbs[i] && !b->lsb_section_size) { av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n"); return AVERROR_INVALIDDATA; } } } else { b->lsb_section_size = 0; for (i = 0; i < c->nchannels; i++) b->nscalablelsbs[i] = 0; } // Scalable resolution flag in extension frequency band if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) { // Number of bits discarded by authoring for (i = 0; i < c->nchannels; i++) b->bit_width_adjust[i] = get_bits(&s->gb, 4); } else { for (i = 0; i < c->nchannels; i++) b->bit_width_adjust[i] = 0; } } // Reserved // Byte align // CRC16 of channel set sub-header if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n"); return AVERROR_INVALIDDATA; } return 0; } static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c) { int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0; int nchsamples = s->nframesamples + ndecisamples; int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands; int32_t *ptr; // Reallocate MSB sample buffer av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t)); if (!c->sample_buffer[0]) return AVERROR(ENOMEM); ptr = c->sample_buffer[0] + ndecisamples; for (i = 0; i < c->nfreqbands; i++) { for (j = 0; j < c->nchannels; j++) { c->bands[i].msb_sample_buffer[j] = ptr; ptr += nchsamples; } } return 0; } static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c) { int i, j, nsamples = 0; int32_t *ptr; // Determine number of frequency bands that have MSB/LSB split for (i = 0; i < c->nfreqbands; i++) if (c->bands[i].lsb_section_size) nsamples += s->nframesamples * c->nchannels; if (!nsamples) return 0; // Reallocate LSB sample buffer av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t)); if (!c->sample_buffer[1]) return AVERROR(ENOMEM); ptr = c->sample_buffer[1]; for (i = 0; i < c->nfreqbands; i++) { if (c->bands[i].lsb_section_size) { for (j = 0; j < c->nchannels; j++) { c->bands[i].lsb_sample_buffer[j] = ptr; ptr += s->nframesamples; } } else { for (j = 0; j < c->nchannels; j++) c->bands[i].lsb_sample_buffer[j] = NULL; } } return 0; } static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end) { DCAXllBand *b = &c->bands[band]; int i, j, k; // Start unpacking MSB portion of the segment if (!(seg && get_bits1(&s->gb))) { // Unpack segment type // 0 - distinct coding parameters for each channel // 1 - common coding parameters for all channels c->seg_common = get_bits1(&s->gb); // Determine number of coding parameters encoded in segment k = c->seg_common ? 1 : c->nchannels; // Unpack Rice coding parameters for (i = 0; i < k; i++) { // Unpack Rice coding flag // 0 - linear code, 1 - Rice code c->rice_code_flag[i] = get_bits1(&s->gb); // Unpack Hybrid Rice coding flag // 0 - Rice code, 1 - Hybrid Rice code if (!c->seg_common && c->rice_code_flag[i] && get_bits1(&s->gb)) // Unpack binary code length for isolated samples c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1; else // 0 indicates no Hybrid Rice coding c->bitalloc_hybrid_linear[i] = 0; } // Unpack coding parameters for (i = 0; i < k; i++) { if (seg == 0) { // Unpack coding parameter for part A of segment 0 c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits); // Adjust for the linear code if (!c->rice_code_flag[i] && c->bitalloc_part_a[i]) c->bitalloc_part_a[i]++; if (!c->seg_common) c->nsamples_part_a[i] = b->adapt_pred_order[i]; else c->nsamples_part_a[i] = b->highest_pred_order; } else { c->bitalloc_part_a[i] = 0; c->nsamples_part_a[i] = 0; } // Unpack coding parameter for part B of segment c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits); // Adjust for the linear code if (!c->rice_code_flag[i] && c->bitalloc_part_b[i]) c->bitalloc_part_b[i]++; } } // Unpack entropy codes for (i = 0; i < c->nchannels; i++) { int32_t *part_a, *part_b; int nsamples_part_b; // Select index of coding parameters k = c->seg_common ? 0 : i; // Slice the segment into parts A and B part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples; part_b = part_a + c->nsamples_part_a[k]; nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k]; if (get_bits_left(&s->gb) < 0) return AVERROR_INVALIDDATA; if (!c->rice_code_flag[k]) { // Linear codes // Unpack all residuals of part A of segment 0 get_linear_array(&s->gb, part_a, c->nsamples_part_a[k], c->bitalloc_part_a[k]); // Unpack all residuals of part B of segment 0 and others get_linear_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]); } else { // Rice codes // Unpack all residuals of part A of segment 0 get_rice_array(&s->gb, part_a, c->nsamples_part_a[k], c->bitalloc_part_a[k]); if (c->bitalloc_hybrid_linear[k]) { // Hybrid Rice codes // Unpack the number of isolated samples int nisosamples = get_bits(&s->gb, s->nsegsamples_log2); // Set all locations to 0 memset(part_b, 0, sizeof(*part_b) * nsamples_part_b); // Extract the locations of isolated samples and flag by -1 for (j = 0; j < nisosamples; j++) { int loc = get_bits(&s->gb, s->nsegsamples_log2); if (loc >= nsamples_part_b) { av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n"); return AVERROR_INVALIDDATA; } part_b[loc] = -1; } // Unpack all residuals of part B of segment 0 and others for (j = 0; j < nsamples_part_b; j++) { if (part_b[j]) part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]); else part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]); } } else { // Rice codes // Unpack all residuals of part B of segment 0 and others get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]); } } } // Unpack decimator history for frequency band 1 if (seg == 0 && band == 1) { int nbits = get_bits(&s->gb, 5) + 1; for (i = 0; i < c->nchannels; i++) for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++) c->deci_history[i][j] = get_sbits_long(&s->gb, nbits); } // Start unpacking LSB portion of the segment if (b->lsb_section_size) { // Skip to the start of LSB portion if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n"); return AVERROR_INVALIDDATA; } // Unpack all LSB parts of residuals of this segment for (i = 0; i < c->nchannels; i++) { if (b->nscalablelsbs[i]) { get_array(&s->gb, b->lsb_sample_buffer[i] + seg * s->nsegsamples, s->nsegsamples, b->nscalablelsbs[i]); } } } // Skip to the end of band data if (ff_dca_seek_bits(&s->gb, band_data_end)) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n"); return AVERROR_INVALIDDATA; } return 0; } static av_cold void chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg) { DCAXllBand *b = &c->bands[band]; int i, offset, nsamples; if (seg < 0) { offset = 0; nsamples = s->nframesamples; } else { offset = seg * s->nsegsamples; nsamples = s->nsegsamples; } for (i = 0; i < c->nchannels; i++) { memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t)); if (b->lsb_section_size) memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t)); } if (seg <= 0 && band) memset(c->deci_history, 0, sizeof(c->deci_history)); if (seg < 0) { memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs)); memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust)); } } static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band) { DCAXllBand *b = &c->bands[band]; int nsamples = s->nframesamples; int i, j, k; // Inverse adaptive or fixed prediction for (i = 0; i < c->nchannels; i++) { int32_t *buf = b->msb_sample_buffer[i]; int order = b->adapt_pred_order[i]; if (order > 0) { int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX]; // Conversion from reflection coefficients to direct form coefficients for (j = 0; j < order; j++) { int rc = b->adapt_refl_coeff[i][j]; for (k = 0; k < (j + 1) / 2; k++) { int tmp1 = coeff[ k ]; int tmp2 = coeff[j - k - 1]; coeff[ k ] = tmp1 + mul16(rc, tmp2); coeff[j - k - 1] = tmp2 + mul16(rc, tmp1); } coeff[j] = rc; } // Inverse adaptive prediction for (j = 0; j < nsamples - order; j++) { int64_t err = 0; for (k = 0; k < order; k++) err += (int64_t)buf[j + k] * coeff[order - k - 1]; buf[j + k] -= (SUINT)clip23(norm16(err)); } } else { // Inverse fixed coefficient prediction for (j = 0; j < b->fixed_pred_order[i]; j++) for (k = 1; k < nsamples; k++) buf[k] += (unsigned)buf[k - 1]; } } // Inverse pairwise channel decorrellation if (b->decor_enabled) { int32_t *tmp[DCA_XLL_CHANNELS_MAX]; for (i = 0; i < c->nchannels / 2; i++) { int coeff = b->decor_coeff[i]; if (coeff) { s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1], b->msb_sample_buffer[i * 2 ], coeff, nsamples); } } // Reorder channel pointers to the original order for (i = 0; i < c->nchannels; i++) tmp[i] = b->msb_sample_buffer[i]; for (i = 0; i < c->nchannels; i++) b->msb_sample_buffer[b->orig_order[i]] = tmp[i]; } // Map output channel pointers for frequency band 0 if (c->nfreqbands == 1) for (i = 0; i < c->nchannels; i++) s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i]; } static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch) { int adj = c->bands[band].bit_width_adjust[ch]; int shift = c->bands[band].nscalablelsbs[ch]; if (s->fixed_lsb_width) shift = s->fixed_lsb_width; else if (shift && adj) shift += adj - 1; else shift += adj; return shift; } static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band) { DCAXllBand *b = &c->bands[band]; int n, ch, nsamples = s->nframesamples; for (ch = 0; ch < c->nchannels; ch++) { int shift = chs_get_lsb_width(s, c, band, ch); if (shift) { int32_t *msb = b->msb_sample_buffer[ch]; if (b->nscalablelsbs[ch]) { int32_t *lsb = b->lsb_sample_buffer[ch]; int adj = b->bit_width_adjust[ch]; for (n = 0; n < nsamples; n++) msb[n] = msb[n] * (SUINT)(1 << shift) + (lsb[n] << adj); } else { for (n = 0; n < nsamples; n++) msb[n] = msb[n] * (SUINT)(1 << shift); } } } } static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c) { int ch, nsamples = s->nframesamples; int32_t *ptr; av_assert1(c->nfreqbands > 1); // Reallocate frequency band assembly buffer av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2], 2 * nsamples * c->nchannels * sizeof(int32_t)); if (!c->sample_buffer[2]) return AVERROR(ENOMEM); // Assemble frequency bands 0 and 1 ptr = c->sample_buffer[2]; for (ch = 0; ch < c->nchannels; ch++) { int32_t *band0 = c->bands[0].msb_sample_buffer[ch]; int32_t *band1 = c->bands[1].msb_sample_buffer[ch]; // Copy decimator history memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX, c->deci_history[ch], sizeof(c->deci_history[0])); // Filter s->dcadsp->assemble_freq_bands(ptr, band0, band1, ff_dca_xll_band_coeff, nsamples); // Remap output channel pointer to assembly buffer s->output_samples[c->ch_remap[ch]] = ptr; ptr += nsamples * 2; } return 0; } static int parse_common_header(DCAXllDecoder *s) { int stream_ver, header_size, frame_size_nbits, nframesegs_log2; // XLL extension sync word if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) { av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n"); return AVERROR(EAGAIN); } // Version number stream_ver = get_bits(&s->gb, 4) + 1; if (stream_ver > 1) { avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver); return AVERROR_PATCHWELCOME; } // Lossless frame header length header_size = get_bits(&s->gb, 8) + 1; // Check CRC if (ff_dca_check_crc(s->avctx, &s->gb, 32, header_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n"); return AVERROR_INVALIDDATA; } // Number of bits used to read frame size frame_size_nbits = get_bits(&s->gb, 5) + 1; // Number of bytes in a lossless frame s->frame_size = get_bits_long(&s->gb, frame_size_nbits); if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) { av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size); return AVERROR_INVALIDDATA; } s->frame_size++; // Number of channels sets per frame s->nchsets = get_bits(&s->gb, 4) + 1; if (s->nchsets > DCA_XLL_CHSETS_MAX) { avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets); return AVERROR_PATCHWELCOME; } // Number of segments per frame nframesegs_log2 = get_bits(&s->gb, 4); s->nframesegs = 1 << nframesegs_log2; if (s->nframesegs > 1024) { av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n"); return AVERROR_INVALIDDATA; } // Samples in segment per one frequency band for the first channel set // Maximum value is 256 for sampling frequencies <= 48 kHz // Maximum value is 512 for sampling frequencies > 48 kHz s->nsegsamples_log2 = get_bits(&s->gb, 4); if (!s->nsegsamples_log2) { av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n"); return AVERROR_INVALIDDATA; } s->nsegsamples = 1 << s->nsegsamples_log2; if (s->nsegsamples > 512) { av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n"); return AVERROR_INVALIDDATA; } // Samples in frame per one frequency band for the first channel set s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2; s->nframesamples = 1 << s->nframesamples_log2; if (s->nframesamples > 65536) { av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n"); return AVERROR_INVALIDDATA; } // Number of bits used to read segment size s->seg_size_nbits = get_bits(&s->gb, 5) + 1; // Presence of CRC16 within each frequency band // 0 - No CRC16 within band // 1 - CRC16 placed at the end of MSB0 // 2 - CRC16 placed at the end of MSB0 and LSB0 // 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands s->band_crc_present = get_bits(&s->gb, 2); // MSB/LSB split flag s->scalable_lsbs = get_bits1(&s->gb); // Channel position mask s->ch_mask_nbits = get_bits(&s->gb, 5) + 1; // Fixed LSB width if (s->scalable_lsbs) s->fixed_lsb_width = get_bits(&s->gb, 4); else s->fixed_lsb_width = 0; // Reserved // Byte align // Header CRC16 protection if (ff_dca_seek_bits(&s->gb, header_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n"); return AVERROR_INVALIDDATA; } return 0; } static int is_hier_dmix_chset(DCAXllChSet *c) { return !c->primary_chset && c->dmix_embedded && c->hier_chset; } static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c) { if (c->hier_chset) while (++c < &s->chset[s->nchsets]) if (is_hier_dmix_chset(c)) return c; return NULL; } static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o) { int i, j, *coeff_ptr = c->dmix_coeff; for (i = 0; i < c->hier_ofs; i++) { int scale = o->dmix_scale[i]; int scale_inv = o->dmix_scale_inv[i]; c->dmix_scale[i] = mul15(c->dmix_scale[i], scale); c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv); for (j = 0; j < c->nchannels; j++) { int coeff = mul16(*coeff_ptr, scale_inv); *coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]); } } } static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset) { DCAContext *dca = s->avctx->priv_data; DCAXllChSet *c; int i, ret; // Parse channel set headers s->nfreqbands = 0; s->nchannels = 0; s->nreschsets = 0; for (i = 0, c = s->chset; i < s->nchsets; i++, c++) { c->hier_ofs = s->nchannels; if ((ret = chs_parse_header(s, c, asset)) < 0) return ret; if (c->nfreqbands > s->nfreqbands) s->nfreqbands = c->nfreqbands; if (c->hier_chset) s->nchannels += c->nchannels; if (c->residual_encode != (1 << c->nchannels) - 1) s->nreschsets++; } // Pre-scale downmixing coefficients for all non-primary channel sets for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) { if (is_hier_dmix_chset(c)) { DCAXllChSet *o = find_next_hier_dmix_chset(s, c); if (o) prescale_down_mix(c, o); } } // Determine number of active channel sets to decode switch (dca->request_channel_layout) { case DCA_SPEAKER_LAYOUT_STEREO: s->nactivechsets = 1; break; case DCA_SPEAKER_LAYOUT_5POINT0: case DCA_SPEAKER_LAYOUT_5POINT1: s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1; break; default: s->nactivechsets = s->nchsets; break; } return 0; } static int parse_navi_table(DCAXllDecoder *s) { int chs, seg, band, navi_nb, navi_pos, *navi_ptr; DCAXllChSet *c; // Determine size of NAVI table navi_nb = s->nfreqbands * s->nframesegs * s->nchsets; if (navi_nb > 1024) { av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb); return AVERROR_INVALIDDATA; } // Reallocate NAVI table av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi)); if (!s->navi) return AVERROR(ENOMEM); // Parse NAVI navi_pos = get_bits_count(&s->gb); navi_ptr = s->navi; for (band = 0; band < s->nfreqbands; band++) { for (seg = 0; seg < s->nframesegs; seg++) { for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) { int size = 0; if (c->nfreqbands > band) { size = get_bits_long(&s->gb, s->seg_size_nbits); if (size < 0 || size >= s->frame_size) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size); return AVERROR_INVALIDDATA; } size++; } *navi_ptr++ = size; } } } // Byte align // CRC16 skip_bits(&s->gb, -get_bits_count(&s->gb) & 7); skip_bits(&s->gb, 16); // Check CRC if (ff_dca_check_crc(s->avctx, &s->gb, navi_pos, get_bits_count(&s->gb))) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n"); return AVERROR_INVALIDDATA; } return 0; } static int parse_band_data(DCAXllDecoder *s) { int ret, chs, seg, band, navi_pos, *navi_ptr; DCAXllChSet *c; for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) { if ((ret = chs_alloc_msb_band_data(s, c)) < 0) return ret; if ((ret = chs_alloc_lsb_band_data(s, c)) < 0) return ret; } navi_pos = get_bits_count(&s->gb); navi_ptr = s->navi; for (band = 0; band < s->nfreqbands; band++) { for (seg = 0; seg < s->nframesegs; seg++) { for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) { if (c->nfreqbands > band) { navi_pos += *navi_ptr * 8; if (navi_pos > s->gb.size_in_bits) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n"); return AVERROR_INVALIDDATA; } if (chs < s->nactivechsets && (ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) { if (s->avctx->err_recognition & AV_EF_EXPLODE) return ret; chs_clear_band_data(s, c, band, seg); } skip_bits_long(&s->gb, navi_pos - get_bits_count(&s->gb)); } navi_ptr++; } } } return 0; } static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) { int ret; if ((ret = init_get_bits8(&s->gb, data, size)) < 0) return ret; if ((ret = parse_common_header(s)) < 0) return ret; if ((ret = parse_sub_headers(s, asset)) < 0) return ret; if ((ret = parse_navi_table(s)) < 0) return ret; if ((ret = parse_band_data(s)) < 0) return ret; if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n"); return AVERROR_INVALIDDATA; } return ret; } static void clear_pbr(DCAXllDecoder *s) { s->pbr_length = 0; s->pbr_delay = 0; } static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay) { if (size > DCA_XLL_PBR_BUFFER_MAX) return AVERROR(ENOSPC); if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + AV_INPUT_BUFFER_PADDING_SIZE))) return AVERROR(ENOMEM); memcpy(s->pbr_buffer, data, size); s->pbr_length = size; s->pbr_delay = delay; return 0; } static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) { int ret = parse_frame(s, data, size, asset); // If XLL packet data didn't start with a sync word, we must have jumped // right into the middle of PBR smoothing period if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) { // Skip to the next sync word in this packet data += asset->xll_sync_offset; size -= asset->xll_sync_offset; // If decoding delay is set, put the frame into PBR buffer and return // failure code. Higher level decoder is expected to switch to lossy // core decoding or mute its output until decoding delay expires. if (asset->xll_delay_nframes > 0) { if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0) return ret; return AVERROR(EAGAIN); } // No decoding delay, just parse the frame in place ret = parse_frame(s, data, size, asset); } if (ret < 0) return ret; if (s->frame_size > size) return AVERROR(EINVAL); // If the XLL decoder didn't consume full packet, start PBR smoothing period if (s->frame_size < size) if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0) return ret; return 0; } static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) { int ret; if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) { ret = AVERROR(ENOSPC); goto fail; } memcpy(s->pbr_buffer + s->pbr_length, data, size); s->pbr_length += size; // Respect decoding delay after synchronization error if (s->pbr_delay > 0 && --s->pbr_delay) return AVERROR(EAGAIN); if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0) goto fail; if (s->frame_size > s->pbr_length) { ret = AVERROR(EINVAL); goto fail; } if (s->frame_size == s->pbr_length) { // End of PBR smoothing period clear_pbr(s); } else { s->pbr_length -= s->frame_size; memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length); } return 0; fail: // For now, throw out all PBR state on failure. // Perhaps we can be smarter and try to resync somehow. clear_pbr(s); return ret; } int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset) { int ret; if (s->hd_stream_id != asset->hd_stream_id) { clear_pbr(s); s->hd_stream_id = asset->hd_stream_id; } if (s->pbr_length) ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset); else ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset); return ret; } static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band) { int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff; DCAXllChSet *c; for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { if (!c->hier_chset) continue; av_assert1(band < c->nfreqbands); for (j = 0; j < c->nchannels; j++) { for (k = 0; k < o->nchannels; k++) { int coeff = *coeff_ptr++; if (coeff) { s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j], o->bands[band].msb_sample_buffer[k], coeff, s->nframesamples); if (band) s->dcadsp->dmix_sub(c->deci_history[j], o->deci_history[k], coeff, DCA_XLL_DECI_HISTORY_MAX); } } } nchannels += c->nchannels; if (nchannels >= o->hier_ofs) break; } } static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band) { int i, j, nchannels = 0; DCAXllChSet *c; for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { if (!c->hier_chset) continue; av_assert1(band < c->nfreqbands); for (j = 0; j < c->nchannels; j++) { int scale = o->dmix_scale[nchannels++]; if (scale != (1 << 15)) { s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j], scale, s->nframesamples); if (band) s->dcadsp->dmix_scale(c->deci_history[j], scale, DCA_XLL_DECI_HISTORY_MAX); } } if (nchannels >= o->hier_ofs) break; } } // Clear all band data and replace non-residual encoded channels with lossy // counterparts static av_cold void force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c) { DCAContext *dca = s->avctx->priv_data; int band, ch; for (band = 0; band < c->nfreqbands; band++) chs_clear_band_data(s, c, band, -1); for (ch = 0; ch < c->nchannels; ch++) { if (!(c->residual_encode & (1 << ch))) continue; if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0) continue; c->residual_encode &= ~(1 << ch); } } static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c) { DCAContext *dca = s->avctx->priv_data; int ch, nsamples = s->nframesamples; DCAXllChSet *o; // Verify that core is compatible if (!(dca->packet & DCA_PACKET_CORE)) { av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n"); return AVERROR(EINVAL); } if (c->freq != dca->core.output_rate) { av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq); return AVERROR_INVALIDDATA; } if (nsamples != dca->core.npcmsamples) { av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples); return AVERROR_INVALIDDATA; } // See if this channel set is downmixed and find the next channel set in // hierarchy. If downmixed, undo core pre-scaling before combining with // residual (residual is not scaled). o = find_next_hier_dmix_chset(s, c); // Reduce core bit width and combine with residual for (ch = 0; ch < c->nchannels; ch++) { int n, spkr, shift, round; int32_t *src, *dst; if (c->residual_encode & (1 << ch)) continue; // Map this channel to core speaker spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]); if (spkr < 0) { av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]); return AVERROR_INVALIDDATA; } // Account for LSB width shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch); if (shift > 24) { av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift); return AVERROR_INVALIDDATA; } round = shift > 0 ? 1 << (shift - 1) : 0; src = dca->core.output_samples[spkr]; dst = c->bands[0].msb_sample_buffer[ch]; if (o) { // Undo embedded core downmix pre-scaling int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch]; for (n = 0; n < nsamples; n++) dst[n] += (SUINT)clip23((mul16(src[n], scale_inv) + round) >> shift); } else { // No downmix scaling for (n = 0; n < nsamples; n++) dst[n] += (unsigned)((src[n] + round) >> shift); } } return 0; } int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame) { AVCodecContext *avctx = s->avctx; DCAContext *dca = avctx->priv_data; DCAExssAsset *asset = &dca->exss.assets[0]; DCAXllChSet *p = &s->chset[0], *c; enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE; int i, j, k, ret, shift, nsamples, request_mask; int ch_remap[DCA_SPEAKER_COUNT]; // Force lossy downmixed output during recovery if (dca->packet & DCA_PACKET_RECOVERY) { for (i = 0, c = s->chset; i < s->nchsets; i++, c++) { if (i < s->nactivechsets) force_lossy_output(s, c); if (!c->primary_chset) c->dmix_embedded = 0; } s->scalable_lsbs = 0; s->fixed_lsb_width = 0; } // Filter frequency bands for active channel sets s->output_mask = 0; for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { chs_filter_band_data(s, c, 0); if (c->residual_encode != (1 << c->nchannels) - 1 && (ret = combine_residual_frame(s, c)) < 0) return ret; if (s->scalable_lsbs) chs_assemble_msbs_lsbs(s, c, 0); if (c->nfreqbands > 1) { chs_filter_band_data(s, c, 1); chs_assemble_msbs_lsbs(s, c, 1); } s->output_mask |= c->ch_mask; } // Undo hierarchial downmix and/or apply scaling for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) { if (!is_hier_dmix_chset(c)) continue; if (i >= s->nactivechsets) { for (j = 0; j < c->nfreqbands; j++) if (c->bands[j].dmix_embedded) scale_down_mix(s, c, j); break; } for (j = 0; j < c->nfreqbands; j++) if (c->bands[j].dmix_embedded) undo_down_mix(s, c, j); } // Assemble frequency bands for active channel sets if (s->nfreqbands > 1) { for (i = 0; i < s->nactivechsets; i++) if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0) return ret; } // Normalize to regular 5.1 layout if downmixing if (dca->request_channel_layout) { if (s->output_mask & DCA_SPEAKER_MASK_Lss) { s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss]; s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls; } if (s->output_mask & DCA_SPEAKER_MASK_Rss) { s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss]; s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs; } } // Handle downmixing to stereo request if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO && DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded && (p->dmix_type == DCA_DMIX_TYPE_LoRo || p->dmix_type == DCA_DMIX_TYPE_LtRt)) request_mask = DCA_SPEAKER_LAYOUT_STEREO; else request_mask = s->output_mask; if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask)) return AVERROR(EINVAL); avctx->sample_rate = p->freq << (s->nfreqbands - 1); switch (p->storage_bit_res) { case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; shift = 16 - p->pcm_bit_res; break; case 20: case 24: avctx->sample_fmt = AV_SAMPLE_FMT_S32P; shift = 24 - p->pcm_bit_res; break; default: return AVERROR(EINVAL); } avctx->bits_per_raw_sample = p->storage_bit_res; avctx->profile = FF_PROFILE_DTS_HD_MA; avctx->bit_rate = 0; frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1); if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; // Downmix primary channel set to stereo if (request_mask != s->output_mask) { ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples, p->dmix_coeff, nsamples, s->output_mask); } for (i = 0; i < avctx->channels; i++) { int32_t *samples = s->output_samples[ch_remap[i]]; if (frame->format == AV_SAMPLE_FMT_S16P) { int16_t *plane = (int16_t *)frame->extended_data[i]; for (k = 0; k < nsamples; k++) plane[k] = av_clip_int16(samples[k] * (SUINT)(1 << shift)); } else { int32_t *plane = (int32_t *)frame->extended_data[i]; for (k = 0; k < nsamples; k++) plane[k] = clip23(samples[k] * (SUINT)(1 << shift)) * (1 << 8); } } if (!asset->one_to_one_map_ch_to_spkr) { if (asset->representation_type == DCA_REPR_TYPE_LtRt) matrix_encoding = AV_MATRIX_ENCODING_DOLBY; else if (asset->representation_type == DCA_REPR_TYPE_LhRh) matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE; } else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) { matrix_encoding = AV_MATRIX_ENCODING_DOLBY; } if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0) return ret; return 0; } av_cold void ff_dca_xll_flush(DCAXllDecoder *s) { clear_pbr(s); } av_cold void ff_dca_xll_close(DCAXllDecoder *s) { DCAXllChSet *c; int i, j; for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) { for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) { av_freep(&c->sample_buffer[j]); c->sample_size[j] = 0; } } av_freep(&s->navi); s->navi_size = 0; av_freep(&s->pbr_buffer); clear_pbr(s); }