/* * AAC encoder utilities * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder utilities * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #ifndef AVCODEC_AACENC_UTILS_H #define AVCODEC_AACENC_UTILS_H #include "libavutil/ffmath.h" #include "aac.h" #include "aacenctab.h" #include "aactab.h" #define ROUND_STANDARD 0.4054f #define ROUND_TO_ZERO 0.1054f #define C_QUANT 0.4054f static inline void abs_pow34_v(float *out, const float *in, const int size) { int i; for (i = 0; i < size; i++) { float a = fabsf(in[i]); out[i] = sqrtf(a * sqrtf(a)); } } static inline float pos_pow34(float a) { return sqrtf(a * sqrtf(a)); } /** * Quantize one coefficient. * @return absolute value of the quantized coefficient * @see 3GPP TS26.403 5.6.2 "Scalefactor determination" */ static inline int quant(float coef, const float Q, const float rounding) { float a = coef * Q; return sqrtf(a * sqrtf(a)) + rounding; } static inline void quantize_bands(int *out, const float *in, const float *scaled, int size, int is_signed, int maxval, const float Q34, const float rounding) { int i; for (i = 0; i < size; i++) { float qc = scaled[i] * Q34; int tmp = (int)FFMIN(qc + rounding, (float)maxval); if (is_signed && in[i] < 0.0f) { tmp = -tmp; } out[i] = tmp; } } static inline float find_max_val(int group_len, int swb_size, const float *scaled) { float maxval = 0.0f; int w2, i; for (w2 = 0; w2 < group_len; w2++) { for (i = 0; i < swb_size; i++) { maxval = FFMAX(maxval, scaled[w2*128+i]); } } return maxval; } static inline int find_min_book(float maxval, int sf) { float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; int qmaxval, cb; qmaxval = maxval * Q34 + C_QUANT; if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb))) cb = 11; else cb = aac_maxval_cb[qmaxval]; return cb; } static inline float find_form_factor(int group_len, int swb_size, float thresh, const float *scaled, float nzslope) { const float iswb_size = 1.0f / swb_size; const float iswb_sizem1 = 1.0f / (swb_size - 1); const float ethresh = thresh; float form = 0.0f, weight = 0.0f; int w2, i; for (w2 = 0; w2 < group_len; w2++) { float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f; float nzl = 0; for (i = 0; i < swb_size; i++) { float s = fabsf(scaled[w2*128+i]); maxval = FFMAX(maxval, s); e += s; e2 += s *= s; /* We really don't want a hard non-zero-line count, since * even below-threshold lines do add up towards band spectral power. * So, fall steeply towards zero, but smoothly */ if (s >= ethresh) { nzl += 1.0f; } else { if (nzslope == 2.f) nzl += (s / ethresh) * (s / ethresh); else nzl += ff_fast_powf(s / ethresh, nzslope); } } if (e2 > thresh) { float frm; e *= iswb_size; /** compute variance */ for (i = 0; i < swb_size; i++) { float d = fabsf(scaled[w2*128+i]) - e; var += d*d; } var = sqrtf(var * iswb_sizem1); e2 *= iswb_size; frm = e / FFMIN(e+4*var,maxval); form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl); weight += e2; } } if (weight > 0) { return form / weight; } else { return 1.0f; } } /** Return the minimum scalefactor where the quantized coef does not clip. */ static inline uint8_t coef2minsf(float coef) { return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); } /** Return the maximum scalefactor where the quantized coef is not zero. */ static inline uint8_t coef2maxsf(float coef) { return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); } /* * Returns the closest possible index to an array of float values, given a value. */ static inline int quant_array_idx(const float val, const float *arr, const int num) { int i, index = 0; float quant_min_err = INFINITY; for (i = 0; i < num; i++) { float error = (val - arr[i])*(val - arr[i]); if (error < quant_min_err) { quant_min_err = error; index = i; } } return index; } /** * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f))) */ static av_always_inline float bval2bmax(float b) { return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f); } /* * Compute a nextband map to be used with SF delta constraint utilities. * The nextband array should contain 128 elements, and positions that don't * map to valid, nonzero bands of the form w*16+g (with w being the initial * window of the window group, only) are left indetermined. */ static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband) { unsigned char prevband = 0; int w, g; /** Just a safe default */ for (g = 0; g < 128; g++) nextband[g] = g; /** Now really navigate the nonzero band chain */ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT) prevband = nextband[prevband] = w*16+g; } } nextband[prevband] = prevband; /* terminate */ } /* * Updates nextband to reflect a removed band (equivalent to * calling ff_init_nextband_map after marking a band as zero) */ static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band) { nextband[prevband] = nextband[band]; } /* * Checks whether the specified band could be removed without inducing * scalefactor delta that violates SF delta encoding constraints. * prev_sf has to be the scalefactor of the previous nonzero, nonspecial * band, in encoding order, or negative if there was no such band. */ static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band) { return prev_sf >= 0 && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF) && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF); } /* * Checks whether the specified band's scalefactor could be replaced * with another one without violating SF delta encoding constraints. * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial * band, in encoding order, or negative if there was no such band. */ static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int new_sf, int band) { return new_sf >= (prev_sf - SCALE_MAX_DIFF) && new_sf <= (prev_sf + SCALE_MAX_DIFF) && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF) && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF); } /** * linear congruential pseudorandom number generator * * @param previous_val pointer to the current state of the generator * * @return Returns a 32-bit pseudorandom integer */ static av_always_inline int lcg_random(unsigned previous_val) { union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; return v.s; } #define ERROR_IF(cond, ...) \ if (cond) { \ av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \ return AVERROR(EINVAL); \ } #define WARN_IF(cond, ...) \ if (cond) { \ av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \ } #endif /* AVCODEC_AACENC_UTILS_H */