/* * AAC encoder TNS * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder temporal noise shaping * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #include "aacenc.h" #include "aacenc_tns.h" #include "aactab.h" #include "aacenc_utils.h" #include "aacenc_quantization.h" /* * Shifts the values as well if compression is possible. */ static inline int compress_coeffs(int *coef, int order, int c_bits) { int i, res = 0; const int low_idx = c_bits ? 4 : 2; const int shift_val = c_bits ? 8 : 4; const int high_idx = c_bits ? 11 : 5; for (i = 0; i < order; i++) if (coef[i] < low_idx || coef[i] > high_idx) res++; if (res == order) for (i = 0; i < order; i++) coef[i] -= (coef[i] > high_idx) ? shift_val : 0; return res == order; } /** * Encode TNS data. * Coefficient compression saves a single bit per coefficient. */ void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce) { int i, w, filt, coef_len, coef_compress = 0; const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; TemporalNoiseShaping *tns = &sce->tns; const int c_bits = is8 ? TNS_Q_BITS_SHORT == 4 : TNS_Q_BITS == 4; if (!sce->tns.present) return; for (i = 0; i < sce->ics.num_windows; i++) { put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]); if (tns->n_filt[i]) { put_bits(&s->pb, 1, c_bits); for (filt = 0; filt < tns->n_filt[i]; filt++) { put_bits(&s->pb, 6 - 2 * is8, tns->length[i][filt]); put_bits(&s->pb, 5 - 2 * is8, tns->order[i][filt]); if (tns->order[i][filt]) { coef_compress = compress_coeffs(tns->coef_idx[i][filt], tns->order[i][filt], c_bits); put_bits(&s->pb, 1, !!tns->direction[i][filt]); put_bits(&s->pb, 1, !!coef_compress); coef_len = c_bits + 3 - coef_compress; for (w = 0; w < tns->order[i][filt]; w++) put_bits(&s->pb, coef_len, tns->coef_idx[i][filt][w]); } } } } } /* Apply TNS filter */ void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce) { TemporalNoiseShaping *tns = &sce->tns; IndividualChannelStream *ics = &sce->ics; int w, filt, m, i, top, order, bottom, start, end, size, inc; const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); float lpc[TNS_MAX_ORDER]; for (w = 0; w < ics->num_windows; w++) { bottom = ics->num_swb; for (filt = 0; filt < tns->n_filt[w]; filt++) { top = bottom; bottom = FFMAX(0, top - tns->length[w][filt]); order = tns->order[w][filt]; if (order == 0) continue; // tns_decode_coef compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); start = ics->swb_offset[FFMIN(bottom, mmm)]; end = ics->swb_offset[FFMIN( top, mmm)]; if ((size = end - start) <= 0) continue; if (tns->direction[w][filt]) { inc = -1; start = end - 1; } else { inc = 1; } start += w * 128; // ar filter for (m = 0; m < size; m++, start += inc) for (i = 1; i <= FFMIN(m, order); i++) sce->coeffs[start] += lpc[i-1]*sce->pcoeffs[start - i*inc]; } } } /* * c_bits - 1 if 4 bit coefficients, 0 if 3 bit coefficients */ static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order, int c_bits) { int i; const float *quant_arr = tns_tmp2_map[c_bits]; for (i = 0; i < order; i++) { idx[i] = quant_array_idx((float)coef[i], quant_arr, c_bits ? 16 : 8); lpc[i] = quant_arr[idx[i]]; } } /* * 3 bits per coefficient with 8 short windows */ void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce) { TemporalNoiseShaping *tns = &sce->tns; int w, w2, g, count = 0; const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb); const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; const int c_bits = is8 ? TNS_Q_BITS_SHORT == 4 : TNS_Q_BITS == 4; int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm); int sfb_end = av_clip(sce->ics.num_swb, 0, mmm); for (w = 0; w < sce->ics.num_windows; w++) { int use_tns; int order = is8 ? 5 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER; int coef_start = w*sce->ics.num_swb + sce->ics.swb_offset[sfb_start]; int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start]; float e_ratio = 0.0f, threshold = 0.0f, spread = 0.0f, en[2] = {0.0, 0.0f}; double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0}; for (g = 0; g < sce->ics.num_swb; g++) { if (w*16+g < sfb_start || w*16+g > sfb_end) continue; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if ((w+w2)*16+g > sfb_start + ((sfb_end - sfb_start)/2)) en[1] += band->energy; else en[0] += band->energy; threshold += band->threshold; spread += band->spread; } } if (coef_len <= 0 || (sfb_end - sfb_start) <= 0) continue; /* LPC */ gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[coef_start], coef_len, order, coefs); if (!order || gain < TNS_GAIN_THRESHOLD_LOW || gain > TNS_GAIN_THRESHOLD_HIGH) use_tns = 0; else if ((en[0]+en[1]) < TNS_GAIN_THRESHOLD_LOW*threshold || spread < TNS_SPREAD_THRESHOLD) use_tns = 0; else use_tns = 1; if (use_tns) { e_ratio = en[0]/en[1]; if (is8 || order < 2 || (e_ratio > TNS_E_RATIO_LOW && e_ratio < TNS_E_RATIO_HIGH)) { tns->n_filt[w] = 1; for (g = 0; g < tns->n_filt[w]; g++) { tns->length[w][g] = sfb_end - sfb_start; tns->direction[w][g] = en[0] < en[1]; tns->order[w][g] = order; quantize_coefs(coefs, tns->coef_idx[w][g], tns->coef[w][g], order, c_bits); } } else { /* 2 filters due to energy disbalance */ tns->n_filt[w] = 2; for (g = 0; g < tns->n_filt[w]; g++) { tns->direction[w][g] = en[g] < en[!g]; tns->order[w][g] = !g ? order/2 : order - tns->order[w][g-1]; tns->length[w][g] = !g ? (sfb_end - sfb_start)/2 : \ (sfb_end - sfb_start) - tns->length[w][g-1]; quantize_coefs(&coefs[!g ? 0 : order - tns->order[w][g-1]], tns->coef_idx[w][g], tns->coef[w][g], tns->order[w][g], c_bits); } } count++; } } sce->tns.present = !!count; }