summaryrefslogtreecommitdiffstats
path: root/libavcodec/proresenc_kostya.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/proresenc_kostya.c')
-rw-r--r--libavcodec/proresenc_kostya.c1291
1 files changed, 1291 insertions, 0 deletions
diff --git a/libavcodec/proresenc_kostya.c b/libavcodec/proresenc_kostya.c
new file mode 100644
index 0000000..93bcde7
--- /dev/null
+++ b/libavcodec/proresenc_kostya.c
@@ -0,0 +1,1291 @@
+/*
+ * Apple ProRes encoder
+ *
+ * Copyright (c) 2012 Konstantin Shishkov
+ *
+ * This encoder appears to be based on Anatoliy Wassermans considering
+ * similarities in the bugs.
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "avcodec.h"
+#include "fdctdsp.h"
+#include "put_bits.h"
+#include "bytestream.h"
+#include "internal.h"
+#include "proresdata.h"
+
+#define CFACTOR_Y422 2
+#define CFACTOR_Y444 3
+
+#define MAX_MBS_PER_SLICE 8
+
+#define MAX_PLANES 4
+
+enum {
+ PRORES_PROFILE_PROXY = 0,
+ PRORES_PROFILE_LT,
+ PRORES_PROFILE_STANDARD,
+ PRORES_PROFILE_HQ,
+ PRORES_PROFILE_4444,
+};
+
+enum {
+ QUANT_MAT_PROXY = 0,
+ QUANT_MAT_LT,
+ QUANT_MAT_STANDARD,
+ QUANT_MAT_HQ,
+ QUANT_MAT_DEFAULT,
+};
+
+static const uint8_t prores_quant_matrices[][64] = {
+ { // proxy
+ 4, 7, 9, 11, 13, 14, 15, 63,
+ 7, 7, 11, 12, 14, 15, 63, 63,
+ 9, 11, 13, 14, 15, 63, 63, 63,
+ 11, 11, 13, 14, 63, 63, 63, 63,
+ 11, 13, 14, 63, 63, 63, 63, 63,
+ 13, 14, 63, 63, 63, 63, 63, 63,
+ 13, 63, 63, 63, 63, 63, 63, 63,
+ 63, 63, 63, 63, 63, 63, 63, 63,
+ },
+ { // LT
+ 4, 5, 6, 7, 9, 11, 13, 15,
+ 5, 5, 7, 8, 11, 13, 15, 17,
+ 6, 7, 9, 11, 13, 15, 15, 17,
+ 7, 7, 9, 11, 13, 15, 17, 19,
+ 7, 9, 11, 13, 14, 16, 19, 23,
+ 9, 11, 13, 14, 16, 19, 23, 29,
+ 9, 11, 13, 15, 17, 21, 28, 35,
+ 11, 13, 16, 17, 21, 28, 35, 41,
+ },
+ { // standard
+ 4, 4, 5, 5, 6, 7, 7, 9,
+ 4, 4, 5, 6, 7, 7, 9, 9,
+ 5, 5, 6, 7, 7, 9, 9, 10,
+ 5, 5, 6, 7, 7, 9, 9, 10,
+ 5, 6, 7, 7, 8, 9, 10, 12,
+ 6, 7, 7, 8, 9, 10, 12, 15,
+ 6, 7, 7, 9, 10, 11, 14, 17,
+ 7, 7, 9, 10, 11, 14, 17, 21,
+ },
+ { // high quality
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 5,
+ 4, 4, 4, 4, 4, 4, 5, 5,
+ 4, 4, 4, 4, 4, 5, 5, 6,
+ 4, 4, 4, 4, 5, 5, 6, 7,
+ 4, 4, 4, 4, 5, 6, 7, 7,
+ },
+ { // codec default
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ },
+};
+
+#define NUM_MB_LIMITS 4
+static const int prores_mb_limits[NUM_MB_LIMITS] = {
+ 1620, // up to 720x576
+ 2700, // up to 960x720
+ 6075, // up to 1440x1080
+ 9216, // up to 2048x1152
+};
+
+static const struct prores_profile {
+ const char *full_name;
+ uint32_t tag;
+ int min_quant;
+ int max_quant;
+ int br_tab[NUM_MB_LIMITS];
+ int quant;
+} prores_profile_info[5] = {
+ {
+ .full_name = "proxy",
+ .tag = MKTAG('a', 'p', 'c', 'o'),
+ .min_quant = 4,
+ .max_quant = 8,
+ .br_tab = { 300, 242, 220, 194 },
+ .quant = QUANT_MAT_PROXY,
+ },
+ {
+ .full_name = "LT",
+ .tag = MKTAG('a', 'p', 'c', 's'),
+ .min_quant = 1,
+ .max_quant = 9,
+ .br_tab = { 720, 560, 490, 440 },
+ .quant = QUANT_MAT_LT,
+ },
+ {
+ .full_name = "standard",
+ .tag = MKTAG('a', 'p', 'c', 'n'),
+ .min_quant = 1,
+ .max_quant = 6,
+ .br_tab = { 1050, 808, 710, 632 },
+ .quant = QUANT_MAT_STANDARD,
+ },
+ {
+ .full_name = "high quality",
+ .tag = MKTAG('a', 'p', 'c', 'h'),
+ .min_quant = 1,
+ .max_quant = 6,
+ .br_tab = { 1566, 1216, 1070, 950 },
+ .quant = QUANT_MAT_HQ,
+ },
+ {
+ .full_name = "4444",
+ .tag = MKTAG('a', 'p', '4', 'h'),
+ .min_quant = 1,
+ .max_quant = 6,
+ .br_tab = { 2350, 1828, 1600, 1425 },
+ .quant = QUANT_MAT_HQ,
+ }
+};
+
+#define TRELLIS_WIDTH 16
+#define SCORE_LIMIT INT_MAX / 2
+
+struct TrellisNode {
+ int prev_node;
+ int quant;
+ int bits;
+ int score;
+};
+
+#define MAX_STORED_Q 16
+
+typedef struct ProresThreadData {
+ DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
+ DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16];
+ int16_t custom_q[64];
+ struct TrellisNode *nodes;
+} ProresThreadData;
+
+typedef struct ProresContext {
+ AVClass *class;
+ DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
+ DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16];
+ int16_t quants[MAX_STORED_Q][64];
+ int16_t custom_q[64];
+ const uint8_t *quant_mat;
+ const uint8_t *scantable;
+
+ void (*fdct)(FDCTDSPContext *fdsp, const uint16_t *src,
+ int linesize, int16_t *block);
+ FDCTDSPContext fdsp;
+
+ int mb_width, mb_height;
+ int mbs_per_slice;
+ int num_chroma_blocks, chroma_factor;
+ int slices_width;
+ int slices_per_picture;
+ int pictures_per_frame; // 1 for progressive, 2 for interlaced
+ int cur_picture_idx;
+ int num_planes;
+ int bits_per_mb;
+ int force_quant;
+ int alpha_bits;
+
+ char *vendor;
+ int quant_sel;
+
+ int frame_size_upper_bound;
+
+ int profile;
+ const struct prores_profile *profile_info;
+
+ int *slice_q;
+
+ ProresThreadData *tdata;
+} ProresContext;
+
+static void get_slice_data(ProresContext *ctx, const uint16_t *src,
+ int linesize, int x, int y, int w, int h,
+ int16_t *blocks, uint16_t *emu_buf,
+ int mbs_per_slice, int blocks_per_mb, int is_chroma)
+{
+ const uint16_t *esrc;
+ const int mb_width = 4 * blocks_per_mb;
+ int elinesize;
+ int i, j, k;
+
+ for (i = 0; i < mbs_per_slice; i++, src += mb_width) {
+ if (x >= w) {
+ memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb
+ * sizeof(*blocks));
+ return;
+ }
+ if (x + mb_width <= w && y + 16 <= h) {
+ esrc = src;
+ elinesize = linesize;
+ } else {
+ int bw, bh, pix;
+
+ esrc = emu_buf;
+ elinesize = 16 * sizeof(*emu_buf);
+
+ bw = FFMIN(w - x, mb_width);
+ bh = FFMIN(h - y, 16);
+
+ for (j = 0; j < bh; j++) {
+ memcpy(emu_buf + j * 16,
+ (const uint8_t*)src + j * linesize,
+ bw * sizeof(*src));
+ pix = emu_buf[j * 16 + bw - 1];
+ for (k = bw; k < mb_width; k++)
+ emu_buf[j * 16 + k] = pix;
+ }
+ for (; j < 16; j++)
+ memcpy(emu_buf + j * 16,
+ emu_buf + (bh - 1) * 16,
+ mb_width * sizeof(*emu_buf));
+ }
+ if (!is_chroma) {
+ ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks);
+ blocks += 64;
+ if (blocks_per_mb > 2) {
+ ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks);
+ blocks += 64;
+ }
+ ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
+ blocks += 64;
+ if (blocks_per_mb > 2) {
+ ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
+ blocks += 64;
+ }
+ } else {
+ ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks);
+ blocks += 64;
+ ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
+ blocks += 64;
+ if (blocks_per_mb > 2) {
+ ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks);
+ blocks += 64;
+ ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
+ blocks += 64;
+ }
+ }
+
+ x += mb_width;
+ }
+}
+
+static void get_alpha_data(ProresContext *ctx, const uint16_t *src,
+ int linesize, int x, int y, int w, int h,
+ int16_t *blocks, int mbs_per_slice, int abits)
+{
+ const int slice_width = 16 * mbs_per_slice;
+ int i, j, copy_w, copy_h;
+
+ copy_w = FFMIN(w - x, slice_width);
+ copy_h = FFMIN(h - y, 16);
+ for (i = 0; i < copy_h; i++) {
+ memcpy(blocks, src, copy_w * sizeof(*src));
+ if (abits == 8)
+ for (j = 0; j < copy_w; j++)
+ blocks[j] >>= 2;
+ else
+ for (j = 0; j < copy_w; j++)
+ blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4);
+ for (j = copy_w; j < slice_width; j++)
+ blocks[j] = blocks[copy_w - 1];
+ blocks += slice_width;
+ src += linesize >> 1;
+ }
+ for (; i < 16; i++) {
+ memcpy(blocks, blocks - slice_width, slice_width * sizeof(*blocks));
+ blocks += slice_width;
+ }
+}
+
+/**
+ * Write an unsigned rice/exp golomb codeword.
+ */
+static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val)
+{
+ unsigned int rice_order, exp_order, switch_bits, switch_val;
+ int exponent;
+
+ /* number of prefix bits to switch between Rice and expGolomb */
+ switch_bits = (codebook & 3) + 1;
+ rice_order = codebook >> 5; /* rice code order */
+ exp_order = (codebook >> 2) & 7; /* exp golomb code order */
+
+ switch_val = switch_bits << rice_order;
+
+ if (val >= switch_val) {
+ val -= switch_val - (1 << exp_order);
+ exponent = av_log2(val);
+
+ put_bits(pb, exponent - exp_order + switch_bits, 0);
+ put_bits(pb, exponent + 1, val);
+ } else {
+ exponent = val >> rice_order;
+
+ if (exponent)
+ put_bits(pb, exponent, 0);
+ put_bits(pb, 1, 1);
+ if (rice_order)
+ put_sbits(pb, rice_order, val);
+ }
+}
+
+#define GET_SIGN(x) ((x) >> 31)
+#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x))
+
+static void encode_dcs(PutBitContext *pb, int16_t *blocks,
+ int blocks_per_slice, int scale)
+{
+ int i;
+ int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
+
+ prev_dc = (blocks[0] - 0x4000) / scale;
+ encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc));
+ sign = 0;
+ codebook = 3;
+ blocks += 64;
+
+ for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
+ dc = (blocks[0] - 0x4000) / scale;
+ delta = dc - prev_dc;
+ new_sign = GET_SIGN(delta);
+ delta = (delta ^ sign) - sign;
+ code = MAKE_CODE(delta);
+ encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code);
+ codebook = (code + (code & 1)) >> 1;
+ codebook = FFMIN(codebook, 3);
+ sign = new_sign;
+ prev_dc = dc;
+ }
+}
+
+static void encode_acs(PutBitContext *pb, int16_t *blocks,
+ int blocks_per_slice,
+ int plane_size_factor,
+ const uint8_t *scan, const int16_t *qmat)
+{
+ int idx, i;
+ int run, level, run_cb, lev_cb;
+ int max_coeffs, abs_level;
+
+ max_coeffs = blocks_per_slice << 6;
+ run_cb = ff_prores_run_to_cb_index[4];
+ lev_cb = ff_prores_lev_to_cb_index[2];
+ run = 0;
+
+ for (i = 1; i < 64; i++) {
+ for (idx = scan[i]; idx < max_coeffs; idx += 64) {
+ level = blocks[idx] / qmat[scan[i]];
+ if (level) {
+ abs_level = FFABS(level);
+ encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run);
+ encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb],
+ abs_level - 1);
+ put_sbits(pb, 1, GET_SIGN(level));
+
+ run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
+ lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
+ run = 0;
+ } else {
+ run++;
+ }
+ }
+ }
+}
+
+static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb,
+ const uint16_t *src, int linesize,
+ int mbs_per_slice, int16_t *blocks,
+ int blocks_per_mb, int plane_size_factor,
+ const int16_t *qmat)
+{
+ int blocks_per_slice, saved_pos;
+
+ saved_pos = put_bits_count(pb);
+ blocks_per_slice = mbs_per_slice * blocks_per_mb;
+
+ encode_dcs(pb, blocks, blocks_per_slice, qmat[0]);
+ encode_acs(pb, blocks, blocks_per_slice, plane_size_factor,
+ ctx->scantable, qmat);
+ flush_put_bits(pb);
+
+ return (put_bits_count(pb) - saved_pos) >> 3;
+}
+
+static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits)
+{
+ const int mask = (1 << abits) - 1;
+ const int dbits = (abits == 8) ? 4 : 7;
+ const int dsize = 1 << dbits - 1;
+ int diff = cur - prev;
+
+ diff &= mask;
+ if (diff >= (1 << abits) - dsize)
+ diff -= 1 << abits;
+ if (diff < -dsize || diff > dsize || !diff) {
+ put_bits(pb, 1, 1);
+ put_bits(pb, abits, diff);
+ } else {
+ put_bits(pb, 1, 0);
+ put_bits(pb, dbits - 1, FFABS(diff) - 1);
+ put_bits(pb, 1, diff < 0);
+ }
+}
+
+static void put_alpha_run(PutBitContext *pb, int run)
+{
+ if (run) {
+ put_bits(pb, 1, 0);
+ if (run < 0x10)
+ put_bits(pb, 4, run);
+ else
+ put_bits(pb, 15, run);
+ } else {
+ put_bits(pb, 1, 1);
+ }
+}
+
+// todo alpha quantisation for high quants
+static int encode_alpha_plane(ProresContext *ctx, PutBitContext *pb,
+ const uint16_t *src, int linesize,
+ int mbs_per_slice, uint16_t *blocks,
+ int quant)
+{
+ const int abits = ctx->alpha_bits;
+ const int mask = (1 << abits) - 1;
+ const int num_coeffs = mbs_per_slice * 256;
+ int saved_pos = put_bits_count(pb);
+ int prev = mask, cur;
+ int idx = 0;
+ int run = 0;
+
+ cur = blocks[idx++];
+ put_alpha_diff(pb, cur, prev, abits);
+ prev = cur;
+ do {
+ cur = blocks[idx++];
+ if (cur != prev) {
+ put_alpha_run (pb, run);
+ put_alpha_diff(pb, cur, prev, abits);
+ prev = cur;
+ run = 0;
+ } else {
+ run++;
+ }
+ } while (idx < num_coeffs);
+ if (run)
+ put_alpha_run(pb, run);
+ flush_put_bits(pb);
+ return (put_bits_count(pb) - saved_pos) >> 3;
+}
+
+static int encode_slice(AVCodecContext *avctx, const AVFrame *pic,
+ PutBitContext *pb,
+ int sizes[4], int x, int y, int quant,
+ int mbs_per_slice)
+{
+ ProresContext *ctx = avctx->priv_data;
+ int i, xp, yp;
+ int total_size = 0;
+ const uint16_t *src;
+ int slice_width_factor = av_log2(mbs_per_slice);
+ int num_cblocks, pwidth, linesize, line_add;
+ int plane_factor, is_chroma;
+ uint16_t *qmat;
+
+ if (ctx->pictures_per_frame == 1)
+ line_add = 0;
+ else
+ line_add = ctx->cur_picture_idx ^ !pic->top_field_first;
+
+ if (ctx->force_quant) {
+ qmat = ctx->quants[0];
+ } else if (quant < MAX_STORED_Q) {
+ qmat = ctx->quants[quant];
+ } else {
+ qmat = ctx->custom_q;
+ for (i = 0; i < 64; i++)
+ qmat[i] = ctx->quant_mat[i] * quant;
+ }
+
+ for (i = 0; i < ctx->num_planes; i++) {
+ is_chroma = (i == 1 || i == 2);
+ plane_factor = slice_width_factor + 2;
+ if (is_chroma)
+ plane_factor += ctx->chroma_factor - 3;
+ if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) {
+ xp = x << 4;
+ yp = y << 4;
+ num_cblocks = 4;
+ pwidth = avctx->width;
+ } else {
+ xp = x << 3;
+ yp = y << 4;
+ num_cblocks = 2;
+ pwidth = avctx->width >> 1;
+ }
+
+ linesize = pic->linesize[i] * ctx->pictures_per_frame;
+ src = (const uint16_t*)(pic->data[i] + yp * linesize +
+ line_add * pic->linesize[i]) + xp;
+
+ if (i < 3) {
+ get_slice_data(ctx, src, linesize, xp, yp,
+ pwidth, avctx->height / ctx->pictures_per_frame,
+ ctx->blocks[0], ctx->emu_buf,
+ mbs_per_slice, num_cblocks, is_chroma);
+ sizes[i] = encode_slice_plane(ctx, pb, src, linesize,
+ mbs_per_slice, ctx->blocks[0],
+ num_cblocks, plane_factor,
+ qmat);
+ } else {
+ get_alpha_data(ctx, src, linesize, xp, yp,
+ pwidth, avctx->height / ctx->pictures_per_frame,
+ ctx->blocks[0], mbs_per_slice, ctx->alpha_bits);
+ sizes[i] = encode_alpha_plane(ctx, pb, src, linesize,
+ mbs_per_slice, ctx->blocks[0],
+ quant);
+ }
+ total_size += sizes[i];
+ }
+ return total_size;
+}
+
+static inline int estimate_vlc(unsigned codebook, int val)
+{
+ unsigned int rice_order, exp_order, switch_bits, switch_val;
+ int exponent;
+
+ /* number of prefix bits to switch between Rice and expGolomb */
+ switch_bits = (codebook & 3) + 1;
+ rice_order = codebook >> 5; /* rice code order */
+ exp_order = (codebook >> 2) & 7; /* exp golomb code order */
+
+ switch_val = switch_bits << rice_order;
+
+ if (val >= switch_val) {
+ val -= switch_val - (1 << exp_order);
+ exponent = av_log2(val);
+
+ return exponent * 2 - exp_order + switch_bits + 1;
+ } else {
+ return (val >> rice_order) + rice_order + 1;
+ }
+}
+
+static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice,
+ int scale)
+{
+ int i;
+ int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
+ int bits;
+
+ prev_dc = (blocks[0] - 0x4000) / scale;
+ bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc));
+ sign = 0;
+ codebook = 3;
+ blocks += 64;
+ *error += FFABS(blocks[0] - 0x4000) % scale;
+
+ for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
+ dc = (blocks[0] - 0x4000) / scale;
+ *error += FFABS(blocks[0] - 0x4000) % scale;
+ delta = dc - prev_dc;
+ new_sign = GET_SIGN(delta);
+ delta = (delta ^ sign) - sign;
+ code = MAKE_CODE(delta);
+ bits += estimate_vlc(ff_prores_dc_codebook[codebook], code);
+ codebook = (code + (code & 1)) >> 1;
+ codebook = FFMIN(codebook, 3);
+ sign = new_sign;
+ prev_dc = dc;
+ }
+
+ return bits;
+}
+
+static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice,
+ int plane_size_factor,
+ const uint8_t *scan, const int16_t *qmat)
+{
+ int idx, i;
+ int run, level, run_cb, lev_cb;
+ int max_coeffs, abs_level;
+ int bits = 0;
+
+ max_coeffs = blocks_per_slice << 6;
+ run_cb = ff_prores_run_to_cb_index[4];
+ lev_cb = ff_prores_lev_to_cb_index[2];
+ run = 0;
+
+ for (i = 1; i < 64; i++) {
+ for (idx = scan[i]; idx < max_coeffs; idx += 64) {
+ level = blocks[idx] / qmat[scan[i]];
+ *error += FFABS(blocks[idx]) % qmat[scan[i]];
+ if (level) {
+ abs_level = FFABS(level);
+ bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run);
+ bits += estimate_vlc(ff_prores_ac_codebook[lev_cb],
+ abs_level - 1) + 1;
+
+ run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
+ lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
+ run = 0;
+ } else {
+ run++;
+ }
+ }
+ }
+
+ return bits;
+}
+
+static int estimate_slice_plane(ProresContext *ctx, int *error, int plane,
+ const uint16_t *src, int linesize,
+ int mbs_per_slice,
+ int blocks_per_mb, int plane_size_factor,
+ const int16_t *qmat, ProresThreadData *td)
+{
+ int blocks_per_slice;
+ int bits;
+
+ blocks_per_slice = mbs_per_slice * blocks_per_mb;
+
+ bits = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]);
+ bits += estimate_acs(error, td->blocks[plane], blocks_per_slice,
+ plane_size_factor, ctx->scantable, qmat);
+
+ return FFALIGN(bits, 8);
+}
+
+static int est_alpha_diff(int cur, int prev, int abits)
+{
+ const int mask = (1 << abits) - 1;
+ const int dbits = (abits == 8) ? 4 : 7;
+ const int dsize = 1 << dbits - 1;
+ int diff = cur - prev;
+
+ diff &= mask;
+ if (diff >= (1 << abits) - dsize)
+ diff -= 1 << abits;
+ if (diff < -dsize || diff > dsize || !diff)
+ return abits + 1;
+ else
+ return dbits + 1;
+}
+
+static int estimate_alpha_plane(ProresContext *ctx, int *error,
+ const uint16_t *src, int linesize,
+ int mbs_per_slice, int quant,
+ int16_t *blocks)
+{
+ const int abits = ctx->alpha_bits;
+ const int mask = (1 << abits) - 1;
+ const int num_coeffs = mbs_per_slice * 256;
+ int prev = mask, cur;
+ int idx = 0;
+ int run = 0;
+ int bits;
+
+ *error = 0;
+ cur = blocks[idx++];
+ bits = est_alpha_diff(cur, prev, abits);
+ prev = cur;
+ do {
+ cur = blocks[idx++];
+ if (cur != prev) {
+ if (!run)
+ bits++;
+ else if (run < 0x10)
+ bits += 4;
+ else
+ bits += 15;
+ bits += est_alpha_diff(cur, prev, abits);
+ prev = cur;
+ run = 0;
+ } else {
+ run++;
+ }
+ } while (idx < num_coeffs);
+
+ if (run) {
+ if (run < 0x10)
+ bits += 4;
+ else
+ bits += 15;
+ }
+
+ return bits;
+}
+
+static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic,
+ int trellis_node, int x, int y, int mbs_per_slice,
+ ProresThreadData *td)
+{
+ ProresContext *ctx = avctx->priv_data;
+ int i, q, pq, xp, yp;
+ const uint16_t *src;
+ int slice_width_factor = av_log2(mbs_per_slice);
+ int num_cblocks[MAX_PLANES], pwidth;
+ int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES];
+ const int min_quant = ctx->profile_info->min_quant;
+ const int max_quant = ctx->profile_info->max_quant;
+ int error, bits, bits_limit;
+ int mbs, prev, cur, new_score;
+ int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH];
+ int overquant;
+ uint16_t *qmat;
+ int linesize[4], line_add;
+
+ if (ctx->pictures_per_frame == 1)
+ line_add = 0;
+ else
+ line_add = ctx->cur_picture_idx ^ !pic->top_field_first;
+ mbs = x + mbs_per_slice;
+
+ for (i = 0; i < ctx->num_planes; i++) {
+ is_chroma[i] = (i == 1 || i == 2);
+ plane_factor[i] = slice_width_factor + 2;
+ if (is_chroma[i])
+ plane_factor[i] += ctx->chroma_factor - 3;
+ if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) {
+ xp = x << 4;
+ yp = y << 4;
+ num_cblocks[i] = 4;
+ pwidth = avctx->width;
+ } else {
+ xp = x << 3;
+ yp = y << 4;
+ num_cblocks[i] = 2;
+ pwidth = avctx->width >> 1;
+ }
+
+ linesize[i] = pic->linesize[i] * ctx->pictures_per_frame;
+ src = (const uint16_t*)(pic->data[i] + yp * linesize[i] +
+ line_add * pic->linesize[i]) + xp;
+
+ if (i < 3) {
+ get_slice_data(ctx, src, linesize[i], xp, yp,
+ pwidth, avctx->height / ctx->pictures_per_frame,
+ td->blocks[i], td->emu_buf,
+ mbs_per_slice, num_cblocks[i], is_chroma[i]);
+ } else {
+ get_alpha_data(ctx, src, linesize[i], xp, yp,
+ pwidth, avctx->height / ctx->pictures_per_frame,
+ td->blocks[i], mbs_per_slice, ctx->alpha_bits);
+ }
+ }
+
+ for (q = min_quant; q < max_quant + 2; q++) {
+ td->nodes[trellis_node + q].prev_node = -1;
+ td->nodes[trellis_node + q].quant = q;
+ }
+
+ // todo: maybe perform coarser quantising to fit into frame size when needed
+ for (q = min_quant; q <= max_quant; q++) {
+ bits = 0;
+ error = 0;
+ for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) {
+ bits += estimate_slice_plane(ctx, &error, i,
+ src, linesize[i],
+ mbs_per_slice,
+ num_cblocks[i], plane_factor[i],
+ ctx->quants[q], td);
+ }
+ if (ctx->alpha_bits)
+ bits += estimate_alpha_plane(ctx, &error, src, linesize[3],
+ mbs_per_slice, q, td->blocks[3]);
+ if (bits > 65000 * 8) {
+ error = SCORE_LIMIT;
+ break;
+ }
+ slice_bits[q] = bits;
+ slice_score[q] = error;
+ }
+ if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) {
+ slice_bits[max_quant + 1] = slice_bits[max_quant];
+ slice_score[max_quant + 1] = slice_score[max_quant] + 1;
+ overquant = max_quant;
+ } else {
+ for (q = max_quant + 1; q < 128; q++) {
+ bits = 0;
+ error = 0;
+ if (q < MAX_STORED_Q) {
+ qmat = ctx->quants[q];
+ } else {
+ qmat = td->custom_q;
+ for (i = 0; i < 64; i++)
+ qmat[i] = ctx->quant_mat[i] * q;
+ }
+ for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) {
+ bits += estimate_slice_plane(ctx, &error, i,
+ src, linesize[i],
+ mbs_per_slice,
+ num_cblocks[i], plane_factor[i],
+ qmat, td);
+ }
+ if (ctx->alpha_bits)
+ bits += estimate_alpha_plane(ctx, &error, src, linesize[3],
+ mbs_per_slice, q, td->blocks[3]);
+ if (bits <= ctx->bits_per_mb * mbs_per_slice)
+ break;
+ }
+
+ slice_bits[max_quant + 1] = bits;
+ slice_score[max_quant + 1] = error;
+ overquant = q;
+ }
+ td->nodes[trellis_node + max_quant + 1].quant = overquant;
+
+ bits_limit = mbs * ctx->bits_per_mb;
+ for (pq = min_quant; pq < max_quant + 2; pq++) {
+ prev = trellis_node - TRELLIS_WIDTH + pq;
+
+ for (q = min_quant; q < max_quant + 2; q++) {
+ cur = trellis_node + q;
+
+ bits = td->nodes[prev].bits + slice_bits[q];
+ error = slice_score[q];
+ if (bits > bits_limit)
+ error = SCORE_LIMIT;
+
+ if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT)
+ new_score = td->nodes[prev].score + error;
+ else
+ new_score = SCORE_LIMIT;
+ if (td->nodes[cur].prev_node == -1 ||
+ td->nodes[cur].score >= new_score) {
+
+ td->nodes[cur].bits = bits;
+ td->nodes[cur].score = new_score;
+ td->nodes[cur].prev_node = prev;
+ }
+ }
+ }
+
+ error = td->nodes[trellis_node + min_quant].score;
+ pq = trellis_node + min_quant;
+ for (q = min_quant + 1; q < max_quant + 2; q++) {
+ if (td->nodes[trellis_node + q].score <= error) {
+ error = td->nodes[trellis_node + q].score;
+ pq = trellis_node + q;
+ }
+ }
+
+ return pq;
+}
+
+static int find_quant_thread(AVCodecContext *avctx, void *arg,
+ int jobnr, int threadnr)
+{
+ ProresContext *ctx = avctx->priv_data;
+ ProresThreadData *td = ctx->tdata + threadnr;
+ int mbs_per_slice = ctx->mbs_per_slice;
+ int x, y = jobnr, mb, q = 0;
+
+ for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
+ while (ctx->mb_width - x < mbs_per_slice)
+ mbs_per_slice >>= 1;
+ q = find_slice_quant(avctx, avctx->coded_frame,
+ (mb + 1) * TRELLIS_WIDTH, x, y,
+ mbs_per_slice, td);
+ }
+
+ for (x = ctx->slices_width - 1; x >= 0; x--) {
+ ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant;
+ q = td->nodes[q].prev_node;
+ }
+
+ return 0;
+}
+
+static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
+ const AVFrame *pic, int *got_packet)
+{
+ ProresContext *ctx = avctx->priv_data;
+ uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp;
+ uint8_t *picture_size_pos;
+ PutBitContext pb;
+ int x, y, i, mb, q = 0;
+ int sizes[4] = { 0 };
+ int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1);
+ int frame_size, picture_size, slice_size;
+ int pkt_size, ret;
+ uint8_t frame_flags;
+
+ *avctx->coded_frame = *pic;
+ avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
+ avctx->coded_frame->key_frame = 1;
+
+ pkt_size = ctx->frame_size_upper_bound + FF_MIN_BUFFER_SIZE;
+
+ if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size)) < 0)
+ return ret;
+
+ orig_buf = pkt->data;
+
+ // frame atom
+ orig_buf += 4; // frame size
+ bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID
+ buf = orig_buf;
+
+ // frame header
+ tmp = buf;
+ buf += 2; // frame header size will be stored here
+ bytestream_put_be16 (&buf, 0); // version 1
+ bytestream_put_buffer(&buf, ctx->vendor, 4);
+ bytestream_put_be16 (&buf, avctx->width);
+ bytestream_put_be16 (&buf, avctx->height);
+
+ frame_flags = ctx->chroma_factor << 6;
+ if (avctx->flags & CODEC_FLAG_INTERLACED_DCT)
+ frame_flags |= pic->top_field_first ? 0x04 : 0x08;
+ bytestream_put_byte (&buf, frame_flags);
+
+ bytestream_put_byte (&buf, 0); // reserved
+ bytestream_put_byte (&buf, avctx->color_primaries);
+ bytestream_put_byte (&buf, avctx->color_trc);
+ bytestream_put_byte (&buf, avctx->colorspace);
+ bytestream_put_byte (&buf, 0x40 | (ctx->alpha_bits >> 3));
+ bytestream_put_byte (&buf, 0); // reserved
+ if (ctx->quant_sel != QUANT_MAT_DEFAULT) {
+ bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present
+ // luma quantisation matrix
+ for (i = 0; i < 64; i++)
+ bytestream_put_byte(&buf, ctx->quant_mat[i]);
+ // chroma quantisation matrix
+ for (i = 0; i < 64; i++)
+ bytestream_put_byte(&buf, ctx->quant_mat[i]);
+ } else {
+ bytestream_put_byte (&buf, 0x00); // matrix flags - default matrices are used
+ }
+ bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size
+
+ for (ctx->cur_picture_idx = 0;
+ ctx->cur_picture_idx < ctx->pictures_per_frame;
+ ctx->cur_picture_idx++) {
+ // picture header
+ picture_size_pos = buf + 1;
+ bytestream_put_byte (&buf, 0x40); // picture header size (in bits)
+ buf += 4; // picture data size will be stored here
+ bytestream_put_be16 (&buf, ctx->slices_per_picture);
+ bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs
+
+ // seek table - will be filled during slice encoding
+ slice_sizes = buf;
+ buf += ctx->slices_per_picture * 2;
+
+ // slices
+ if (!ctx->force_quant) {
+ ret = avctx->execute2(avctx, find_quant_thread, NULL, NULL,
+ ctx->mb_height);
+ if (ret)
+ return ret;
+ }
+
+ for (y = 0; y < ctx->mb_height; y++) {
+ int mbs_per_slice = ctx->mbs_per_slice;
+ for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
+ q = ctx->force_quant ? ctx->force_quant
+ : ctx->slice_q[mb + y * ctx->slices_width];
+
+ while (ctx->mb_width - x < mbs_per_slice)
+ mbs_per_slice >>= 1;
+
+ bytestream_put_byte(&buf, slice_hdr_size << 3);
+ slice_hdr = buf;
+ buf += slice_hdr_size - 1;
+ init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8);
+ encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice);
+
+ bytestream_put_byte(&slice_hdr, q);
+ slice_size = slice_hdr_size + sizes[ctx->num_planes - 1];
+ for (i = 0; i < ctx->num_planes - 1; i++) {
+ bytestream_put_be16(&slice_hdr, sizes[i]);
+ slice_size += sizes[i];
+ }
+ bytestream_put_be16(&slice_sizes, slice_size);
+ buf += slice_size - slice_hdr_size;
+ }
+ }
+
+ picture_size = buf - (picture_size_pos - 1);
+ bytestream_put_be32(&picture_size_pos, picture_size);
+ }
+
+ orig_buf -= 8;
+ frame_size = buf - orig_buf;
+ bytestream_put_be32(&orig_buf, frame_size);
+
+ pkt->size = frame_size;
+ pkt->flags |= AV_PKT_FLAG_KEY;
+ *got_packet = 1;
+
+ return 0;
+}
+
+static av_cold int encode_close(AVCodecContext *avctx)
+{
+ ProresContext *ctx = avctx->priv_data;
+ int i;
+
+ av_freep(&avctx->coded_frame);
+
+ if (ctx->tdata) {
+ for (i = 0; i < avctx->thread_count; i++)
+ av_free(ctx->tdata[i].nodes);
+ }
+ av_freep(&ctx->tdata);
+ av_freep(&ctx->slice_q);
+
+ return 0;
+}
+
+static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src,
+ int linesize, int16_t *block)
+{
+ int x, y;
+ const uint16_t *tsrc = src;
+
+ for (y = 0; y < 8; y++) {
+ for (x = 0; x < 8; x++)
+ block[y * 8 + x] = tsrc[x];
+ tsrc += linesize >> 1;
+ }
+ fdsp->fdct(block);
+}
+
+static av_cold int encode_init(AVCodecContext *avctx)
+{
+ ProresContext *ctx = avctx->priv_data;
+ int mps;
+ int i, j;
+ int min_quant, max_quant;
+ int interlaced = !!(avctx->flags & CODEC_FLAG_INTERLACED_DCT);
+
+ avctx->bits_per_raw_sample = 10;
+ avctx->coded_frame = av_frame_alloc();
+ if (!avctx->coded_frame)
+ return AVERROR(ENOMEM);
+
+ ctx->fdct = prores_fdct;
+ ctx->scantable = interlaced ? ff_prores_interlaced_scan
+ : ff_prores_progressive_scan;
+ ff_fdctdsp_init(&ctx->fdsp, avctx);
+
+ mps = ctx->mbs_per_slice;
+ if (mps & (mps - 1)) {
+ av_log(avctx, AV_LOG_ERROR,
+ "there should be an integer power of two MBs per slice\n");
+ return AVERROR(EINVAL);
+ }
+ if (av_pix_fmt_desc_get(avctx->pix_fmt)->flags & AV_PIX_FMT_FLAG_ALPHA) {
+ if (ctx->alpha_bits & 7) {
+ av_log(avctx, AV_LOG_ERROR, "alpha bits should be 0, 8 or 16\n");
+ return AVERROR(EINVAL);
+ }
+ } else {
+ ctx->alpha_bits = 0;
+ }
+
+ ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10
+ ? CFACTOR_Y422
+ : CFACTOR_Y444;
+ ctx->profile_info = prores_profile_info + ctx->profile;
+ ctx->num_planes = 3 + !!ctx->alpha_bits;
+
+ ctx->mb_width = FFALIGN(avctx->width, 16) >> 4;
+
+ if (interlaced)
+ ctx->mb_height = FFALIGN(avctx->height, 32) >> 5;
+ else
+ ctx->mb_height = FFALIGN(avctx->height, 16) >> 4;
+
+ ctx->slices_width = ctx->mb_width / mps;
+ ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps);
+ ctx->slices_per_picture = ctx->mb_height * ctx->slices_width;
+ ctx->pictures_per_frame = 1 + interlaced;
+
+ if (ctx->quant_sel == -1)
+ ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant];
+ else
+ ctx->quant_mat = prores_quant_matrices[ctx->quant_sel];
+
+ if (strlen(ctx->vendor) != 4) {
+ av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA;
+ if (!ctx->force_quant) {
+ if (!ctx->bits_per_mb) {
+ for (i = 0; i < NUM_MB_LIMITS - 1; i++)
+ if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height *
+ ctx->pictures_per_frame)
+ break;
+ ctx->bits_per_mb = ctx->profile_info->br_tab[i];
+ } else if (ctx->bits_per_mb < 128) {
+ av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ min_quant = ctx->profile_info->min_quant;
+ max_quant = ctx->profile_info->max_quant;
+ for (i = min_quant; i < MAX_STORED_Q; i++) {
+ for (j = 0; j < 64; j++)
+ ctx->quants[i][j] = ctx->quant_mat[j] * i;
+ }
+
+ ctx->slice_q = av_malloc(ctx->slices_per_picture * sizeof(*ctx->slice_q));
+ if (!ctx->slice_q) {
+ encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+
+ ctx->tdata = av_mallocz(avctx->thread_count * sizeof(*ctx->tdata));
+ if (!ctx->tdata) {
+ encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+
+ for (j = 0; j < avctx->thread_count; j++) {
+ ctx->tdata[j].nodes = av_malloc((ctx->slices_width + 1)
+ * TRELLIS_WIDTH
+ * sizeof(*ctx->tdata->nodes));
+ if (!ctx->tdata[j].nodes) {
+ encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+ for (i = min_quant; i < max_quant + 2; i++) {
+ ctx->tdata[j].nodes[i].prev_node = -1;
+ ctx->tdata[j].nodes[i].bits = 0;
+ ctx->tdata[j].nodes[i].score = 0;
+ }
+ }
+ } else {
+ int ls = 0;
+
+ if (ctx->force_quant > 64) {
+ av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ for (j = 0; j < 64; j++) {
+ ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant;
+ ls += av_log2((1 << 11) / ctx->quants[0][j]) * 2 + 1;
+ }
+
+ ctx->bits_per_mb = ls * 8;
+ if (ctx->chroma_factor == CFACTOR_Y444)
+ ctx->bits_per_mb += ls * 4;
+ if (ctx->num_planes == 4)
+ ctx->bits_per_mb += ls * 4;
+ }
+
+ ctx->frame_size_upper_bound = ctx->pictures_per_frame *
+ ctx->slices_per_picture *
+ (2 + 2 * ctx->num_planes +
+ (mps * ctx->bits_per_mb) / 8)
+ + 200;
+
+ avctx->codec_tag = ctx->profile_info->tag;
+
+ av_log(avctx, AV_LOG_DEBUG,
+ "profile %d, %d slices, interlacing: %s, %d bits per MB\n",
+ ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame,
+ interlaced ? "yes" : "no", ctx->bits_per_mb);
+ av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n",
+ ctx->frame_size_upper_bound);
+
+ return 0;
+}
+
+#define OFFSET(x) offsetof(ProresContext, x)
+#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
+
+static const AVOption options[] = {
+ { "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice),
+ AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE },
+ { "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT,
+ { .i64 = PRORES_PROFILE_STANDARD },
+ PRORES_PROFILE_PROXY, PRORES_PROFILE_4444, VE, "profile" },
+ { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY },
+ 0, 0, VE, "profile" },
+ { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT },
+ 0, 0, VE, "profile" },
+ { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD },
+ 0, 0, VE, "profile" },
+ { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ },
+ 0, 0, VE, "profile" },
+ { "4444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444 },
+ 0, 0, VE, "profile" },
+ { "vendor", "vendor ID", OFFSET(vendor),
+ AV_OPT_TYPE_STRING, { .str = "Lavc" }, CHAR_MIN, CHAR_MAX, VE },
+ { "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb),
+ AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE },
+ { "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT,
+ { .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, "quant_mat" },
+ { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 },
+ 0, 0, VE, "quant_mat" },
+ { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY },
+ 0, 0, VE, "quant_mat" },
+ { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT },
+ 0, 0, VE, "quant_mat" },
+ { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD },
+ 0, 0, VE, "quant_mat" },
+ { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ },
+ 0, 0, VE, "quant_mat" },
+ { "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT },
+ 0, 0, VE, "quant_mat" },
+ { "alpha_bits", "bits for alpha plane", OFFSET(alpha_bits), AV_OPT_TYPE_INT,
+ { .i64 = 16 }, 0, 16, VE },
+ { NULL }
+};
+
+static const AVClass proresenc_class = {
+ .class_name = "ProRes encoder",
+ .item_name = av_default_item_name,
+ .option = options,
+ .version = LIBAVUTIL_VERSION_INT,
+};
+
+AVCodec ff_prores_ks_encoder = {
+ .name = "prores_ks",
+ .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
+ .type = AVMEDIA_TYPE_VIDEO,
+ .id = AV_CODEC_ID_PRORES,
+ .priv_data_size = sizeof(ProresContext),
+ .init = encode_init,
+ .close = encode_close,
+ .encode2 = encode_frame,
+ .capabilities = CODEC_CAP_SLICE_THREADS,
+ .pix_fmts = (const enum AVPixelFormat[]) {
+ AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
+ AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE
+ },
+ .priv_class = &proresenc_class,
+};
OpenPOWER on IntegriCloud