summaryrefslogtreecommitdiffstats
path: root/libavcodec/opus.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/opus.c')
-rw-r--r--libavcodec/opus.c493
1 files changed, 485 insertions, 8 deletions
diff --git a/libavcodec/opus.c b/libavcodec/opus.c
index 8e896dd..f74278a 100644
--- a/libavcodec/opus.c
+++ b/libavcodec/opus.c
@@ -2,20 +2,20 @@
* Copyright (c) 2012 Andrew D'Addesio
* Copyright (c) 2013-2014 Mozilla Corporation
*
- * This file is part of Libav.
+ * This file is part of FFmpeg.
*
- * Libav is free software; you can redistribute it and/or
+ * FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
- * Libav is distributed in the hope that it will be useful,
+ * FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
+ * License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
@@ -27,8 +27,11 @@
#include <stdint.h>
#include "libavutil/error.h"
+#include "libavutil/ffmath.h"
-#include "opus.h"
+#include "opus_celt.h"
+#include "opustab.h"
+#include "internal.h"
#include "vorbis.h"
static const uint16_t opus_frame_duration[32] = {
@@ -324,16 +327,18 @@ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
}
avctx->delay = AV_RL16(extradata + 10);
+ if (avctx->internal)
+ avctx->internal->skip_samples = avctx->delay;
channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
if (!channels) {
- av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extadata\n");
+ av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
return AVERROR_INVALIDDATA;
}
s->gain_i = AV_RL16(extradata + 16);
if (s->gain_i)
- s->gain = pow(10, s->gain_i / (20.0 * 256));
+ s->gain = ff_exp10(s->gain_i / (20.0 * 256));
map_type = extradata[18];
if (!map_type) {
@@ -346,7 +351,7 @@ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
streams = 1;
stereo_streams = channels - 1;
channel_map = default_channel_map;
- } else if (map_type == 1 || map_type == 255) {
+ } else if (map_type == 1 || map_type == 2 || map_type == 255) {
if (extradata_size < 21 + channels) {
av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
extradata_size);
@@ -370,6 +375,21 @@ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
}
layout = ff_vorbis_channel_layouts[channels - 1];
channel_reorder = channel_reorder_vorbis;
+ } else if (map_type == 2) {
+ int ambisonic_order = ff_sqrt(channels) - 1;
+ if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
+ channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Channel mapping 2 is only specified for channel counts"
+ " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
+ " for nonnegative integer n\n");
+ return AVERROR_INVALIDDATA;
+ }
+ if (channels > 227) {
+ av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
+ return AVERROR_INVALIDDATA;
+ }
+ layout = 0;
} else
layout = 0;
@@ -393,6 +413,7 @@ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
} else if (idx >= streams + stereo_streams) {
av_log(avctx, AV_LOG_ERROR,
"Invalid channel map for output channel %d: %d\n", i, idx);
+ av_freep(&s->channel_maps);
return AVERROR_INVALIDDATA;
}
@@ -421,3 +442,459 @@ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
return 0;
}
+
+void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
+{
+ float lowband_scratch[8 * 22];
+ float norm1[2 * 8 * 100];
+ float *norm2 = norm1 + 8 * 100;
+
+ int totalbits = (f->framebits << 3) - f->anticollapse_needed;
+
+ int update_lowband = 1;
+ int lowband_offset = 0;
+
+ int i, j;
+
+ for (i = f->start_band; i < f->end_band; i++) {
+ uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
+ int band_offset = ff_celt_freq_bands[i] << f->size;
+ int band_size = ff_celt_freq_range[i] << f->size;
+ float *X = f->block[0].coeffs + band_offset;
+ float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
+ float *norm_loc1, *norm_loc2;
+
+ int consumed = opus_rc_tell_frac(rc);
+ int effective_lowband = -1;
+ int b = 0;
+
+ /* Compute how many bits we want to allocate to this band */
+ if (i != f->start_band)
+ f->remaining -= consumed;
+ f->remaining2 = totalbits - consumed - 1;
+ if (i <= f->coded_bands - 1) {
+ int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
+ b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
+ }
+
+ if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
+ i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
+ lowband_offset = i;
+
+ if (i == f->start_band + 1) {
+ /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
+ the second to ensure the second band never has to use the LCG. */
+ int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
+
+ memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
+
+ if (f->channels == 2)
+ memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
+ }
+
+ /* Get a conservative estimate of the collapse_mask's for the bands we're
+ going to be folding from. */
+ if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
+ f->blocks > 1 || f->tf_change[i] < 0)) {
+ int foldstart, foldend;
+
+ /* This ensures we never repeat spectral content within one band */
+ effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
+ ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
+ foldstart = lowband_offset;
+ while (ff_celt_freq_bands[--foldstart] > effective_lowband);
+ foldend = lowband_offset - 1;
+ while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
+
+ cm[0] = cm[1] = 0;
+ for (j = foldstart; j < foldend; j++) {
+ cm[0] |= f->block[0].collapse_masks[j];
+ cm[1] |= f->block[f->channels - 1].collapse_masks[j];
+ }
+ }
+
+ if (f->dual_stereo && i == f->intensity_stereo) {
+ /* Switch off dual stereo to do intensity */
+ f->dual_stereo = 0;
+ for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
+ norm1[j] = (norm1[j] + norm2[j]) / 2;
+ }
+
+ norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
+ norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
+
+ if (f->dual_stereo) {
+ cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
+ f->blocks, norm_loc1, f->size,
+ norm1 + band_offset, 0, 1.0f,
+ lowband_scratch, cm[0]);
+
+ cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
+ f->blocks, norm_loc2, f->size,
+ norm2 + band_offset, 0, 1.0f,
+ lowband_scratch, cm[1]);
+ } else {
+ cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0,
+ f->blocks, norm_loc1, f->size,
+ norm1 + band_offset, 0, 1.0f,
+ lowband_scratch, cm[0] | cm[1]);
+ cm[1] = cm[0];
+ }
+
+ f->block[0].collapse_masks[i] = (uint8_t)cm[0];
+ f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
+ f->remaining += f->pulses[i] + consumed;
+
+ /* Update the folding position only as long as we have 1 bit/sample depth */
+ update_lowband = (b > band_size << 3);
+ }
+}
+
+#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
+
+void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
+{
+ int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
+ int skip_startband = f->start_band;
+ int skip_bit = 0;
+ int intensitystereo_bit = 0;
+ int dualstereo_bit = 0;
+ int dynalloc = 6;
+ int extrabits = 0;
+
+ int boost[CELT_MAX_BANDS] = { 0 };
+ int trim_offset[CELT_MAX_BANDS];
+ int threshold[CELT_MAX_BANDS];
+ int bits1[CELT_MAX_BANDS];
+ int bits2[CELT_MAX_BANDS];
+
+ /* Spread */
+ if (opus_rc_tell(rc) + 4 <= f->framebits) {
+ if (encode)
+ ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
+ else
+ f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
+ } else {
+ f->spread = CELT_SPREAD_NORMAL;
+ }
+
+ /* Initialize static allocation caps */
+ for (i = 0; i < CELT_MAX_BANDS; i++)
+ f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
+
+ /* Band boosts */
+ tbits_8ths = f->framebits << 3;
+ for (i = f->start_band; i < f->end_band; i++) {
+ int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
+ int b_dynalloc = dynalloc;
+ int boost_amount = f->alloc_boost[i];
+ quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
+
+ while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
+ int is_boost;
+ if (encode) {
+ is_boost = boost_amount--;
+ ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
+ } else {
+ is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
+ }
+
+ if (!is_boost)
+ break;
+
+ boost[i] += quanta;
+ tbits_8ths -= quanta;
+
+ b_dynalloc = 1;
+ }
+
+ if (boost[i])
+ dynalloc = FFMAX(dynalloc - 1, 2);
+ }
+
+ /* Allocation trim */
+ if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
+ if (encode)
+ ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
+ else
+ f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
+
+ /* Anti-collapse bit reservation */
+ tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
+ f->anticollapse_needed = 0;
+ if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
+ f->anticollapse_needed = 1 << 3;
+ tbits_8ths -= f->anticollapse_needed;
+
+ /* Band skip bit reservation */
+ if (tbits_8ths >= 1 << 3)
+ skip_bit = 1 << 3;
+ tbits_8ths -= skip_bit;
+
+ /* Intensity/dual stereo bit reservation */
+ if (f->channels == 2) {
+ intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
+ if (intensitystereo_bit <= tbits_8ths) {
+ tbits_8ths -= intensitystereo_bit;
+ if (tbits_8ths >= 1 << 3) {
+ dualstereo_bit = 1 << 3;
+ tbits_8ths -= 1 << 3;
+ }
+ } else {
+ intensitystereo_bit = 0;
+ }
+ }
+
+ /* Trim offsets */
+ for (i = f->start_band; i < f->end_band; i++) {
+ int trim = f->alloc_trim - 5 - f->size;
+ int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
+ int duration = f->size + 3;
+ int scale = duration + f->channels - 1;
+
+ /* PVQ minimum allocation threshold, below this value the band is
+ * skipped */
+ threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
+ f->channels << 3);
+
+ trim_offset[i] = trim * (band << scale) >> 6;
+
+ if (ff_celt_freq_range[i] << f->size == 1)
+ trim_offset[i] -= f->channels << 3;
+ }
+
+ /* Bisection */
+ low = 1;
+ high = CELT_VECTORS - 1;
+ while (low <= high) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (i = f->end_band - 1; i >= f->start_band; i--) {
+ bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
+
+ if (bandbits)
+ bandbits = FFMAX(bandbits + trim_offset[i], 0);
+ bandbits += boost[i];
+
+ if (bandbits >= threshold[i] || done) {
+ done = 1;
+ total += FFMIN(bandbits, f->caps[i]);
+ } else if (bandbits >= f->channels << 3) {
+ total += f->channels << 3;
+ }
+ }
+
+ if (total > tbits_8ths)
+ high = center - 1;
+ else
+ low = center + 1;
+ }
+ high = low--;
+
+ /* Bisection */
+ for (i = f->start_band; i < f->end_band; i++) {
+ bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
+ bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
+ NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
+
+ if (bits1[i])
+ bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
+ if (bits2[i])
+ bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
+
+ if (low)
+ bits1[i] += boost[i];
+ bits2[i] += boost[i];
+
+ if (boost[i])
+ skip_startband = i;
+ bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
+ }
+
+ /* Bisection */
+ low = 0;
+ high = 1 << CELT_ALLOC_STEPS;
+ for (i = 0; i < CELT_ALLOC_STEPS; i++) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (j = f->end_band - 1; j >= f->start_band; j--) {
+ bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[j] || done) {
+ done = 1;
+ total += FFMIN(bandbits, f->caps[j]);
+ } else if (bandbits >= f->channels << 3)
+ total += f->channels << 3;
+ }
+ if (total > tbits_8ths)
+ high = center;
+ else
+ low = center;
+ }
+
+ /* Bisection */
+ done = total = 0;
+ for (i = f->end_band - 1; i >= f->start_band; i--) {
+ bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[i] || done)
+ done = 1;
+ else
+ bandbits = (bandbits >= f->channels << 3) ?
+ f->channels << 3 : 0;
+
+ bandbits = FFMIN(bandbits, f->caps[i]);
+ f->pulses[i] = bandbits;
+ total += bandbits;
+ }
+
+ /* Band skipping */
+ for (f->coded_bands = f->end_band; ; f->coded_bands--) {
+ int allocation;
+ j = f->coded_bands - 1;
+
+ if (j == skip_startband) {
+ /* all remaining bands are not skipped */
+ tbits_8ths += skip_bit;
+ break;
+ }
+
+ /* determine the number of bits available for coding "do not skip" markers */
+ remaining = tbits_8ths - total;
+ bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
+ remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
+ allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j];
+ allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
+
+ /* a "do not skip" marker is only coded if the allocation is
+ * above the chosen threshold */
+ if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
+ int do_not_skip;
+ if (encode) {
+ do_not_skip = f->coded_bands <= f->skip_band_floor;
+ ff_opus_rc_enc_log(rc, do_not_skip, 1);
+ } else {
+ do_not_skip = ff_opus_rc_dec_log(rc, 1);
+ }
+
+ if (do_not_skip)
+ break;
+
+ total += 1 << 3;
+ allocation -= 1 << 3;
+ }
+
+ /* the band is skipped, so reclaim its bits */
+ total -= f->pulses[j];
+ if (intensitystereo_bit) {
+ total -= intensitystereo_bit;
+ intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
+ total += intensitystereo_bit;
+ }
+
+ total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
+ }
+
+ /* IS start band */
+ if (encode) {
+ if (intensitystereo_bit) {
+ f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
+ ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
+ }
+ } else {
+ f->intensity_stereo = f->dual_stereo = 0;
+ if (intensitystereo_bit)
+ f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
+ }
+
+ /* DS flag */
+ if (f->intensity_stereo <= f->start_band)
+ tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
+ else if (dualstereo_bit)
+ if (encode)
+ ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
+ else
+ f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
+
+ /* Supply the remaining bits in this frame to lower bands */
+ remaining = tbits_8ths - total;
+ bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
+ remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
+ for (i = f->start_band; i < f->coded_bands; i++) {
+ const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
+ f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
+ remaining -= bits;
+ }
+
+ /* Finally determine the allocation */
+ for (i = f->start_band; i < f->coded_bands; i++) {
+ int N = ff_celt_freq_range[i] << f->size;
+ int prev_extra = extrabits;
+ f->pulses[i] += extrabits;
+
+ if (N > 1) {
+ int dof; /* degrees of freedom */
+ int temp; /* dof * channels * log(dof) */
+ int fine_bits;
+ int max_bits;
+ int offset; /* fine energy quantization offset, i.e.
+ * extra bits assigned over the standard
+ * totalbits/dof */
+
+ extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
+ f->pulses[i] -= extrabits;
+
+ /* intensity stereo makes use of an extra degree of freedom */
+ dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
+ temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
+ offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
+ if (N == 2) /* dof=2 is the only case that doesn't fit the model */
+ offset += dof << 1;
+
+ /* grant an additional bias for the first and second pulses */
+ if (f->pulses[i] + offset < 2 * (dof << 3))
+ offset += temp >> 2;
+ else if (f->pulses[i] + offset < 3 * (dof << 3))
+ offset += temp >> 3;
+
+ fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
+ max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
+ max_bits = FFMAX(max_bits, 0);
+ f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
+
+ /* If fine_bits was rounded down or capped,
+ * give priority for the final fine energy pass */
+ f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
+
+ /* the remaining bits are assigned to PVQ */
+ f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
+ } else {
+ /* all bits go to fine energy except for the sign bit */
+ extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
+ f->pulses[i] -= extrabits;
+ f->fine_bits[i] = 0;
+ f->fine_priority[i] = 1;
+ }
+
+ /* hand back a limited number of extra fine energy bits to this band */
+ if (extrabits > 0) {
+ int fineextra = FFMIN(extrabits >> (f->channels + 2),
+ CELT_MAX_FINE_BITS - f->fine_bits[i]);
+ f->fine_bits[i] += fineextra;
+
+ fineextra <<= f->channels + 2;
+ f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
+ extrabits -= fineextra;
+ }
+ }
+ f->remaining = extrabits;
+
+ /* skipped bands dedicate all of their bits for fine energy */
+ for (; i < f->end_band; i++) {
+ f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
+ f->pulses[i] = 0;
+ f->fine_priority[i] = f->fine_bits[i] < 1;
+ }
+}
OpenPOWER on IntegriCloud