1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
/*
* Copyright (C) 2010-2011 Mamadou Diop.
*
* Contact: Mamadou Diop <diopmamadou(at)doubango[dot]org>
*
* This file is part of Open Source Doubango Framework.
*
* DOUBANGO is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DOUBANGO is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with DOUBANGO.
*
*/
/**@file tcomp_udvm.operands.c
* @brief SigComp UDVM machine (Operands).
*
* @author Mamadou Diop <diopmamadou(at)yahoo.fr>
*
*/
#include "tcomp_udvm.h"
#include "tsk_debug.h"
#include <math.h>
/**
literal (#)<br>
<table>
<tr> <td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr> <td>0nnnnnnn</td> <td>N</td> <td>0 - 127</td></tr>
<tr> <td>10nnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 16383</td></tr>
<tr> <td>11000000 nnnnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_literal_param(tcomp_udvm_t *udvm)
{
uint32_t result = 0;
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
switch( *memory_ptr & 0xc0) // 2 first bits
{
case 0x00: // 0nnnnnnn N 0 - 127
case 0x40: // 0nnnnnnn N 0 - 127
{
result = *(memory_ptr);
udvm->executionPointer++;
}
break;
case 0x80: // 10nnnnnn nnnnnnnn N 0 - 16383
{
result = TSK_BINARY_GET_2BYTES(memory_ptr)&0x3fff; // All except 2 first bits
udvm->executionPointer+=2;
}
break;
case 0xc0: // 11000000 nnnnnnnn nnnnnnnn N 0 - 65535
{
result = TSK_BINARY_GET_2BYTES((memory_ptr+1));
udvm->executionPointer+=3;
}
break;
default:
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
reference ($)<br>
<table>
<tr><td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr><td>0nnnnnnn</td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>10nnnnnn nnnnnnnn </td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>11000000 nnnnnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_reference_param(tcomp_udvm_t *udvm)
{
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
uint32_t result = 0;
switch( *memory_ptr & 0xc0) // 2 first bits
{
case 0x00: // 0nnnnnnn memory[2 * N] 0 - 65535
case 0x40: // 0nnnnnnn memory[2 * N] 0 - 65535
{
uint8_t N = (*(memory_ptr) & 0x7f); // no effect first bit is already nil
result = 2*N;
udvm->executionPointer++;
}
break;
case 0x80: // 10nnnnnn nnnnnnnn memory[2 * N] 0 - 65535
{
uint32_t N = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x3fff);
result = 2*N;
udvm->executionPointer+=2;
}
break;
case 0xc0: // 11000000 nnnnnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr+1);
result = N;
udvm->executionPointer+=3;
}
break;
default:
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
multitype(%)<br>
<table>
<tr><td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr><td>00nnnnnn</td> <td>N</td> <td>0 - 63</td></tr>
<tr><td>01nnnnnn</td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>1000011n</td> <td>2 ^ (N + 6)</td> <td>64 , 128</td></tr>
<tr><td>10001nnn</td> <td>2 ^ (N + 8)</td> <td>256 , ... , 32768</td></tr>
<tr><td>111nnnnn</td> <td>N + 65504</td> <td>65504 - 65535</td></tr>
<tr><td>1001nnnn nnnnnnnn</td> <td>N + 61440</td> <td>61440 - 65535</td></tr>
<tr><td>101nnnnn nnnnnnnn</td> <td>N</td> <td>0 - 8191</td></tr>
<tr><td>110nnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
<tr><td>10000000 nnnnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 65535</td></tr>
<tr><td>10000001 nnnnnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_multitype_param(tcomp_udvm_t *udvm)
{
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
int8_t index = operand_multitype_indexes[*memory_ptr];
uint32_t result = 0;
switch(index)
{
case 1: // 00nnnnnn N 0 - 63
{
result = *(memory_ptr);
udvm->executionPointer++;
}
break;
case 2: // 01nnnnnn memory[2 * N] 0 - 65535
{
uint8_t N = (*(memory_ptr) & 0x3f);
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(2*N) );
udvm->executionPointer++;
}
break;
case 3: // 1000011n 2 ^ (N + 6) 64 , 128
{
uint8_t N = (*(memory_ptr) & 0x01);
result = (uint32_t)pow( (double)2, (N + 6) );
udvm->executionPointer++;
}
break;
case 4: // 10001nnn 2 ^ (N + 8) 256 , ... , 32768
{
uint8_t N = (*(memory_ptr) & 0x07);
result = (uint32_t)pow( (double)2, (N + 8) );
udvm->executionPointer++;
}
break;
case 5: // 111nnnnn N + 65504 65504 - 65535
{
result = ((*(memory_ptr) & 0x1f) + 65504 );
udvm->executionPointer++;
}
break;
case 6: // 1001nnnn nnnnnnnn N + 61440 61440 - 65535
{
result = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x0fff) + 61440;
udvm->executionPointer+=2;
}
break;
case 7: // 101nnnnn nnnnnnnn N 0 - 8191
{
result = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x1fff);
udvm->executionPointer+=2;
}
break;
case 8: // 110nnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr) & 0x1fff;
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(N) );
udvm->executionPointer+=2;
}
break;
case 9: // 10000000 nnnnnnnn nnnnnnnn N 0 - 65535
{
result = TSK_BINARY_GET_2BYTES(memory_ptr+1);
udvm->executionPointer+=3;
}
break;
case 10: // 10000001 nnnnnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr+1);
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(N) );
udvm->executionPointer+=3;
}
break;
default: // -1
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
address(@)
This operand is decoded as a multitype operand followed by a further step: the memory address
of the UDVM instruction containing the address operand is added to
obtain the correct operand value. So if the operand value from
Figure 10 is D then the actual operand value of an address is
calculated as follows:
operand_value = (memory_address_of_instruction + D) modulo 2^16
*/
uint32_t tcomp_udvm_opget_address_param(tcomp_udvm_t *udvm, uint32_t memory_address_of_instruction)
{
uint32_t D = tcomp_udvm_opget_multitype_param(udvm);
// (2^16) => 65536;
return ( (memory_address_of_instruction + D)%65536 );
}
|