summaryrefslogtreecommitdiffstats
path: root/thirdparties/android/common/include/srtp/datatypes.h
blob: e16d895bb5927be395e2505924f77179c0c0c49d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*
 * datatypes.h
 * 
 * data types for bit vectors and finite fields
 *
 * David A. McGrew
 * Cisco Systems, Inc.
 */

/*
 *	
 * Copyright (c) 2001-2006, Cisco Systems, Inc.
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 
 *   Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * 
 *   Redistributions in binary form must reproduce the above
 *   copyright notice, this list of conditions and the following
 *   disclaimer in the documentation and/or other materials provided
 *   with the distribution.
 * 
 *   Neither the name of the Cisco Systems, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived
 *   from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */


#ifndef _DATATYPES_H
#define _DATATYPES_H

#include "integers.h"           /* definitions of uint32_t, et cetera   */
#include "alloc.h"

#include <stdarg.h>

#ifndef SRTP_KERNEL
# include <stdio.h>
# include <string.h>
# include <time.h>
# ifdef HAVE_NETINET_IN_H
#  include <netinet/in.h>
# elif defined HAVE_WINSOCK2_H
#  include <winsock2.h>
# endif
#endif


/* if DATATYPES_USE_MACROS is defined, then little functions are macros */
#define DATATYPES_USE_MACROS  

typedef union {
  uint8_t  v8[2];
  uint16_t value;
} v16_t;

typedef union {
  uint8_t  v8[4];
  uint16_t v16[2];
  uint32_t value;
} v32_t;

typedef union {
  uint8_t  v8[8];
  uint16_t v16[4];
  uint32_t v32[2];
  uint64_t value;
} v64_t;

typedef union {
  uint8_t  v8[16];
  uint16_t v16[8];
  uint32_t v32[4];
  uint64_t v64[2];
} v128_t;



/* some useful and simple math functions */

#define pow_2(X) ( (unsigned int)1 << (X) )   /* 2^X     */

#define pow_minus_one(X) ( (X) ? -1 : 1 )      /* (-1)^X  */


/*
 * octet_get_weight(x) returns the hamming weight (number of bits equal to
 * one) in the octet x
 */

int
octet_get_weight(uint8_t octet);

char *
octet_bit_string(uint8_t x);

#define MAX_PRINT_STRING_LEN 1024

char *
octet_string_hex_string(const void *str, int length);

char *
v128_bit_string(v128_t *x);

char *
v128_hex_string(v128_t *x);

uint8_t
nibble_to_hex_char(uint8_t nibble);

char *
char_to_hex_string(char *x, int num_char);

uint8_t
hex_string_to_octet(char *s);

/*
 * hex_string_to_octet_string(raw, hex, len) converts the hexadecimal
 * string at *hex (of length len octets) to the equivalent raw data
 * and writes it to *raw.
 *
 * if a character in the hex string that is not a hexadeciaml digit
 * (0123456789abcdefABCDEF) is encountered, the function stops writing
 * data to *raw
 *
 * the number of hex digits copied (which is two times the number of
 * octets in *raw) is returned
 */

int
hex_string_to_octet_string(char *raw, char *hex, int len);

v128_t
hex_string_to_v128(char *s);

void
v128_copy_octet_string(v128_t *x, const uint8_t s[16]);

void
v128_left_shift(v128_t *x, int shift_index);

void
v128_right_shift(v128_t *x, int shift_index);

/*
 * the following macros define the data manipulation functions
 * 
 * If DATATYPES_USE_MACROS is defined, then these macros are used
 * directly (and function call overhead is avoided).  Otherwise,
 * the macros are used through the functions defined in datatypes.c
 * (and the compiler provides better warnings).
 */

#define _v128_set_to_zero(x)     \
(                               \
  (x)->v32[0] = 0,              \
  (x)->v32[1] = 0,              \
  (x)->v32[2] = 0,              \
  (x)->v32[3] = 0               \
)

#define _v128_copy(x, y)          \
(                                \
  (x)->v32[0] = (y)->v32[0],     \
  (x)->v32[1] = (y)->v32[1],     \
  (x)->v32[2] = (y)->v32[2],     \
  (x)->v32[3] = (y)->v32[3]      \
)

#define _v128_xor(z, x, y)                       \
(                                               \
   (z)->v32[0] = (x)->v32[0] ^ (y)->v32[0],     \
   (z)->v32[1] = (x)->v32[1] ^ (y)->v32[1],     \
   (z)->v32[2] = (x)->v32[2] ^ (y)->v32[2],     \
   (z)->v32[3] = (x)->v32[3] ^ (y)->v32[3]      \
)

#define _v128_and(z, x, y)                       \
(                                               \
   (z)->v32[0] = (x)->v32[0] & (y)->v32[0],     \
   (z)->v32[1] = (x)->v32[1] & (y)->v32[1],     \
   (z)->v32[2] = (x)->v32[2] & (y)->v32[2],     \
   (z)->v32[3] = (x)->v32[3] & (y)->v32[3]      \
)

#define _v128_or(z, x, y)                        \
(                                               \
   (z)->v32[0] = (x)->v32[0] | (y)->v32[0],     \
   (z)->v32[1] = (x)->v32[1] | (y)->v32[1],     \
   (z)->v32[2] = (x)->v32[2] | (y)->v32[2],     \
   (z)->v32[3] = (x)->v32[3] | (y)->v32[3]      \
)

#define _v128_complement(x)        \
(                                  \
   (x)->v32[0] = ~(x)->v32[0],     \
   (x)->v32[1] = ~(x)->v32[1],     \
   (x)->v32[2] = ~(x)->v32[2],     \
   (x)->v32[3] = ~(x)->v32[3]      \
)

/* ok for NO_64BIT_MATH if it can compare uint64_t's (even as structures) */
#define _v128_is_eq(x, y)                                        \
  (((x)->v64[0] == (y)->v64[0]) && ((x)->v64[1] == (y)->v64[1]))


#ifdef NO_64BIT_MATH
#define _v128_xor_eq(z, x)         \
(                                  \
   (z)->v32[0] ^= (x)->v32[0],     \
   (z)->v32[1] ^= (x)->v32[1],     \
   (z)->v32[2] ^= (x)->v32[2],     \
   (z)->v32[3] ^= (x)->v32[3]      \
)
#else
#define _v128_xor_eq(z, x)         \
(                                  \
   (z)->v64[0] ^= (x)->v64[0],     \
   (z)->v64[1] ^= (x)->v64[1]      \
)
#endif

/* NOTE!  This assumes an odd ordering! */
/* This will not be compatible directly with math on some processors */
/* bit 0 is first 32-bit word, low order bit. in little-endian, that's
   the first byte of the first 32-bit word.  In big-endian, that's
   the 3rd byte of the first 32-bit word */
/* The get/set bit code is used by the replay code ONLY, and it doesn't
   really care which bit is which.  AES does care which bit is which, but
   doesn't use the 128-bit get/set or 128-bit shifts  */

#define _v128_get_bit(x, bit)                     \
(                                                 \
  ((((x)->v32[(bit) >> 5]) >> ((bit) & 31)) & 1)  \
)

#define _v128_set_bit(x, bit)                                    \
(                                                                \
  (((x)->v32[(bit) >> 5]) |= ((uint32_t)1 << ((bit) & 31))) \
)

#define _v128_clear_bit(x, bit)                                   \
(                                                                 \
  (((x)->v32[(bit) >> 5]) &= ~((uint32_t)1 << ((bit) & 31))) \
)

#define _v128_set_bit_to(x, bit, value)   \
(                                         \
   (value) ? _v128_set_bit(x, bit) :      \
             _v128_clear_bit(x, bit)      \
)


#if 0
/* nothing uses this */
#ifdef WORDS_BIGENDIAN

#define _v128_add(z, x, y) {                    \
  uint64_t tmp;					\
    						\
  tmp = x->v32[3] + y->v32[3];                  \
  z->v32[3] = (uint32_t) tmp;			\
  						\
  tmp =  x->v32[2] + y->v32[2] + (tmp >> 32);	\
  z->v32[2] = (uint32_t) tmp;                   \
						\
  tmp =  x->v32[1] + y->v32[1] + (tmp >> 32);	\
  z->v32[1] = (uint32_t) tmp;			\
                                                \
  tmp =  x->v32[0] + y->v32[0] + (tmp >> 32);	\
  z->v32[0] = (uint32_t) tmp;			\
}

#else /* assume little endian architecture */

#define _v128_add(z, x, y) {                    \
  uint64_t tmp;					\
						\
  tmp = htonl(x->v32[3]) + htonl(y->v32[3]);	\
  z->v32[3] = ntohl((uint32_t) tmp);		\
  						\
  tmp =  htonl(x->v32[2]) + htonl(y->v32[2])	\
       + htonl(tmp >> 32);			\
  z->v32[2] = ntohl((uint32_t) tmp);		\
                                                \
  tmp =  htonl(x->v32[1]) + htonl(y->v32[1])	\
       + htonl(tmp >> 32);			\
  z->v32[1] = ntohl((uint32_t) tmp);		\
  						\
  tmp =  htonl(x->v32[0]) + htonl(y->v32[0])	\
       + htonl(tmp >> 32);			\
  z->v32[0] = ntohl((uint32_t) tmp);		\
}
#endif /* WORDS_BIGENDIAN */                      
#endif /* 0 */


#ifdef DATATYPES_USE_MACROS  /* little functions are really macros */
   
#define v128_set_to_zero(z)       _v128_set_to_zero(z)
#define v128_copy(z, x)           _v128_copy(z, x)
#define v128_xor(z, x, y)         _v128_xor(z, x, y)
#define v128_and(z, x, y)         _v128_and(z, x, y)
#define v128_or(z, x, y)          _v128_or(z, x, y)
#define v128_complement(x)        _v128_complement(x) 
#define v128_is_eq(x, y)          _v128_is_eq(x, y)
#define v128_xor_eq(x, y)         _v128_xor_eq(x, y)
#define v128_get_bit(x, i)        _v128_get_bit(x, i)
#define v128_set_bit(x, i)        _v128_set_bit(x, i)
#define v128_clear_bit(x, i)      _v128_clear_bit(x, i)
#define v128_set_bit_to(x, i, y)  _v128_set_bit_to(x, i, y)

#else

void
v128_set_to_zero(v128_t *x);

int
v128_is_eq(const v128_t *x, const v128_t *y);

void
v128_copy(v128_t *x, const v128_t *y);

void
v128_xor(v128_t *z, v128_t *x, v128_t *y);

void
v128_and(v128_t *z, v128_t *x, v128_t *y);

void
v128_or(v128_t *z, v128_t *x, v128_t *y); 

void
v128_complement(v128_t *x);

int
v128_get_bit(const v128_t *x, int i);

void
v128_set_bit(v128_t *x, int i) ;     

void
v128_clear_bit(v128_t *x, int i);    

void
v128_set_bit_to(v128_t *x, int i, int y);

#endif /* DATATYPES_USE_MACROS */

/*
 * octet_string_is_eq(a,b, len) returns 1 if the length len strings a
 * and b are not equal, returns 0 otherwise
 */

int
octet_string_is_eq(uint8_t *a, uint8_t *b, int len);

void
octet_string_set_to_zero(uint8_t *s, int len);


#ifndef SRTP_KERNEL_LINUX

/* 
 * Convert big endian integers to CPU byte order.
 */
#ifdef WORDS_BIGENDIAN
/* Nothing to do. */
# define be32_to_cpu(x)	(x)
# define be64_to_cpu(x)	(x)
#elif defined(HAVE_BYTESWAP_H)
/* We have (hopefully) optimized versions in byteswap.h */
# include <byteswap.h>
# define be32_to_cpu(x)	bswap_32((x))
# define be64_to_cpu(x)	bswap_64((x))
#else

#if defined(__GNUC__) && defined(HAVE_X86)
/* Fall back. */
static inline uint32_t be32_to_cpu(uint32_t v) {
   /* optimized for x86. */
   asm("bswap %0" : "=r" (v) : "0" (v));
   return v;
}
# else /* HAVE_X86 */
#  ifdef HAVE_NETINET_IN_H
#   include <netinet/in.h>
#  elif defined HAVE_WINSOCK2_H
#   include <winsock2.h>
#  endif
#  define be32_to_cpu(x)	ntohl((x))
# endif /* HAVE_X86 */

static inline uint64_t be64_to_cpu(uint64_t v) {
# ifdef NO_64BIT_MATH
   /* use the make64 functions to do 64-bit math */
   v = make64(htonl(low32(v)),htonl(high32(v)));
# else
   /* use the native 64-bit math */
   v= (uint64_t)((be32_to_cpu((uint32_t)(v >> 32))) | (((uint64_t)be32_to_cpu((uint32_t)v)) << 32));
# endif
   return v;
}

#endif /* ! SRTP_KERNEL_LINUX */

#endif /* WORDS_BIGENDIAN */

/*
 * functions manipulating bitvector_t 
 *
 * A bitvector_t consists of an array of words and an integer
 * representing the number of significant bits stored in the array.
 * The bits are packed as follows: the least significant bit is that
 * of word[0], while the most significant bit is the nth most
 * significant bit of word[m], where length = bits_per_word * m + n.
 * 
 */

#define bits_per_word  32
#define bytes_per_word 4

typedef struct {
  uint32_t length;   
  uint32_t *word;
} bitvector_t;


#define _bitvector_get_bit(v, bit_index)				\
(									\
 ((((v)->word[((bit_index) >> 5)]) >> ((bit_index) & 31)) & 1)		\
)


#define _bitvector_set_bit(v, bit_index)				\
(									\
 (((v)->word[((bit_index) >> 5)] |= ((uint32_t)1 << ((bit_index) & 31)))) \
)

#define _bitvector_clear_bit(v, bit_index)				\
(									\
 (((v)->word[((bit_index) >> 5)] &= ~((uint32_t)1 << ((bit_index) & 31)))) \
)

#define _bitvector_get_length(v)					\
(									\
 ((v)->length)								\
)

#ifdef DATATYPES_USE_MACROS  /* little functions are really macros */

#define bitvector_get_bit(v, bit_index) _bitvector_get_bit(v, bit_index)
#define bitvector_set_bit(v, bit_index) _bitvector_set_bit(v, bit_index)
#define bitvector_clear_bit(v, bit_index) _bitvector_clear_bit(v, bit_index)
#define bitvector_get_length(v) _bitvector_get_length(v)

#else

int
bitvector_get_bit(const bitvector_t *v, int bit_index);

void
bitvector_set_bit(bitvector_t *v, int bit_index);

void
bitvector_clear_bit(bitvector_t *v, int bit_index);

unsigned long
bitvector_get_length(const bitvector_t *v);

#endif

int
bitvector_alloc(bitvector_t *v, unsigned long length);

void
bitvector_dealloc(bitvector_t *v);

void
bitvector_set_to_zero(bitvector_t *x);

void
bitvector_left_shift(bitvector_t *x, int index);

char *
bitvector_bit_string(bitvector_t *x, char* buf, int len);

#endif /* _DATATYPES_H */
OpenPOWER on IntegriCloud