/* * * Based on the RFC 3174 * * Full Copyright Statement * * Copyright (C) The Internet Society (2001). All Rights Reserved. * Copyright (C) Mamadou Diop (2009) * * This document and translations of it may be copied and furnished to * others, and derivative works that comment on or otherwise explain it * or assist in its implementation may be prepared, copied, published * and distributed, in whole or in part, without restriction of any * kind, provided that the above copyright notice and this paragraph are * included on all such copies and derivative works. However, this * document itself may not be modified in any way, such as by removing * the copyright notice or references to the Internet Society or other * Internet organizations, except as needed for the purpose of * developing Internet standards in which case the procedures for * copyrights defined in the Internet Standards process must be * followed, or as required to translate it into languages other than * English. * * The limited permissions granted above are perpetual and will not be * revoked by the Internet Society or its successors or assigns. * This document and the information contained herein is provided on an * "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING * TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION * HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * * * Description: * This file implements the Secure Hashing Algorithm 1 as * defined in FIPS PUB 180-1 published April 17, 1995. * * The SHA-1, produces a 160-bit message digest for a given * data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Portability Issues: * SHA-1 is defined in terms of 32-bit "words". This code * uses (included via "sha1.h" to define 32 and 8 * bit unsigned integer types. If your C compiler does not * support 32 bit unsigned integers, this code is not * appropriate. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. Although SHA-1 allows a message digest to be generated * for messages of any number of bits less than 2^64, this * implementation only works with messages with a length that is * a multiple of the size of an 8-bit character. * */ /* * Copyright (C) 2010-2011 Mamadou Diop. * * Contact: Mamadou Diop * * This file is part of Open Source Doubango Framework. * * DOUBANGO is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * DOUBANGO is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with DOUBANGO. * */ /**@file tsk_sha1.c * @brief US Secure Hash Algorithm 1 (RFC 3174) * * @author Mamadou Diop * */ #include "tsk_sha1.h" #include "tsk_string.h" /**@defgroup tsk_sha1_group SHA1 (RFC 3174) utility functions. * Copyright (C) The Internet Society (2001). All Rights Reserved.
* Copyright (C) Mamadou Diop (2009)
* * This file implements the Secure Hashing Algorithm 1 as * defined in FIPS PUB 180-1 published April 17, 1995. * * The SHA-1, produces a 160-bit message digest for a given * data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * */ /**@ingroup tsk_sha1_group * Define the SHA1 circular left shift macro */ #define SHA1CircularShift(bits,word) \ (((word) << (bits)) | ((word) >> (32-(bits)))) /* Local Function Prototyptes */ void SHA1PadMessage(tsk_sha1context_t *); void SHA1ProcessMessageBlock(tsk_sha1context_t *); /**@ingroup tsk_sha1_group * * This function will initialize the @a context in preparation * for computing a new SHA1 message digest. * *@param context The context to reset. * *@retval @ref tsk_sha1_errcode_t code. */ tsk_sha1_errcode_t tsk_sha1reset(tsk_sha1context_t *context) { if (!context) { return shaNull; } context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0; context->Computed = 0; context->Corrupted = 0; return shaSuccess; } /**@ingroup tsk_sha1_group * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * @param context The @a context to use to calculate the SHA-1 hash. * @param Message_Digest A pointer the the sha1 digest result. * @retval @ref tsk_sha1_errcode_t code. */ tsk_sha1_errcode_t tsk_sha1result( tsk_sha1context_t *context, tsk_sha1digest_t Message_Digest) { int32_t i; if (!context || !Message_Digest) { return shaNull; } if (context->Corrupted) { return (tsk_sha1_errcode_t)context->Corrupted; } if (!context->Computed) { SHA1PadMessage(context); for(i=0; i<64; ++i) { /* message may be sensitive, clear it out */ context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1; } for(i = 0; i < TSK_SHA1_DIGEST_SIZE; ++i) { Message_Digest[i] = context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ); } return shaSuccess; } /**@ingroup tsk_sha1_group * * This function accepts an array of octets as the next portion of the message. * * @param context The sha1 context. * @param message_array An array of characters representing the next portion of the message. * @param length The @a length of the message in message_array * @retval @ref tsk_sha1_errcode_t code. */ tsk_sha1_errcode_t tsk_sha1input(tsk_sha1context_t *context, const uint8_t *message_array, unsigned length) { if (!length) { return shaSuccess; } if (!context || !message_array) { return shaNull; } if (context->Computed) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) { return (tsk_sha1_errcode_t)context->Corrupted; } while(length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); context->Length_Low += 8; if (context->Length_Low == 0) { context->Length_High++; if (context->Length_High == 0) { /* Message is too long */ context->Corrupted = 1; } } if (context->Message_Block_Index == 64) { SHA1ProcessMessageBlock(context); } message_array++; } return shaSuccess; } /**@ingroup tsk_sha1_group * * This function will process the next 512 bits of the message * stored in the Message_Block array. * * @param context The sha1 context. * */ void SHA1ProcessMessageBlock(tsk_sha1context_t *context) { /* * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. */ const uint32_t K[] = { /* Constants defined in SHA-1 */ 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int32_t t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for(t = 0; t < 16; t++) { W[t] = context->Message_Block[t * 4] << 24; W[t] |= context->Message_Block[t * 4 + 1] << 16; W[t] |= context->Message_Block[t * 4 + 2] << 8; W[t] |= context->Message_Block[t * 4 + 3]; } for(t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for(t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } /**@ingroup tsk_sha1_group * * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * @param context The sha1 context. * */ void SHA1PadMessage(tsk_sha1context_t *context) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 64) { context->Message_Block[context->Message_Block_Index++] = 0; } SHA1ProcessMessageBlock(context); while(context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index++] = 0; } } else { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index++] = 0; } } /* * Store the message length as the last 8 octets */ context->Message_Block[56] = context->Length_High >> 24; context->Message_Block[57] = context->Length_High >> 16; context->Message_Block[58] = context->Length_High >> 8; context->Message_Block[59] = context->Length_High; context->Message_Block[60] = context->Length_Low >> 24; context->Message_Block[61] = context->Length_Low >> 16; context->Message_Block[62] = context->Length_Low >> 8; context->Message_Block[63] = context->Length_Low; SHA1ProcessMessageBlock(context); } /**@ingroup tsk_sha1_group * Computes the sha1 digest result. * @param Message_Digest A pointer to the sha1 digest result. * @param context The sha1 context. */ void tsk_sha1final(uint8_t *Message_Digest, tsk_sha1context_t *context) { int32_t i; SHA1PadMessage(context); for(i = 0; i<64; ++i) { context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; for(i = 0; i < TSK_SHA1_DIGEST_SIZE; ++i) { Message_Digest[i] = context->Intermediate_Hash[i>>2] >> 8*(3-(i&0x03)); } } /**@ingroup tsk_sha1_group * Calculates sha1 digest result (hexadecimal string). * * @param input The input data for which to calculate the SHA-1 hash. * @param size The size of the input data. * @param result SHA-1 hash result as a hexadecimal string. * * @retval @ref tsk_sha1_errcode_t code. * @sa @ref TSK_SHA1_DIGEST_CALC **/ tsk_sha1_errcode_t tsk_sha1compute(const char* input, tsk_size_t size, tsk_sha1string_t *result) { tsk_sha1_errcode_t ret; tsk_sha1context_t sha; uint8_t digest[TSK_SHA1_DIGEST_SIZE]; (*result)[TSK_SHA1_STRING_SIZE] = '\0'; if( (ret = tsk_sha1reset(&sha)) != shaSuccess ) { return ret; } else if ( (ret = tsk_sha1input(&sha, (uint8_t*)input, (unsigned int)size)) != shaSuccess ) { return ret; } else if( (ret = tsk_sha1result(&sha, digest)) != shaSuccess ) { return ret; } tsk_str_from_hex(digest, TSK_SHA1_DIGEST_SIZE, (char*)*result); return shaSuccess; }