/* * This file is part of the coreboot project. * * Copyright (C) 2011 Chromium OS Authors * Copyright (C) 2013 Vladimir Serbinenko * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "nehalem.h" struct gt_powermeter { u16 reg; u32 value; }; static const struct gt_powermeter snb_pm_gt1[] = { {0xa200, 0xcc000000}, {0xa204, 0x07000040}, {0xa208, 0x0000fe00}, {0xa20c, 0x00000000}, {0xa210, 0x17000000}, {0xa214, 0x00000021}, {0xa218, 0x0817fe19}, {0xa21c, 0x00000000}, {0xa220, 0x00000000}, {0xa224, 0xcc000000}, {0xa228, 0x07000040}, {0xa22c, 0x0000fe00}, {0xa230, 0x00000000}, {0xa234, 0x17000000}, {0xa238, 0x00000021}, {0xa23c, 0x0817fe19}, {0xa240, 0x00000000}, {0xa244, 0x00000000}, {0xa248, 0x8000421e}, {0} }; static const struct gt_powermeter snb_pm_gt2[] = { {0xa200, 0x330000a6}, {0xa204, 0x402d0031}, {0xa208, 0x00165f83}, {0xa20c, 0xf1000000}, {0xa210, 0x00000000}, {0xa214, 0x00160016}, {0xa218, 0x002a002b}, {0xa21c, 0x00000000}, {0xa220, 0x00000000}, {0xa224, 0x330000a6}, {0xa228, 0x402d0031}, {0xa22c, 0x00165f83}, {0xa230, 0xf1000000}, {0xa234, 0x00000000}, {0xa238, 0x00160016}, {0xa23c, 0x002a002b}, {0xa240, 0x00000000}, {0xa244, 0x00000000}, {0xa248, 0x8000421e}, {0} }; static const struct gt_powermeter ivb_pm_gt1[] = { {0xa800, 0x00000000}, {0xa804, 0x00021c00}, {0xa808, 0x00000403}, {0xa80c, 0x02001700}, {0xa810, 0x05000200}, {0xa814, 0x00000000}, {0xa818, 0x00690500}, {0xa81c, 0x0000007f}, {0xa820, 0x01002501}, {0xa824, 0x00000300}, {0xa828, 0x01000331}, {0xa82c, 0x0000000c}, {0xa830, 0x00010016}, {0xa834, 0x01100101}, {0xa838, 0x00010103}, {0xa83c, 0x00041300}, {0xa840, 0x00000b30}, {0xa844, 0x00000000}, {0xa848, 0x7f000000}, {0xa84c, 0x05000008}, {0xa850, 0x00000001}, {0xa854, 0x00000004}, {0xa858, 0x00000007}, {0xa85c, 0x00000000}, {0xa860, 0x00010000}, {0xa248, 0x0000221e}, {0xa900, 0x00000000}, {0xa904, 0x00001c00}, {0xa908, 0x00000000}, {0xa90c, 0x06000000}, {0xa910, 0x09000200}, {0xa914, 0x00000000}, {0xa918, 0x00590000}, {0xa91c, 0x00000000}, {0xa920, 0x04002501}, {0xa924, 0x00000100}, {0xa928, 0x03000410}, {0xa92c, 0x00000000}, {0xa930, 0x00020000}, {0xa934, 0x02070106}, {0xa938, 0x00010100}, {0xa93c, 0x00401c00}, {0xa940, 0x00000000}, {0xa944, 0x00000000}, {0xa948, 0x10000e00}, {0xa94c, 0x02000004}, {0xa950, 0x00000001}, {0xa954, 0x00000004}, {0xa960, 0x00060000}, {0xaa3c, 0x00001c00}, {0xaa54, 0x00000004}, {0xaa60, 0x00060000}, {0} }; static const struct gt_powermeter ivb_pm_gt2_17w[] = { {0xa800, 0x20000000}, {0xa804, 0x000e3800}, {0xa808, 0x00000806}, {0xa80c, 0x0c002f00}, {0xa810, 0x0c000800}, {0xa814, 0x00000000}, {0xa818, 0x00d20d00}, {0xa81c, 0x000000ff}, {0xa820, 0x03004b02}, {0xa824, 0x00000600}, {0xa828, 0x07000773}, {0xa82c, 0x00000000}, {0xa830, 0x00020032}, {0xa834, 0x1520040d}, {0xa838, 0x00020105}, {0xa83c, 0x00083700}, {0xa840, 0x000016ff}, {0xa844, 0x00000000}, {0xa848, 0xff000000}, {0xa84c, 0x0a000010}, {0xa850, 0x00000002}, {0xa854, 0x00000008}, {0xa858, 0x0000000f}, {0xa85c, 0x00000000}, {0xa860, 0x00020000}, {0xa248, 0x0000221e}, {0xa900, 0x00000000}, {0xa904, 0x00003800}, {0xa908, 0x00000000}, {0xa90c, 0x0c000000}, {0xa910, 0x12000800}, {0xa914, 0x00000000}, {0xa918, 0x00b20000}, {0xa91c, 0x00000000}, {0xa920, 0x08004b02}, {0xa924, 0x00000300}, {0xa928, 0x01000820}, {0xa92c, 0x00000000}, {0xa930, 0x00030000}, {0xa934, 0x15150406}, {0xa938, 0x00020300}, {0xa93c, 0x00903900}, {0xa940, 0x00000000}, {0xa944, 0x00000000}, {0xa948, 0x20001b00}, {0xa94c, 0x0a000010}, {0xa950, 0x00000000}, {0xa954, 0x00000008}, {0xa960, 0x00110000}, {0xaa3c, 0x00003900}, {0xaa54, 0x00000008}, {0xaa60, 0x00110000}, {0} }; static const struct gt_powermeter ivb_pm_gt2_35w[] = { {0xa800, 0x00000000}, {0xa804, 0x00030400}, {0xa808, 0x00000806}, {0xa80c, 0x0c002f00}, {0xa810, 0x0c000300}, {0xa814, 0x00000000}, {0xa818, 0x00d20d00}, {0xa81c, 0x000000ff}, {0xa820, 0x03004b02}, {0xa824, 0x00000600}, {0xa828, 0x07000773}, {0xa82c, 0x00000000}, {0xa830, 0x00020032}, {0xa834, 0x1520040d}, {0xa838, 0x00020105}, {0xa83c, 0x00083700}, {0xa840, 0x000016ff}, {0xa844, 0x00000000}, {0xa848, 0xff000000}, {0xa84c, 0x0a000010}, {0xa850, 0x00000001}, {0xa854, 0x00000008}, {0xa858, 0x00000008}, {0xa85c, 0x00000000}, {0xa860, 0x00020000}, {0xa248, 0x0000221e}, {0xa900, 0x00000000}, {0xa904, 0x00003800}, {0xa908, 0x00000000}, {0xa90c, 0x0c000000}, {0xa910, 0x12000800}, {0xa914, 0x00000000}, {0xa918, 0x00b20000}, {0xa91c, 0x00000000}, {0xa920, 0x08004b02}, {0xa924, 0x00000300}, {0xa928, 0x01000820}, {0xa92c, 0x00000000}, {0xa930, 0x00030000}, {0xa934, 0x15150406}, {0xa938, 0x00020300}, {0xa93c, 0x00903900}, {0xa940, 0x00000000}, {0xa944, 0x00000000}, {0xa948, 0x20001b00}, {0xa94c, 0x0a000010}, {0xa950, 0x00000000}, {0xa954, 0x00000008}, {0xa960, 0x00110000}, {0xaa3c, 0x00003900}, {0xaa54, 0x00000008}, {0xaa60, 0x00110000}, {0} }; /* some vga option roms are used for several chipsets but they only have one * PCI ID in their header. If we encounter such an option rom, we need to do * the mapping ourselfes */ u32 map_oprom_vendev(u32 vendev) { u32 new_vendev = vendev; /* none curently. */ return new_vendev; } static struct resource *gtt_res = NULL; u32 gtt_read(u32 reg) { return read32(res2mmio(gtt_res, reg, 0)); } void gtt_write(u32 reg, u32 data) { write32(res2mmio(gtt_res, reg, 0), data); } static inline void gtt_write_powermeter(const struct gt_powermeter *pm) { for (; pm && pm->reg; pm++) gtt_write(pm->reg, pm->value); } #define GTT_RETRY 1000 int gtt_poll(u32 reg, u32 mask, u32 value) { unsigned try = GTT_RETRY; u32 data; while (try--) { data = gtt_read(reg); if ((data & mask) == value) return 1; udelay(10); } printk(BIOS_ERR, "GT init timeout\n"); return 0; } static void gma_pm_init_pre_vbios(struct device *dev) { u32 reg32; printk(BIOS_DEBUG, "GT Power Management Init\n"); gtt_res = find_resource(dev, PCI_BASE_ADDRESS_0); if (!gtt_res || !gtt_res->base) return; if (bridge_silicon_revision() < IVB_STEP_C0) { /* 1: Enable force wake */ gtt_write(0xa18c, 0x00000001); gtt_poll(0x130090, (1 << 0), (1 << 0)); } else { gtt_write(0xa180, 1 << 5); gtt_write(0xa188, 0xffff0001); gtt_poll(0x130040, (1 << 0), (1 << 0)); } if ((bridge_silicon_revision() & BASE_REV_MASK) == BASE_REV_SNB) { /* 1d: Set GTT+0x42004 [15:14]=11 (SnB C1+) */ reg32 = gtt_read(0x42004); reg32 |= (1 << 14) | (1 << 15); gtt_write(0x42004, reg32); } if (bridge_silicon_revision() >= IVB_STEP_A0) { /* Display Reset Acknowledge Settings */ reg32 = gtt_read(0x45010); reg32 |= (1 << 1) | (1 << 0); gtt_write(0x45010, reg32); } /* 2: Get GT SKU from GTT+0x911c[13] */ reg32 = gtt_read(0x911c); if ((bridge_silicon_revision() & BASE_REV_MASK) == BASE_REV_SNB) { if (reg32 & (1 << 13)) { printk(BIOS_DEBUG, "SNB GT1 Power Meter Weights\n"); gtt_write_powermeter(snb_pm_gt1); } else { printk(BIOS_DEBUG, "SNB GT2 Power Meter Weights\n"); gtt_write_powermeter(snb_pm_gt2); } } else { u32 unit = MCHBAR32(0x5938) & 0xf; if (reg32 & (1 << 13)) { /* GT1 SKU */ printk(BIOS_DEBUG, "IVB GT1 Power Meter Weights\n"); gtt_write_powermeter(ivb_pm_gt1); } else { /* GT2 SKU */ u32 tdp = MCHBAR32(0x5930) & 0x7fff; tdp /= (1 << unit); if (tdp <= 17) { /* <=17W ULV */ printk(BIOS_DEBUG, "IVB GT2 17W " "Power Meter Weights\n"); gtt_write_powermeter(ivb_pm_gt2_17w); } else if ((tdp >= 25) && (tdp <= 35)) { /* 25W-35W */ printk(BIOS_DEBUG, "IVB GT2 25W-35W " "Power Meter Weights\n"); gtt_write_powermeter(ivb_pm_gt2_35w); } else { /* All others */ printk(BIOS_DEBUG, "IVB GT2 35W " "Power Meter Weights\n"); gtt_write_powermeter(ivb_pm_gt2_35w); } } } /* 3: Gear ratio map */ gtt_write(0xa004, 0x00000010); /* 4: GFXPAUSE */ gtt_write(0xa000, 0x00070020); /* 5: Dynamic EU trip control */ gtt_write(0xa080, 0x00000004); /* 6: ECO bits */ reg32 = gtt_read(0xa180); reg32 |= (1 << 26) | (1 << 31); /* (bit 20=1 for SNB step D1+ / IVB A0+) */ if (bridge_silicon_revision() >= SNB_STEP_D1) reg32 |= (1 << 20); gtt_write(0xa180, reg32); /* 6a: for SnB step D2+ only */ if (((bridge_silicon_revision() & BASE_REV_MASK) == BASE_REV_SNB) && (bridge_silicon_revision() >= SNB_STEP_D2)) { reg32 = gtt_read(0x9400); reg32 |= (1 << 7); gtt_write(0x9400, reg32); reg32 = gtt_read(0x941c); reg32 &= 0xf; reg32 |= (1 << 1); gtt_write(0x941c, reg32); gtt_poll(0x941c, (1 << 1), (0 << 1)); } if ((bridge_silicon_revision() & BASE_REV_MASK) == BASE_REV_IVB) { reg32 = gtt_read(0x907c); reg32 |= (1 << 16); gtt_write(0x907c, reg32); /* 6b: Clocking reset controls */ gtt_write(0x9424, 0x00000001); } else { /* 6b: Clocking reset controls */ gtt_write(0x9424, 0x00000000); } /* 7 */ if (gtt_poll(0x138124, (1 << 31), (0 << 31))) { gtt_write(0x138128, 0x00000029); /* Mailbox Data */ gtt_write(0x138124, 0x80000004); /* Mailbox Cmd for RC6 VID */ if (gtt_poll(0x138124, (1 << 31), (0 << 31))) gtt_write(0x138124, 0x8000000a); gtt_poll(0x138124, (1 << 31), (0 << 31)); } /* 8 */ gtt_write(0xa090, 0x00000000); /* RC Control */ gtt_write(0xa098, 0x03e80000); /* RC1e Wake Rate Limit */ gtt_write(0xa09c, 0x0028001e); /* RC6/6p Wake Rate Limit */ gtt_write(0xa0a0, 0x0000001e); /* RC6pp Wake Rate Limit */ gtt_write(0xa0a8, 0x0001e848); /* RC Evaluation Interval */ gtt_write(0xa0ac, 0x00000019); /* RC Idle Hysteresis */ /* 9 */ gtt_write(0x2054, 0x0000000a); /* Render Idle Max Count */ gtt_write(0x12054, 0x0000000a); /* Video Idle Max Count */ gtt_write(0x22054, 0x0000000a); /* Blitter Idle Max Count */ /* 10 */ gtt_write(0xa0b0, 0x00000000); /* Unblock Ack to Busy */ gtt_write(0xa0b4, 0x000003e8); /* RC1e Threshold */ gtt_write(0xa0b8, 0x0000c350); /* RC6 Threshold */ gtt_write(0xa0bc, 0x000186a0); /* RC6p Threshold */ gtt_write(0xa0c0, 0x0000fa00); /* RC6pp Threshold */ /* 11 */ gtt_write(0xa010, 0x000f4240); /* RP Down Timeout */ gtt_write(0xa014, 0x12060000); /* RP Interrupt Limits */ gtt_write(0xa02c, 0x00015f90); /* RP Up Threshold */ gtt_write(0xa030, 0x000186a0); /* RP Down Threshold */ gtt_write(0xa068, 0x000186a0); /* RP Up EI */ gtt_write(0xa06c, 0x000493e0); /* RP Down EI */ gtt_write(0xa070, 0x0000000a); /* RP Idle Hysteresis */ /* 11a: Enable Render Standby (RC6) */ if ((bridge_silicon_revision() & BASE_REV_MASK) == BASE_REV_IVB) { /* * IvyBridge should also support DeepRenderStandby. * * Unfortunately it does not work reliably on all SKUs so * disable it here and it can be enabled by the kernel. */ gtt_write(0xa090, 0x88040000); /* HW RC Control */ } else { gtt_write(0xa090, 0x88040000); /* HW RC Control */ } /* 12: Normal Frequency Request */ /* RPNFREQ_VAL comes from MCHBAR 0x5998 23:16 (8 bits!? use 7) */ reg32 = MCHBAR32(0x5998); reg32 >>= 16; reg32 &= 0xef; reg32 <<= 25; gtt_write(0xa008, reg32); /* 13: RP Control */ gtt_write(0xa024, 0x00000592); /* 14: Enable PM Interrupts */ gtt_write(0x4402c, 0x03000076); /* Clear 0x6c024 [8:6] */ reg32 = gtt_read(0x6c024); reg32 &= ~0x000001c0; gtt_write(0x6c024, reg32); } static void gma_pm_init_post_vbios(struct device *dev) { struct northbridge_intel_nehalem_config *conf = dev->chip_info; u32 reg32; printk(BIOS_DEBUG, "GT Power Management Init (post VBIOS)\n"); /* 15: Deassert Force Wake */ if (bridge_silicon_revision() < IVB_STEP_C0) { gtt_write(0xa18c, gtt_read(0xa18c) & ~1); gtt_poll(0x130090, (1 << 0), (0 << 0)); } else { gtt_write(0xa188, 0x1fffe); if (gtt_poll(0x130040, (1 << 0), (0 << 0))) gtt_write(0xa188, gtt_read(0xa188) | 1); } /* 16: SW RC Control */ gtt_write(0xa094, 0x00060000); /* Setup Digital Port Hotplug */ reg32 = gtt_read(0xc4030); if (!reg32) { reg32 = (conf->gpu_dp_b_hotplug & 0x7) << 2; reg32 |= (conf->gpu_dp_c_hotplug & 0x7) << 10; reg32 |= (conf->gpu_dp_d_hotplug & 0x7) << 18; gtt_write(0xc4030, reg32); } /* Setup Panel Power On Delays */ reg32 = gtt_read(0xc7208); if (!reg32) { reg32 = (conf->gpu_panel_port_select & 0x3) << 30; reg32 |= (conf->gpu_panel_power_up_delay & 0x1fff) << 16; reg32 |= (conf->gpu_panel_power_backlight_on_delay & 0x1fff); gtt_write(0xc7208, reg32); } /* Setup Panel Power Off Delays */ reg32 = gtt_read(0xc720c); if (!reg32) { reg32 = (conf->gpu_panel_power_down_delay & 0x1fff) << 16; reg32 |= (conf->gpu_panel_power_backlight_off_delay & 0x1fff); gtt_write(0xc720c, reg32); } /* Setup Panel Power Cycle Delay */ if (conf->gpu_panel_power_cycle_delay) { reg32 = gtt_read(0xc7210); reg32 &= ~0xff; reg32 |= conf->gpu_panel_power_cycle_delay & 0xff; gtt_write(0xc7210, reg32); } /* Enable Backlight if needed */ if (conf->gpu_cpu_backlight) { gtt_write(0x48250, (1 << 31)); gtt_write(0x48254, conf->gpu_cpu_backlight); } if (conf->gpu_pch_backlight) { gtt_write(0xc8250, (1 << 31)); gtt_write(0xc8254, conf->gpu_pch_backlight); } } #if IS_ENABLED(CONFIG_MAINBOARD_DO_NATIVE_VGA_INIT) static void train_link(u8 *mmio) { /* Clear interrupts. */ write32(mmio + DEIIR, 0xffffffff); write32(mmio + 0x000f0018, 0x000000ff); write32(mmio + 0x000f1018, 0x000000ff); write32(mmio + 0x000f000c, 0x001a2050); write32(mmio + 0x00060100, 0x001c4000); write32(mmio + 0x00060100, 0x801c4000); write32(mmio + 0x000f000c, 0x801a2050); write32(mmio + 0x00060100, 0x801c4000); write32(mmio + 0x000f000c, 0x801a2050); mdelay(1); read32(mmio + 0x000f0014); // = 0x00000100 write32(mmio + 0x000f0014, 0x00000100); write32(mmio + 0x00060100, 0x901c4000); write32(mmio + 0x000f000c, 0x901a2050); mdelay(1); read32(mmio + 0x000f0014); // = 0x00000600 } static void power_port(u8 *mmio) { read32(mmio + 0x000e1100); // = 0x00000000 write32(mmio + 0x000e1100, 0x00000000); write32(mmio + 0x000e1100, 0x00010000); read32(mmio + 0x000e1100); // = 0x00010000 read32(mmio + 0x000e1100); // = 0x00010000 read32(mmio + 0x000e1100); // = 0x00000000 write32(mmio + 0x000e1100, 0x00000000); read32(mmio + 0x000e1100); // = 0x00000000 read32(mmio + 0x000e4200); // = 0x0000001c write32(mmio + 0x000e4210, 0x8004003e); write32(mmio + 0x000e4214, 0x80060002); write32(mmio + 0x000e4218, 0x01000000); read32(mmio + 0x000e4210); // = 0x5144003e write32(mmio + 0x000e4210, 0x5344003e); read32(mmio + 0x000e4210); // = 0x0144003e write32(mmio + 0x000e4210, 0x8074003e); read32(mmio + 0x000e4210); // = 0x5144003e read32(mmio + 0x000e4210); // = 0x5144003e write32(mmio + 0x000e4210, 0x5344003e); read32(mmio + 0x000e4210); // = 0x0144003e write32(mmio + 0x000e4210, 0x8074003e); read32(mmio + 0x000e4210); // = 0x5144003e read32(mmio + 0x000e4210); // = 0x5144003e write32(mmio + 0x000e4210, 0x5344003e); read32(mmio + 0x000e4210); // = 0x0144003e write32(mmio + 0x000e4210, 0x8074003e); read32(mmio + 0x000e4210); // = 0x5144003e read32(mmio + 0x000e4210); // = 0x5144003e write32(mmio + 0x000e4210, 0x5344003e); write32(mmio + 0x000e4f00, 0x0100030c); write32(mmio + 0x000e4f04, 0x00b8230c); write32(mmio + 0x000e4f08, 0x06f8930c); write32(mmio + 0x000e4f0c, 0x09f8e38e); write32(mmio + 0x000e4f10, 0x00b8030c); write32(mmio + 0x000e4f14, 0x0b78830c); write32(mmio + 0x000e4f18, 0x0ff8d3cf); write32(mmio + 0x000e4f1c, 0x01e8030c); write32(mmio + 0x000e4f20, 0x0ff863cf); write32(mmio + 0x000e4f24, 0x0ff803cf); write32(mmio + 0x000c4030, 0x00001000); read32(mmio + 0x000c4000); // = 0x00000000 write32(mmio + 0x000c4030, 0x00001000); read32(mmio + 0x000e1150); // = 0x0000001c write32(mmio + 0x000e1150, 0x0000089c); write32(mmio + 0x000fcc00, 0x01986f00); write32(mmio + 0x000fcc0c, 0x01986f00); write32(mmio + 0x000fcc18, 0x01986f00); write32(mmio + 0x000fcc24, 0x01986f00); read32(mmio + 0x000c4000); // = 0x00000000 read32(mmio + 0x000e1180); // = 0x40000002 } static void intel_gma_init(const struct northbridge_intel_nehalem_config *info, u8 *mmio, u32 physbase, u16 piobase, u32 lfb) { int i; u8 edid_data[128]; struct edid edid; u32 hactive, vactive, right_border, bottom_border; int hpolarity, vpolarity; u32 vsync, hsync, vblank, hblank, hfront_porch, vfront_porch; u32 candp1, candn; u32 best_delta = 0xffffffff; u32 target_frequency; u32 pixel_p1 = 1; u32 pixel_n = 1; u32 pixel_m1 = 1; u32 pixel_m2 = 1; u32 link_frequency = info->gfx.link_frequency_270_mhz ? 270000 : 162000; u32 data_m1; u32 data_n1 = 0x00800000; u32 link_m1; u32 link_n1 = 0x00080000; write32(mmio + 0x00070080, 0x00000000); write32(mmio + DSPCNTR(0), 0x00000000); write32(mmio + 0x00071180, 0x00000000); write32(mmio + CPU_VGACNTRL, 0x0000298e | VGA_DISP_DISABLE); write32(mmio + 0x0007019c, 0x00000000); write32(mmio + 0x0007119c, 0x00000000); write32(mmio + 0x000fc008, 0x2c010000); write32(mmio + 0x000fc020, 0x2c010000); write32(mmio + 0x000fc038, 0x2c010000); write32(mmio + 0x000fc050, 0x2c010000); write32(mmio + 0x000fc408, 0x2c010000); write32(mmio + 0x000fc420, 0x2c010000); write32(mmio + 0x000fc438, 0x2c010000); write32(mmio + 0x000fc450, 0x2c010000); vga_gr_write(0x18, 0); write32(mmio + 0x00042004, 0x02000000); write32(mmio + 0x000fd034, 0x8421ffe0); /* Setup GTT. */ for (i = 0; i < 0x2000; i++) { outl((i << 2) | 1, piobase); outl(physbase + (i << 12) + 1, piobase + 4); } vga_misc_write(0x67); const u8 cr[] = { 0x5f, 0x4f, 0x50, 0x82, 0x55, 0x81, 0xbf, 0x1f, 0x00, 0x4f, 0x0d, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x9c, 0x8e, 0x8f, 0x28, 0x1f, 0x96, 0xb9, 0xa3, 0xff }; vga_cr_write(0x11, 0); for (i = 0; i <= 0x18; i++) vga_cr_write(i, cr[i]); power_port(mmio); intel_gmbus_read_edid(mmio + PCH_GMBUS0, 3, 0x50, edid_data, 128); intel_gmbus_stop(mmio + PCH_GMBUS0); decode_edid(edid_data, sizeof(edid_data), &edid); /* Disable screen memory to prevent garbage from appearing. */ vga_sr_write(1, vga_sr_read(1) | 0x20); hactive = edid.x_resolution; vactive = edid.y_resolution; right_border = edid.hborder; bottom_border = edid.vborder; hpolarity = (edid.phsync == '-'); vpolarity = (edid.pvsync == '-'); vsync = edid.vspw; hsync = edid.hspw; vblank = edid.vbl; hblank = edid.hbl; hfront_porch = edid.hso; vfront_porch = edid.vso; target_frequency = info->gfx.lvds_dual_channel ? edid.pixel_clock : (2 * edid.pixel_clock); vga_textmode_init(); #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) vga_sr_write(1, 1); vga_sr_write(0x2, 0xf); vga_sr_write(0x3, 0x0); vga_sr_write(0x4, 0xe); vga_gr_write(0, 0x0); vga_gr_write(1, 0x0); vga_gr_write(2, 0x0); vga_gr_write(3, 0x0); vga_gr_write(4, 0x0); vga_gr_write(5, 0x0); vga_gr_write(6, 0x5); vga_gr_write(7, 0xf); vga_gr_write(0x10, 0x1); vga_gr_write(0x11, 0); edid.bytes_per_line = (edid.bytes_per_line + 63) & ~63; write32(mmio + DSPCNTR(0), DISPPLANE_BGRX888); write32(mmio + DSPADDR(0), 0); write32(mmio + DSPSTRIDE(0), edid.bytes_per_line); write32(mmio + DSPSURF(0), 0); for (i = 0; i < 0x100; i++) write32(mmio + LGC_PALETTE(0) + 4 * i, i * 0x010101); #endif /* Find suitable divisors. */ for (candp1 = 1; candp1 <= 8; candp1++) { for (candn = 5; candn <= 10; candn++) { u32 cur_frequency; u32 m; /* 77 - 131. */ u32 denom; /* 35 - 560. */ u32 current_delta; denom = candn * candp1 * 7; /* Doesnt overflow for up to 5000000 kHz = 5 GHz. */ m = (target_frequency * denom + 60000) / 120000; if (m < 77 || m > 131) continue; cur_frequency = (120000 * m) / denom; if (target_frequency > cur_frequency) current_delta = target_frequency - cur_frequency; else current_delta = cur_frequency - target_frequency; if (best_delta > current_delta) { best_delta = current_delta; pixel_n = candn; pixel_p1 = candp1; pixel_m2 = ((m + 3) % 5) + 7; pixel_m1 = (m - pixel_m2) / 5; } } } if (best_delta == 0xffffffff) { printk (BIOS_ERR, "Couldn't find GFX clock divisors\n"); return; } link_m1 = ((uint64_t)link_n1 * edid.pixel_clock) / link_frequency; data_m1 = ((uint64_t)data_n1 * 18 * edid.pixel_clock) / (link_frequency * 8 * (info->gfx.lvds_num_lanes ? : 4)); printk(BIOS_INFO, "bringing up panel at resolution %d x %d\n", hactive, vactive); printk(BIOS_DEBUG, "Borders %d x %d\n", right_border, bottom_border); printk(BIOS_DEBUG, "Blank %d x %d\n", hblank, vblank); printk(BIOS_DEBUG, "Sync %d x %d\n", hsync, vsync); printk(BIOS_DEBUG, "Front porch %d x %d\n", hfront_porch, vfront_porch); printk(BIOS_DEBUG, (info->gfx.use_spread_spectrum_clock ? "Spread spectrum clock\n" : "DREF clock\n")); printk(BIOS_DEBUG, info->gfx.lvds_dual_channel ? "Dual channel\n" : "Single channel\n"); printk(BIOS_DEBUG, "Polarities %d, %d\n", hpolarity, vpolarity); printk(BIOS_DEBUG, "Data M1=%d, N1=%d\n", data_m1, data_n1); printk(BIOS_DEBUG, "Link frequency %d kHz\n", link_frequency); printk(BIOS_DEBUG, "Link M1=%d, N1=%d\n", link_m1, link_n1); printk(BIOS_DEBUG, "Pixel N=%d, M1=%d, M2=%d, P1=%d\n", pixel_n, pixel_m1, pixel_m2, pixel_p1); printk(BIOS_DEBUG, "Pixel clock %d kHz\n", 120000 * (5 * pixel_m1 + pixel_m2) / pixel_n / (pixel_p1 * 7)); write32(mmio + PCH_LVDS, (hpolarity << 20) | (vpolarity << 21) | (info->gfx.lvds_dual_channel ? LVDS_CLOCK_B_POWERUP_ALL | LVDS_CLOCK_BOTH_POWERUP_ALL : 0) | LVDS_BORDER_ENABLE | LVDS_CLOCK_A_POWERUP_ALL | LVDS_DETECTED); write32(mmio + BLC_PWM_CPU_CTL2, (1 << 31)); write32(mmio + PCH_DREF_CONTROL, (info->gfx.use_spread_spectrum_clock ? 0x1002 : 0x400)); mdelay(1); write32(mmio + PCH_PP_CONTROL, PANEL_UNLOCK_REGS | (read32(mmio + PCH_PP_CONTROL) & ~PANEL_UNLOCK_MASK)); write32(mmio + _PCH_FP0(0), ((pixel_n - 2) << 16) | ((pixel_m1 - 2) << 8) | pixel_m2); write32(mmio + _PCH_DPLL(0), DPLL_VCO_ENABLE | DPLLB_MODE_LVDS | (info->gfx.lvds_dual_channel ? DPLLB_LVDS_P2_CLOCK_DIV_7 : DPLLB_LVDS_P2_CLOCK_DIV_14) | (0x10000 << (pixel_p1 - 1)) | ((info->gfx.use_spread_spectrum_clock ? 3 : 0) << 13) | (0x1 << (pixel_p1 - 1))); mdelay(1); write32(mmio + _PCH_DPLL(0), DPLL_VCO_ENABLE | DPLLB_MODE_LVDS | (info->gfx.lvds_dual_channel ? DPLLB_LVDS_P2_CLOCK_DIV_7 : DPLLB_LVDS_P2_CLOCK_DIV_14) | (0x10000 << (pixel_p1 - 1)) | ((info->gfx.use_spread_spectrum_clock ? 3 : 0) << 13) | (0x1 << (pixel_p1 - 1))); /* Re-lock the registers. */ write32(mmio + PCH_PP_CONTROL, (read32(mmio + PCH_PP_CONTROL) & ~PANEL_UNLOCK_MASK)); write32(mmio + PCH_LVDS, (hpolarity << 20) | (vpolarity << 21) | (info->gfx.lvds_dual_channel ? LVDS_CLOCK_B_POWERUP_ALL | LVDS_CLOCK_BOTH_POWERUP_ALL : 0) | LVDS_BORDER_ENABLE | LVDS_CLOCK_A_POWERUP_ALL | LVDS_DETECTED); write32(mmio + HTOTAL(0), ((hactive + right_border + hblank - 1) << 16) | (hactive - 1)); write32(mmio + HBLANK(0), ((hactive + right_border + hblank - 1) << 16) | (hactive + right_border - 1)); write32(mmio + HSYNC(0), ((hactive + right_border + hfront_porch + hsync - 1) << 16) | (hactive + right_border + hfront_porch - 1)); write32(mmio + VTOTAL(0), ((vactive + bottom_border + vblank - 1) << 16) | (vactive - 1)); write32(mmio + VBLANK(0), ((vactive + bottom_border + vblank - 1) << 16) | (vactive + bottom_border - 1)); write32(mmio + VSYNC(0), (vactive + bottom_border + vfront_porch + vsync - 1) | (vactive + bottom_border + vfront_porch - 1)); write32(mmio + PIPECONF(0), PIPECONF_DISABLE); write32(mmio + PF_WIN_POS(0), 0); #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) write32(mmio + PIPESRC(0), ((hactive - 1) << 16) | (vactive - 1)); write32(mmio + PF_CTL(0),0); write32(mmio + PF_WIN_SZ(0), 0); #else write32(mmio + PIPESRC(0), (639 << 16) | 399); write32(mmio + PF_CTL(0),PF_ENABLE | PF_FILTER_MED_3x3); write32(mmio + PF_WIN_SZ(0), vactive | (hactive << 16)); #endif mdelay(1); write32(mmio + PIPE_DATA_M1(0), 0x7e000000 | data_m1); write32(mmio + PIPE_DATA_N1(0), data_n1); write32(mmio + PIPE_LINK_M1(0), link_m1); write32(mmio + PIPE_LINK_N1(0), link_n1); write32(mmio + 0x000f000c, 0x00002040); mdelay(1); write32(mmio + 0x000f000c, 0x00002050); write32(mmio + 0x00060100, 0x00044000); mdelay(1); write32(mmio + PIPECONF(0), PIPECONF_BPP_6); write32(mmio + 0x000f0008, 0x00000040); write32(mmio + 0x000f000c, 0x00022050); write32(mmio + PIPECONF(0), PIPECONF_BPP_6 | PIPECONF_DITHER_EN); write32(mmio + PIPECONF(0), PIPECONF_ENABLE | PIPECONF_BPP_6 | PIPECONF_DITHER_EN); #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) write32(mmio + CPU_VGACNTRL, 0x20298e | VGA_DISP_DISABLE); #else write32(mmio + CPU_VGACNTRL, 0x20298e); #endif train_link(mmio); #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) write32(mmio + DSPCNTR(0), DISPLAY_PLANE_ENABLE | DISPPLANE_BGRX888); mdelay(1); #endif write32(mmio + TRANS_HTOTAL(0), ((hactive + right_border + hblank - 1) << 16) | (hactive - 1)); write32(mmio + TRANS_HBLANK(0), ((hactive + right_border + hblank - 1) << 16) | (hactive + right_border - 1)); write32(mmio + TRANS_HSYNC(0), ((hactive + right_border + hfront_porch + hsync - 1) << 16) | (hactive + right_border + hfront_porch - 1)); write32(mmio + TRANS_VTOTAL(0), ((vactive + bottom_border + vblank - 1) << 16) | (vactive - 1)); write32(mmio + TRANS_VBLANK(0), ((vactive + bottom_border + vblank - 1) << 16) | (vactive + bottom_border - 1)); write32(mmio + TRANS_VSYNC(0), (vactive + bottom_border + vfront_porch + vsync - 1) | (vactive + bottom_border + vfront_porch - 1)); write32(mmio + 0x00060100, 0xb01c4000); write32(mmio + 0x000f000c, 0xb01a2050); mdelay(1); write32(mmio + TRANSCONF(0), TRANS_ENABLE | TRANS_6BPC #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) | TRANS_STATE_MASK #endif ); write32(mmio + PCH_LVDS, LVDS_PORT_ENABLE | (hpolarity << 20) | (vpolarity << 21) | (info->gfx.lvds_dual_channel ? LVDS_CLOCK_B_POWERUP_ALL | LVDS_CLOCK_BOTH_POWERUP_ALL : 0) | LVDS_BORDER_ENABLE | LVDS_CLOCK_A_POWERUP_ALL | LVDS_DETECTED); write32(mmio + PCH_PP_CONTROL, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); write32(mmio + PCH_PP_CONTROL, PANEL_UNLOCK_REGS | PANEL_POWER_RESET); mdelay(1); write32(mmio + PCH_PP_CONTROL, PANEL_UNLOCK_REGS | PANEL_POWER_ON | PANEL_POWER_RESET); printk (BIOS_DEBUG, "waiting for panel powerup\n"); while (1) { u32 reg32; reg32 = read32(mmio + PCH_PP_STATUS); if (((reg32 >> 28) & 3) == 0) break; } printk (BIOS_DEBUG, "panel powered up\n"); write32(mmio + PCH_PP_CONTROL, PANEL_POWER_ON | PANEL_POWER_RESET); /* Enable screen memory. */ vga_sr_write(1, vga_sr_read(1) & ~0x20); /* Clear interrupts. */ write32(mmio + DEIIR, 0xffffffff); write32(mmio + SDEIIR, 0xffffffff); /* Doesn't change any hw behaviour but vga oprom expects it there. */ write32(mmio + 0x0004f040, 0x01000008); write32(mmio + 0x0004f04c, 0x7f7f0000); write32(mmio + 0x0004f054, 0x0000020d); #if IS_ENABLED(CONFIG_FRAMEBUFFER_KEEP_VESA_MODE) memset ((void *) lfb, 0, edid.x_resolution * edid.y_resolution * 4); set_vbe_mode_info_valid(&edid, lfb); #endif } #endif static void gma_func0_init(struct device *dev) { u32 reg32; /* IGD needs to be Bus Master */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; pci_write_config32(dev, PCI_COMMAND, reg32); /* Init graphics power management */ gma_pm_init_pre_vbios(dev); #if !CONFIG_MAINBOARD_DO_NATIVE_VGA_INIT /* PCI Init, will run VBIOS */ pci_dev_init(dev); #else u32 physbase; struct northbridge_intel_nehalem_config *conf = dev->chip_info; struct resource *lfb_res; struct resource *pio_res; lfb_res = find_resource(dev, PCI_BASE_ADDRESS_2); pio_res = find_resource(dev, PCI_BASE_ADDRESS_4); physbase = pci_read_config32(dev, 0x5c) & ~0xf; if (gtt_res && gtt_res->base && physbase && pio_res && pio_res->base && lfb_res && lfb_res->base) { printk(BIOS_SPEW, "Initializing VGA without OPROM. MMIO 0x%llx\n", gtt_res->base); intel_gma_init(conf, res2mmio(gtt_res, 0, 0), physbase, pio_res->base, lfb_res->base); } /* Linux relies on VBT for panel info. */ generate_fake_intel_oprom(&conf->gfx, dev, "$VBT IRONLAKE-MOBILE"); #endif /* Post VBIOS init */ gma_pm_init_post_vbios(dev); } static void gma_set_subsystem(device_t dev, unsigned vendor, unsigned device) { if (!vendor || !device) { pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID, pci_read_config32(dev, PCI_VENDOR_ID)); } else { pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID, ((device & 0xffff) << 16) | (vendor & 0xffff)); } } static void gma_read_resources(struct device *dev) { pci_dev_read_resources(dev); struct resource *res; /* Set the graphics memory to write combining. */ res = find_resource(dev, PCI_BASE_ADDRESS_2); if (res == NULL) { printk(BIOS_DEBUG, "gma: memory resource not found.\n"); return; } res->flags |= IORESOURCE_RESERVE | IORESOURCE_FIXED | IORESOURCE_ASSIGNED; pci_write_config32(dev, PCI_BASE_ADDRESS_2, 0xd0000001); pci_write_config32(dev, PCI_BASE_ADDRESS_2 + 4, 0); res->base = (resource_t) 0xd0000000; res->size = (resource_t) 0x10000000; } const struct i915_gpu_controller_info * intel_gma_get_controller_info(void) { device_t dev = dev_find_slot(0, PCI_DEVFN(0x2,0)); if (!dev) { return NULL; } struct northbridge_intel_nehalem_config *chip = dev->chip_info; return &chip->gfx; } static void gma_ssdt(device_t device) { const struct i915_gpu_controller_info *gfx = intel_gma_get_controller_info(); if (!gfx) { return; } drivers_intel_gma_displays_ssdt_generate(gfx); } static struct pci_operations gma_pci_ops = { .set_subsystem = gma_set_subsystem, }; static struct device_operations gma_func0_ops = { .read_resources = gma_read_resources, .set_resources = pci_dev_set_resources, .enable_resources = pci_dev_enable_resources, .acpi_fill_ssdt_generator = gma_ssdt, .init = gma_func0_init, .scan_bus = 0, .enable = 0, .ops_pci = &gma_pci_ops, }; static const unsigned short pci_device_ids[] = { 0x0046, 0x0102, 0x0106, 0x010a, 0x0112, 0x0116, 0x0122, 0x0126, 0x0156, 0x0166, 0 }; static const struct pci_driver gma __pci_driver = { .ops = &gma_func0_ops, .vendor = PCI_VENDOR_ID_INTEL, .devices = pci_device_ids, };