/* linear.c : Multiple Devices driver for Linux Copyright (C) 1994-96 Marc ZYNGIER or Linear mode management functions. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include /* * find which device holds a particular offset */ static inline dev_info_t *which_dev(mddev_t *mddev, sector_t sector) { dev_info_t *hash; linear_conf_t *conf = mddev_to_conf(mddev); sector_t idx = sector >> conf->sector_shift; /* * sector_div(a,b) returns the remainer and sets a to a/b */ (void)sector_div(idx, conf->spacing); hash = conf->hash_table[idx]; while (sector >= hash->num_sectors + hash->start_sector) hash++; return hash; } /** * linear_mergeable_bvec -- tell bio layer if two requests can be merged * @q: request queue * @bvm: properties of new bio * @biovec: the request that could be merged to it. * * Return amount of bytes we can take at this offset */ static int linear_mergeable_bvec(struct request_queue *q, struct bvec_merge_data *bvm, struct bio_vec *biovec) { mddev_t *mddev = q->queuedata; dev_info_t *dev0; unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9; sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); dev0 = which_dev(mddev, sector); maxsectors = dev0->num_sectors - (sector - dev0->start_sector); if (maxsectors < bio_sectors) maxsectors = 0; else maxsectors -= bio_sectors; if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0) return biovec->bv_len; /* The bytes available at this offset could be really big, * so we cap at 2^31 to avoid overflow */ if (maxsectors > (1 << (31-9))) return 1<<31; return maxsectors << 9; } static void linear_unplug(struct request_queue *q) { mddev_t *mddev = q->queuedata; linear_conf_t *conf = mddev_to_conf(mddev); int i; for (i=0; i < mddev->raid_disks; i++) { struct request_queue *r_queue = bdev_get_queue(conf->disks[i].rdev->bdev); blk_unplug(r_queue); } } static int linear_congested(void *data, int bits) { mddev_t *mddev = data; linear_conf_t *conf = mddev_to_conf(mddev); int i, ret = 0; for (i = 0; i < mddev->raid_disks && !ret ; i++) { struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } return ret; } static linear_conf_t *linear_conf(mddev_t *mddev, int raid_disks) { linear_conf_t *conf; dev_info_t **table; mdk_rdev_t *rdev; int i, nb_zone, cnt; sector_t min_sectors; sector_t curr_sector; struct list_head *tmp; conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(dev_info_t), GFP_KERNEL); if (!conf) return NULL; cnt = 0; conf->array_sectors = 0; rdev_for_each(rdev, tmp, mddev) { int j = rdev->raid_disk; dev_info_t *disk = conf->disks + j; if (j < 0 || j >= raid_disks || disk->rdev) { printk("linear: disk numbering problem. Aborting!\n"); goto out; } disk->rdev = rdev; blk_queue_stack_limits(mddev->queue, rdev->bdev->bd_disk->queue); /* as we don't honour merge_bvec_fn, we must never risk * violating it, so limit ->max_sector to one PAGE, as * a one page request is never in violation. */ if (rdev->bdev->bd_disk->queue->merge_bvec_fn && mddev->queue->max_sectors > (PAGE_SIZE>>9)) blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); disk->num_sectors = rdev->size * 2; conf->array_sectors += rdev->size * 2; cnt++; } if (cnt != raid_disks) { printk("linear: not enough drives present. Aborting!\n"); goto out; } min_sectors = conf->array_sectors; sector_div(min_sectors, PAGE_SIZE/sizeof(struct dev_info *)); if (min_sectors == 0) min_sectors = 1; /* min_sectors is the minimum spacing that will fit the hash * table in one PAGE. This may be much smaller than needed. * We find the smallest non-terminal set of consecutive devices * that is larger than min_sectors and use the size of that as * the actual spacing */ conf->spacing = conf->array_sectors; for (i=0; i < cnt-1 ; i++) { sector_t tmp = 0; int j; for (j = i; j < cnt - 1 && tmp < min_sectors; j++) tmp += conf->disks[j].num_sectors; if (tmp >= min_sectors && tmp < conf->spacing) conf->spacing = tmp; } /* spacing may be too large for sector_div to work with, * so we might need to pre-shift */ conf->sector_shift = 0; if (sizeof(sector_t) > sizeof(u32)) { sector_t space = conf->spacing; while (space > (sector_t)(~(u32)0)) { space >>= 1; conf->sector_shift++; } } /* * This code was restructured to work around a gcc-2.95.3 internal * compiler error. Alter it with care. */ { sector_t sz; unsigned round; unsigned long base; sz = conf->array_sectors >> conf->sector_shift; sz += 1; /* force round-up */ base = conf->spacing >> conf->sector_shift; round = sector_div(sz, base); nb_zone = sz + (round ? 1 : 0); } BUG_ON(nb_zone > PAGE_SIZE / sizeof(struct dev_info *)); conf->hash_table = kmalloc (sizeof (struct dev_info *) * nb_zone, GFP_KERNEL); if (!conf->hash_table) goto out; /* * Here we generate the linear hash table * First calculate the device offsets. */ conf->disks[0].start_sector = 0; for (i = 1; i < raid_disks; i++) conf->disks[i].start_sector = conf->disks[i-1].start_sector + conf->disks[i-1].num_sectors; table = conf->hash_table; i = 0; for (curr_sector = 0; curr_sector < conf->array_sectors; curr_sector += conf->spacing) { while (i < raid_disks-1 && curr_sector >= conf->disks[i+1].start_sector) i++; *table ++ = conf->disks + i; } if (conf->sector_shift) { conf->spacing >>= conf->sector_shift; /* round spacing up so that when we divide by it, * we err on the side of "too-low", which is safest. */ conf->spacing++; } BUG_ON(table - conf->hash_table > nb_zone); return conf; out: kfree(conf); return NULL; } static int linear_run (mddev_t *mddev) { linear_conf_t *conf; mddev->queue->queue_lock = &mddev->queue->__queue_lock; conf = linear_conf(mddev, mddev->raid_disks); if (!conf) return 1; mddev->private = conf; mddev->array_sectors = conf->array_sectors; blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec); mddev->queue->unplug_fn = linear_unplug; mddev->queue->backing_dev_info.congested_fn = linear_congested; mddev->queue->backing_dev_info.congested_data = mddev; return 0; } static int linear_add(mddev_t *mddev, mdk_rdev_t *rdev) { /* Adding a drive to a linear array allows the array to grow. * It is permitted if the new drive has a matching superblock * already on it, with raid_disk equal to raid_disks. * It is achieved by creating a new linear_private_data structure * and swapping it in in-place of the current one. * The current one is never freed until the array is stopped. * This avoids races. */ linear_conf_t *newconf; if (rdev->saved_raid_disk != mddev->raid_disks) return -EINVAL; rdev->raid_disk = rdev->saved_raid_disk; newconf = linear_conf(mddev,mddev->raid_disks+1); if (!newconf) return -ENOMEM; newconf->prev = mddev_to_conf(mddev); mddev->private = newconf; mddev->raid_disks++; mddev->array_sectors = newconf->array_sectors; set_capacity(mddev->gendisk, mddev->array_sectors); return 0; } static int linear_stop (mddev_t *mddev) { linear_conf_t *conf = mddev_to_conf(mddev); blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ do { linear_conf_t *t = conf->prev; kfree(conf->hash_table); kfree(conf); conf = t; } while (conf); return 0; } static int linear_make_request (struct request_queue *q, struct bio *bio) { const int rw = bio_data_dir(bio); mddev_t *mddev = q->queuedata; dev_info_t *tmp_dev; int cpu; if (unlikely(bio_barrier(bio))) { bio_endio(bio, -EOPNOTSUPP); return 0; } cpu = part_stat_lock(); part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], bio_sectors(bio)); part_stat_unlock(); tmp_dev = which_dev(mddev, bio->bi_sector); if (unlikely(bio->bi_sector >= (tmp_dev->num_sectors + tmp_dev->start_sector) || (bio->bi_sector < tmp_dev->start_sector))) { char b[BDEVNAME_SIZE]; printk("linear_make_request: Sector %llu out of bounds on " "dev %s: %llu sectors, offset %llu\n", (unsigned long long)bio->bi_sector, bdevname(tmp_dev->rdev->bdev, b), (unsigned long long)tmp_dev->num_sectors, (unsigned long long)tmp_dev->start_sector); bio_io_error(bio); return 0; } if (unlikely(bio->bi_sector + (bio->bi_size >> 9) > tmp_dev->start_sector + tmp_dev->num_sectors)) { /* This bio crosses a device boundary, so we have to * split it. */ struct bio_pair *bp; bp = bio_split(bio, tmp_dev->start_sector + tmp_dev->num_sectors - bio->bi_sector); if (linear_make_request(q, &bp->bio1)) generic_make_request(&bp->bio1); if (linear_make_request(q, &bp->bio2)) generic_make_request(&bp->bio2); bio_pair_release(bp); return 0; } bio->bi_bdev = tmp_dev->rdev->bdev; bio->bi_sector = bio->bi_sector - tmp_dev->start_sector + tmp_dev->rdev->data_offset; return 1; } static void linear_status (struct seq_file *seq, mddev_t *mddev) { seq_printf(seq, " %dk rounding", mddev->chunk_size/1024); } static struct mdk_personality linear_personality = { .name = "linear", .level = LEVEL_LINEAR, .owner = THIS_MODULE, .make_request = linear_make_request, .run = linear_run, .stop = linear_stop, .status = linear_status, .hot_add_disk = linear_add, }; static int __init linear_init (void) { return register_md_personality (&linear_personality); } static void linear_exit (void) { unregister_md_personality (&linear_personality); } module_init(linear_init); module_exit(linear_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/ MODULE_ALIAS("md-linear"); MODULE_ALIAS("md-level--1");