/* * Copyright (C) 1995 Linus Torvalds * * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * * Memory region support * David Parsons <orc@pell.chi.il.us>, July-August 1999 * * Added E820 sanitization routine (removes overlapping memory regions); * Brian Moyle <bmoyle@mvista.com>, February 2001 * * Moved CPU detection code to cpu/${cpu}.c * Patrick Mochel <mochel@osdl.org>, March 2002 * * Provisions for empty E820 memory regions (reported by certain BIOSes). * Alex Achenbach <xela@slit.de>, December 2002. * */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/sched.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/acpi.h> #include <linux/apm_bios.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/seq_file.h> #include <linux/console.h> #include <linux/mca.h> #include <linux/root_dev.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/init.h> #include <linux/edd.h> #include <linux/iscsi_ibft.h> #include <linux/nodemask.h> #include <linux/kexec.h> #include <linux/dmi.h> #include <linux/pfn.h> #include <linux/pci.h> #include <asm/pci-direct.h> #include <linux/init_ohci1394_dma.h> #include <linux/kvm_para.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/delay.h> #include <linux/kallsyms.h> #include <linux/cpufreq.h> #include <linux/dma-mapping.h> #include <linux/ctype.h> #include <linux/uaccess.h> #include <linux/percpu.h> #include <linux/crash_dump.h> #include <video/edid.h> #include <asm/mtrr.h> #include <asm/apic.h> #include <asm/e820.h> #include <asm/mpspec.h> #include <asm/setup.h> #include <asm/arch_hooks.h> #include <asm/efi.h> #include <asm/sections.h> #include <asm/dmi.h> #include <asm/io_apic.h> #include <asm/ist.h> #include <asm/vmi.h> #include <setup_arch.h> #include <asm/bios_ebda.h> #include <asm/cacheflush.h> #include <asm/processor.h> #include <asm/bugs.h> #include <asm/system.h> #include <asm/vsyscall.h> #include <asm/smp.h> #include <asm/desc.h> #include <asm/dma.h> #include <asm/iommu.h> #include <asm/mmu_context.h> #include <asm/proto.h> #include <mach_apic.h> #include <asm/paravirt.h> #include <asm/percpu.h> #include <asm/topology.h> #include <asm/apicdef.h> #ifdef CONFIG_X86_64 #include <asm/numa_64.h> #endif #ifndef ARCH_SETUP #define ARCH_SETUP #endif #ifndef CONFIG_DEBUG_BOOT_PARAMS struct boot_params __initdata boot_params; #else struct boot_params boot_params; #endif /* * Machine setup.. */ static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource bss_resource = { .name = "Kernel bss", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; #ifdef CONFIG_X86_32 /* This value is set up by the early boot code to point to the value immediately after the boot time page tables. It contains a *physical* address, and must not be in the .bss segment! */ unsigned long init_pg_tables_start __initdata = ~0UL; unsigned long init_pg_tables_end __initdata = ~0UL; static struct resource video_ram_resource = { .name = "Video RAM area", .start = 0xa0000, .end = 0xbffff, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; /* cpu data as detected by the assembly code in head.S */ struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1}; /* common cpu data for all cpus */ struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1}; EXPORT_SYMBOL(boot_cpu_data); static void set_mca_bus(int x) { #ifdef CONFIG_MCA MCA_bus = x; #endif } unsigned int def_to_bigsmp; /* for MCA, but anyone else can use it if they want */ unsigned int machine_id; unsigned int machine_submodel_id; unsigned int BIOS_revision; struct apm_info apm_info; EXPORT_SYMBOL(apm_info); #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) struct ist_info ist_info; EXPORT_SYMBOL(ist_info); #else struct ist_info ist_info; #endif #else struct cpuinfo_x86 boot_cpu_data __read_mostly; EXPORT_SYMBOL(boot_cpu_data); #endif #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) unsigned long mmu_cr4_features; #else unsigned long mmu_cr4_features = X86_CR4_PAE; #endif /* Boot loader ID as an integer, for the benefit of proc_dointvec */ int bootloader_type; /* * Early DMI memory */ int dmi_alloc_index; char dmi_alloc_data[DMI_MAX_DATA]; /* * Setup options */ struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); extern int root_mountflags; unsigned long saved_video_mode; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char __initdata command_line[COMMAND_LINE_SIZE]; #ifdef CONFIG_CMDLINE_BOOL static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; #endif #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void copy_edd(void) { memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; edd.edd_info_nr = boot_params.eddbuf_entries; } #else static inline void copy_edd(void) { } #endif #ifdef CONFIG_BLK_DEV_INITRD #ifdef CONFIG_X86_32 #define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT) static void __init relocate_initrd(void) { u64 ramdisk_image = boot_params.hdr.ramdisk_image; u64 ramdisk_size = boot_params.hdr.ramdisk_size; u64 end_of_lowmem = max_low_pfn << PAGE_SHIFT; u64 ramdisk_here; unsigned long slop, clen, mapaddr; char *p, *q; /* We need to move the initrd down into lowmem */ ramdisk_here = find_e820_area(0, end_of_lowmem, ramdisk_size, PAGE_SIZE); if (ramdisk_here == -1ULL) panic("Cannot find place for new RAMDISK of size %lld\n", ramdisk_size); /* Note: this includes all the lowmem currently occupied by the initrd, we rely on that fact to keep the data intact. */ reserve_early(ramdisk_here, ramdisk_here + ramdisk_size, "NEW RAMDISK"); initrd_start = ramdisk_here + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; printk(KERN_INFO "Allocated new RAMDISK: %08llx - %08llx\n", ramdisk_here, ramdisk_here + ramdisk_size); q = (char *)initrd_start; /* Copy any lowmem portion of the initrd */ if (ramdisk_image < end_of_lowmem) { clen = end_of_lowmem - ramdisk_image; p = (char *)__va(ramdisk_image); memcpy(q, p, clen); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } /* Copy the highmem portion of the initrd */ while (ramdisk_size) { slop = ramdisk_image & ~PAGE_MASK; clen = ramdisk_size; if (clen > MAX_MAP_CHUNK-slop) clen = MAX_MAP_CHUNK-slop; mapaddr = ramdisk_image & PAGE_MASK; p = early_memremap(mapaddr, clen+slop); memcpy(q, p+slop, clen); early_iounmap(p, clen+slop); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } /* high pages is not converted by early_res_to_bootmem */ ramdisk_image = boot_params.hdr.ramdisk_image; ramdisk_size = boot_params.hdr.ramdisk_size; printk(KERN_INFO "Move RAMDISK from %016llx - %016llx to" " %08llx - %08llx\n", ramdisk_image, ramdisk_image + ramdisk_size - 1, ramdisk_here, ramdisk_here + ramdisk_size - 1); } #endif static void __init reserve_initrd(void) { u64 ramdisk_image = boot_params.hdr.ramdisk_image; u64 ramdisk_size = boot_params.hdr.ramdisk_size; u64 ramdisk_end = ramdisk_image + ramdisk_size; u64 end_of_lowmem = max_low_pfn << PAGE_SHIFT; if (!boot_params.hdr.type_of_loader || !ramdisk_image || !ramdisk_size) return; /* No initrd provided by bootloader */ initrd_start = 0; if (ramdisk_size >= (end_of_lowmem>>1)) { free_early(ramdisk_image, ramdisk_end); printk(KERN_ERR "initrd too large to handle, " "disabling initrd\n"); return; } printk(KERN_INFO "RAMDISK: %08llx - %08llx\n", ramdisk_image, ramdisk_end); if (ramdisk_end <= end_of_lowmem) { /* All in lowmem, easy case */ /* * don't need to reserve again, already reserved early * in i386_start_kernel */ initrd_start = ramdisk_image + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; return; } #ifdef CONFIG_X86_32 relocate_initrd(); #else printk(KERN_ERR "initrd extends beyond end of memory " "(0x%08llx > 0x%08llx)\ndisabling initrd\n", ramdisk_end, end_of_lowmem); initrd_start = 0; #endif free_early(ramdisk_image, ramdisk_end); } #else static void __init reserve_initrd(void) { } #endif /* CONFIG_BLK_DEV_INITRD */ static void __init parse_setup_data(void) { struct setup_data *data; u64 pa_data; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, PAGE_SIZE); switch (data->type) { case SETUP_E820_EXT: parse_e820_ext(data, pa_data); break; default: break; } pa_data = data->next; early_iounmap(data, PAGE_SIZE); } } static void __init e820_reserve_setup_data(void) { struct setup_data *data; u64 pa_data; int found = 0; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); e820_update_range(pa_data, sizeof(*data)+data->len, E820_RAM, E820_RESERVED_KERN); found = 1; pa_data = data->next; early_iounmap(data, sizeof(*data)); } if (!found) return; sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); memcpy(&e820_saved, &e820, sizeof(struct e820map)); printk(KERN_INFO "extended physical RAM map:\n"); e820_print_map("reserve setup_data"); } static void __init reserve_early_setup_data(void) { struct setup_data *data; u64 pa_data; char buf[32]; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); sprintf(buf, "setup data %x", data->type); reserve_early(pa_data, pa_data+sizeof(*data)+data->len, buf); pa_data = data->next; early_iounmap(data, sizeof(*data)); } } /* * --------- Crashkernel reservation ------------------------------ */ #ifdef CONFIG_KEXEC /** * Reserve @size bytes of crashkernel memory at any suitable offset. * * @size: Size of the crashkernel memory to reserve. * Returns the base address on success, and -1ULL on failure. */ unsigned long long __init find_and_reserve_crashkernel(unsigned long long size) { const unsigned long long alignment = 16<<20; /* 16M */ unsigned long long start = 0LL; while (1) { int ret; start = find_e820_area(start, ULONG_MAX, size, alignment); if (start == -1ULL) return start; /* try to reserve it */ ret = reserve_bootmem_generic(start, size, BOOTMEM_EXCLUSIVE); if (ret >= 0) return start; start += alignment; } } static inline unsigned long long get_total_mem(void) { unsigned long long total; total = max_low_pfn - min_low_pfn; #ifdef CONFIG_HIGHMEM total += highend_pfn - highstart_pfn; #endif return total << PAGE_SHIFT; } static void __init reserve_crashkernel(void) { unsigned long long total_mem; unsigned long long crash_size, crash_base; int ret; total_mem = get_total_mem(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) return; /* 0 means: find the address automatically */ if (crash_base <= 0) { crash_base = find_and_reserve_crashkernel(crash_size); if (crash_base == -1ULL) { pr_info("crashkernel reservation failed. " "No suitable area found.\n"); return; } } else { ret = reserve_bootmem_generic(crash_base, crash_size, BOOTMEM_EXCLUSIVE); if (ret < 0) { pr_info("crashkernel reservation failed - " "memory is in use\n"); return; } } printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; insert_resource(&iomem_resource, &crashk_res); } #else static void __init reserve_crashkernel(void) { } #endif static struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x00, .end = 0x1f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x20, .end = 0x21, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x40, .end = 0x43, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x50, .end = 0x53, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x60, .end = 0x60, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x64, .end = 0x64, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x80, .end = 0x8f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0xa0, .end = 0xa1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0xc0, .end = 0xdf, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0xf0, .end = 0xff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; static void __init reserve_standard_io_resources(void) { int i; /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) request_resource(&ioport_resource, &standard_io_resources[i]); } /* * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by * is_kdump_kernel() to determine if we are booting after a panic. Hence * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. */ #ifdef CONFIG_CRASH_DUMP /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. This option will be passed * by kexec loader to the capture kernel. */ static int __init setup_elfcorehdr(char *arg) { char *end; if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &end); return end > arg ? 0 : -EINVAL; } early_param("elfcorehdr", setup_elfcorehdr); #endif static struct x86_quirks default_x86_quirks __initdata; struct x86_quirks *x86_quirks __initdata = &default_x86_quirks; /* * Some BIOSes seem to corrupt the low 64k of memory during events * like suspend/resume and unplugging an HDMI cable. Reserve all * remaining free memory in that area and fill it with a distinct * pattern. */ #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION #define MAX_SCAN_AREAS 8 static int __read_mostly memory_corruption_check = -1; static unsigned __read_mostly corruption_check_size = 64*1024; static unsigned __read_mostly corruption_check_period = 60; /* seconds */ static struct e820entry scan_areas[MAX_SCAN_AREAS]; static int num_scan_areas; static int set_corruption_check(char *arg) { char *end; memory_corruption_check = simple_strtol(arg, &end, 10); return (*end == 0) ? 0 : -EINVAL; } early_param("memory_corruption_check", set_corruption_check); static int set_corruption_check_period(char *arg) { char *end; corruption_check_period = simple_strtoul(arg, &end, 10); return (*end == 0) ? 0 : -EINVAL; } early_param("memory_corruption_check_period", set_corruption_check_period); static int set_corruption_check_size(char *arg) { char *end; unsigned size; size = memparse(arg, &end); if (*end == '\0') corruption_check_size = size; return (size == corruption_check_size) ? 0 : -EINVAL; } early_param("memory_corruption_check_size", set_corruption_check_size); static void __init setup_bios_corruption_check(void) { u64 addr = PAGE_SIZE; /* assume first page is reserved anyway */ if (memory_corruption_check == -1) { memory_corruption_check = #ifdef CONFIG_X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK 1 #else 0 #endif ; } if (corruption_check_size == 0) memory_corruption_check = 0; if (!memory_corruption_check) return; corruption_check_size = round_up(corruption_check_size, PAGE_SIZE); while(addr < corruption_check_size && num_scan_areas < MAX_SCAN_AREAS) { u64 size; addr = find_e820_area_size(addr, &size, PAGE_SIZE); if (addr == 0) break; if ((addr + size) > corruption_check_size) size = corruption_check_size - addr; if (size == 0) break; e820_update_range(addr, size, E820_RAM, E820_RESERVED); scan_areas[num_scan_areas].addr = addr; scan_areas[num_scan_areas].size = size; num_scan_areas++; /* Assume we've already mapped this early memory */ memset(__va(addr), 0, size); addr += size; } printk(KERN_INFO "Scanning %d areas for low memory corruption\n", num_scan_areas); update_e820(); } static struct timer_list periodic_check_timer; void check_for_bios_corruption(void) { int i; int corruption = 0; if (!memory_corruption_check) return; for(i = 0; i < num_scan_areas; i++) { unsigned long *addr = __va(scan_areas[i].addr); unsigned long size = scan_areas[i].size; for(; size; addr++, size -= sizeof(unsigned long)) { if (!*addr) continue; printk(KERN_ERR "Corrupted low memory at %p (%lx phys) = %08lx\n", addr, __pa(addr), *addr); corruption = 1; *addr = 0; } } WARN(corruption, KERN_ERR "Memory corruption detected in low memory\n"); } static void periodic_check_for_corruption(unsigned long data) { check_for_bios_corruption(); mod_timer(&periodic_check_timer, round_jiffies(jiffies + corruption_check_period*HZ)); } void start_periodic_check_for_corruption(void) { if (!memory_corruption_check || corruption_check_period == 0) return; printk(KERN_INFO "Scanning for low memory corruption every %d seconds\n", corruption_check_period); init_timer(&periodic_check_timer); periodic_check_timer.function = &periodic_check_for_corruption; periodic_check_for_corruption(0); } #endif static int __init dmi_low_memory_corruption(const struct dmi_system_id *d) { printk(KERN_NOTICE "%s detected: BIOS may corrupt low RAM, working it around.\n", d->ident); e820_update_range(0, 0x10000, E820_RAM, E820_RESERVED); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); return 0; } /* List of systems that have known low memory corruption BIOS problems */ static struct dmi_system_id __initdata bad_bios_dmi_table[] = { #ifdef CONFIG_X86_RESERVE_LOW_64K { .callback = dmi_low_memory_corruption, .ident = "AMI BIOS", .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "American Megatrends Inc."), }, }, { .callback = dmi_low_memory_corruption, .ident = "Phoenix BIOS", .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies"), }, }, #endif {} }; /* * Determine if we were loaded by an EFI loader. If so, then we have also been * passed the efi memmap, systab, etc., so we should use these data structures * for initialization. Note, the efi init code path is determined by the * global efi_enabled. This allows the same kernel image to be used on existing * systems (with a traditional BIOS) as well as on EFI systems. */ /* * setup_arch - architecture-specific boot-time initializations * * Note: On x86_64, fixmaps are ready for use even before this is called. */ void __init setup_arch(char **cmdline_p) { #ifdef CONFIG_X86_32 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); visws_early_detect(); pre_setup_arch_hook(); #else printk(KERN_INFO "Command line: %s\n", boot_command_line); #endif /* VMI may relocate the fixmap; do this before touching ioremap area */ vmi_init(); early_cpu_init(); early_ioremap_init(); ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); screen_info = boot_params.screen_info; edid_info = boot_params.edid_info; #ifdef CONFIG_X86_32 apm_info.bios = boot_params.apm_bios_info; ist_info = boot_params.ist_info; if (boot_params.sys_desc_table.length != 0) { set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2); machine_id = boot_params.sys_desc_table.table[0]; machine_submodel_id = boot_params.sys_desc_table.table[1]; BIOS_revision = boot_params.sys_desc_table.table[2]; } #endif saved_video_mode = boot_params.hdr.vid_mode; bootloader_type = boot_params.hdr.type_of_loader; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); #endif #ifdef CONFIG_EFI if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, #ifdef CONFIG_X86_32 "EL32", #else "EL64", #endif 4)) { efi_enabled = 1; efi_reserve_early(); } #endif ARCH_SETUP setup_memory_map(); parse_setup_data(); /* update the e820_saved too */ e820_reserve_setup_data(); copy_edd(); if (!boot_params.hdr.root_flags) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; #ifdef CONFIG_X86_32 init_mm.brk = init_pg_tables_end + PAGE_OFFSET; #else init_mm.brk = (unsigned long) &_end; #endif code_resource.start = virt_to_phys(_text); code_resource.end = virt_to_phys(_etext)-1; data_resource.start = virt_to_phys(_etext); data_resource.end = virt_to_phys(_edata)-1; bss_resource.start = virt_to_phys(&__bss_start); bss_resource.end = virt_to_phys(&__bss_stop)-1; #ifdef CONFIG_CMDLINE_BOOL #ifdef CONFIG_CMDLINE_OVERRIDE strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); #else if (builtin_cmdline[0]) { /* append boot loader cmdline to builtin */ strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); } #endif #endif strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); #ifdef CONFIG_X86_64 check_efer(); #endif /* Must be before kernel pagetables are setup */ vmi_activate(); /* after early param, so could get panic from serial */ reserve_early_setup_data(); if (acpi_mps_check()) { #ifdef CONFIG_X86_LOCAL_APIC disable_apic = 1; #endif setup_clear_cpu_cap(X86_FEATURE_APIC); } #ifdef CONFIG_PCI if (pci_early_dump_regs) early_dump_pci_devices(); #endif finish_e820_parsing(); dmi_scan_machine(); dmi_check_system(bad_bios_dmi_table); #ifdef CONFIG_X86_32 probe_roms(); #endif /* after parse_early_param, so could debug it */ insert_resource(&iomem_resource, &code_resource); insert_resource(&iomem_resource, &data_resource); insert_resource(&iomem_resource, &bss_resource); if (efi_enabled) efi_init(); #ifdef CONFIG_X86_32 if (ppro_with_ram_bug()) { e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM, E820_RESERVED); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); printk(KERN_INFO "fixed physical RAM map:\n"); e820_print_map("bad_ppro"); } #else early_gart_iommu_check(); #endif /* * partially used pages are not usable - thus * we are rounding upwards: */ max_pfn = e820_end_of_ram_pfn(); /* preallocate 4k for mptable mpc */ early_reserve_e820_mpc_new(); /* update e820 for memory not covered by WB MTRRs */ mtrr_bp_init(); if (mtrr_trim_uncached_memory(max_pfn)) max_pfn = e820_end_of_ram_pfn(); #ifdef CONFIG_X86_32 /* max_low_pfn get updated here */ find_low_pfn_range(); #else num_physpages = max_pfn; if (cpu_has_x2apic) check_x2apic(); /* How many end-of-memory variables you have, grandma! */ /* need this before calling reserve_initrd */ if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) max_low_pfn = e820_end_of_low_ram_pfn(); else max_low_pfn = max_pfn; high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; #endif #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION setup_bios_corruption_check(); #endif /* max_pfn_mapped is updated here */ max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT); max_pfn_mapped = max_low_pfn_mapped; #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { max_pfn_mapped = init_memory_mapping(1UL<<32, max_pfn<<PAGE_SHIFT); /* can we preseve max_low_pfn ?*/ max_low_pfn = max_pfn; } #endif /* * NOTE: On x86-32, only from this point on, fixmaps are ready for use. */ #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT if (init_ohci1394_dma_early) init_ohci1394_dma_on_all_controllers(); #endif reserve_initrd(); #ifdef CONFIG_X86_64 vsmp_init(); #endif io_delay_init(); /* * Parse the ACPI tables for possible boot-time SMP configuration. */ acpi_boot_table_init(); early_acpi_boot_init(); #ifdef CONFIG_ACPI_NUMA /* * Parse SRAT to discover nodes. */ acpi_numa_init(); #endif initmem_init(0, max_pfn); #ifdef CONFIG_ACPI_SLEEP /* * Reserve low memory region for sleep support. */ acpi_reserve_bootmem(); #endif #ifdef CONFIG_X86_FIND_SMP_CONFIG /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); #endif reserve_crashkernel(); #ifdef CONFIG_X86_64 /* * dma32_reserve_bootmem() allocates bootmem which may conflict * with the crashkernel command line, so do that after * reserve_crashkernel() */ dma32_reserve_bootmem(); #endif reserve_ibft_region(); #ifdef CONFIG_KVM_CLOCK kvmclock_init(); #endif paravirt_pagetable_setup_start(swapper_pg_dir); paging_init(); paravirt_pagetable_setup_done(swapper_pg_dir); paravirt_post_allocator_init(); #ifdef CONFIG_X86_64 map_vsyscall(); #endif #ifdef CONFIG_X86_GENERICARCH generic_apic_probe(); #endif early_quirks(); /* * Read APIC and some other early information from ACPI tables. */ acpi_boot_init(); #if defined(CONFIG_X86_MPPARSE) || defined(CONFIG_X86_VISWS) /* * get boot-time SMP configuration: */ if (smp_found_config) get_smp_config(); #endif prefill_possible_map(); #ifdef CONFIG_X86_64 init_cpu_to_node(); #endif init_apic_mappings(); ioapic_init_mappings(); /* need to wait for io_apic is mapped */ nr_irqs = probe_nr_irqs(); kvm_guest_init(); e820_reserve_resources(); e820_mark_nosave_regions(max_low_pfn); #ifdef CONFIG_X86_32 request_resource(&iomem_resource, &video_ram_resource); #endif reserve_standard_io_resources(); e820_setup_gap(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif }