summaryrefslogtreecommitdiffstats
path: root/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c3051
1 files changed, 3051 insertions, 0 deletions
diff --git a/mm/memory.c b/mm/memory.c
new file mode 100644
index 0000000..fe2257f
--- /dev/null
+++ b/mm/memory.c
@@ -0,0 +1,3051 @@
+/*
+ * linux/mm/memory.c
+ *
+ * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
+ */
+
+/*
+ * demand-loading started 01.12.91 - seems it is high on the list of
+ * things wanted, and it should be easy to implement. - Linus
+ */
+
+/*
+ * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
+ * pages started 02.12.91, seems to work. - Linus.
+ *
+ * Tested sharing by executing about 30 /bin/sh: under the old kernel it
+ * would have taken more than the 6M I have free, but it worked well as
+ * far as I could see.
+ *
+ * Also corrected some "invalidate()"s - I wasn't doing enough of them.
+ */
+
+/*
+ * Real VM (paging to/from disk) started 18.12.91. Much more work and
+ * thought has to go into this. Oh, well..
+ * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
+ * Found it. Everything seems to work now.
+ * 20.12.91 - Ok, making the swap-device changeable like the root.
+ */
+
+/*
+ * 05.04.94 - Multi-page memory management added for v1.1.
+ * Idea by Alex Bligh (alex@cconcepts.co.uk)
+ *
+ * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
+ * (Gerhard.Wichert@pdb.siemens.de)
+ *
+ * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
+ */
+
+#include <linux/kernel_stat.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/mman.h>
+#include <linux/swap.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/rmap.h>
+#include <linux/module.h>
+#include <linux/delayacct.h>
+#include <linux/init.h>
+#include <linux/writeback.h>
+#include <linux/memcontrol.h>
+#include <linux/mmu_notifier.h>
+
+#include <asm/pgalloc.h>
+#include <asm/uaccess.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/pgtable.h>
+
+#include <linux/swapops.h>
+#include <linux/elf.h>
+
+#include "internal.h"
+
+#ifndef CONFIG_NEED_MULTIPLE_NODES
+/* use the per-pgdat data instead for discontigmem - mbligh */
+unsigned long max_mapnr;
+struct page *mem_map;
+
+EXPORT_SYMBOL(max_mapnr);
+EXPORT_SYMBOL(mem_map);
+#endif
+
+unsigned long num_physpages;
+/*
+ * A number of key systems in x86 including ioremap() rely on the assumption
+ * that high_memory defines the upper bound on direct map memory, then end
+ * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
+ * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
+ * and ZONE_HIGHMEM.
+ */
+void * high_memory;
+
+EXPORT_SYMBOL(num_physpages);
+EXPORT_SYMBOL(high_memory);
+
+/*
+ * Randomize the address space (stacks, mmaps, brk, etc.).
+ *
+ * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
+ * as ancient (libc5 based) binaries can segfault. )
+ */
+int randomize_va_space __read_mostly =
+#ifdef CONFIG_COMPAT_BRK
+ 1;
+#else
+ 2;
+#endif
+
+static int __init disable_randmaps(char *s)
+{
+ randomize_va_space = 0;
+ return 1;
+}
+__setup("norandmaps", disable_randmaps);
+
+
+/*
+ * If a p?d_bad entry is found while walking page tables, report
+ * the error, before resetting entry to p?d_none. Usually (but
+ * very seldom) called out from the p?d_none_or_clear_bad macros.
+ */
+
+void pgd_clear_bad(pgd_t *pgd)
+{
+ pgd_ERROR(*pgd);
+ pgd_clear(pgd);
+}
+
+void pud_clear_bad(pud_t *pud)
+{
+ pud_ERROR(*pud);
+ pud_clear(pud);
+}
+
+void pmd_clear_bad(pmd_t *pmd)
+{
+ pmd_ERROR(*pmd);
+ pmd_clear(pmd);
+}
+
+/*
+ * Note: this doesn't free the actual pages themselves. That
+ * has been handled earlier when unmapping all the memory regions.
+ */
+static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
+{
+ pgtable_t token = pmd_pgtable(*pmd);
+ pmd_clear(pmd);
+ pte_free_tlb(tlb, token);
+ tlb->mm->nr_ptes--;
+}
+
+static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ unsigned long floor, unsigned long ceiling)
+{
+ pmd_t *pmd;
+ unsigned long next;
+ unsigned long start;
+
+ start = addr;
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ if (pmd_none_or_clear_bad(pmd))
+ continue;
+ free_pte_range(tlb, pmd);
+ } while (pmd++, addr = next, addr != end);
+
+ start &= PUD_MASK;
+ if (start < floor)
+ return;
+ if (ceiling) {
+ ceiling &= PUD_MASK;
+ if (!ceiling)
+ return;
+ }
+ if (end - 1 > ceiling - 1)
+ return;
+
+ pmd = pmd_offset(pud, start);
+ pud_clear(pud);
+ pmd_free_tlb(tlb, pmd);
+}
+
+static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned long floor, unsigned long ceiling)
+{
+ pud_t *pud;
+ unsigned long next;
+ unsigned long start;
+
+ start = addr;
+ pud = pud_offset(pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ if (pud_none_or_clear_bad(pud))
+ continue;
+ free_pmd_range(tlb, pud, addr, next, floor, ceiling);
+ } while (pud++, addr = next, addr != end);
+
+ start &= PGDIR_MASK;
+ if (start < floor)
+ return;
+ if (ceiling) {
+ ceiling &= PGDIR_MASK;
+ if (!ceiling)
+ return;
+ }
+ if (end - 1 > ceiling - 1)
+ return;
+
+ pud = pud_offset(pgd, start);
+ pgd_clear(pgd);
+ pud_free_tlb(tlb, pud);
+}
+
+/*
+ * This function frees user-level page tables of a process.
+ *
+ * Must be called with pagetable lock held.
+ */
+void free_pgd_range(struct mmu_gather *tlb,
+ unsigned long addr, unsigned long end,
+ unsigned long floor, unsigned long ceiling)
+{
+ pgd_t *pgd;
+ unsigned long next;
+ unsigned long start;
+
+ /*
+ * The next few lines have given us lots of grief...
+ *
+ * Why are we testing PMD* at this top level? Because often
+ * there will be no work to do at all, and we'd prefer not to
+ * go all the way down to the bottom just to discover that.
+ *
+ * Why all these "- 1"s? Because 0 represents both the bottom
+ * of the address space and the top of it (using -1 for the
+ * top wouldn't help much: the masks would do the wrong thing).
+ * The rule is that addr 0 and floor 0 refer to the bottom of
+ * the address space, but end 0 and ceiling 0 refer to the top
+ * Comparisons need to use "end - 1" and "ceiling - 1" (though
+ * that end 0 case should be mythical).
+ *
+ * Wherever addr is brought up or ceiling brought down, we must
+ * be careful to reject "the opposite 0" before it confuses the
+ * subsequent tests. But what about where end is brought down
+ * by PMD_SIZE below? no, end can't go down to 0 there.
+ *
+ * Whereas we round start (addr) and ceiling down, by different
+ * masks at different levels, in order to test whether a table
+ * now has no other vmas using it, so can be freed, we don't
+ * bother to round floor or end up - the tests don't need that.
+ */
+
+ addr &= PMD_MASK;
+ if (addr < floor) {
+ addr += PMD_SIZE;
+ if (!addr)
+ return;
+ }
+ if (ceiling) {
+ ceiling &= PMD_MASK;
+ if (!ceiling)
+ return;
+ }
+ if (end - 1 > ceiling - 1)
+ end -= PMD_SIZE;
+ if (addr > end - 1)
+ return;
+
+ start = addr;
+ pgd = pgd_offset(tlb->mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_none_or_clear_bad(pgd))
+ continue;
+ free_pud_range(tlb, pgd, addr, next, floor, ceiling);
+ } while (pgd++, addr = next, addr != end);
+}
+
+void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
+ unsigned long floor, unsigned long ceiling)
+{
+ while (vma) {
+ struct vm_area_struct *next = vma->vm_next;
+ unsigned long addr = vma->vm_start;
+
+ /*
+ * Hide vma from rmap and vmtruncate before freeing pgtables
+ */
+ anon_vma_unlink(vma);
+ unlink_file_vma(vma);
+
+ if (is_vm_hugetlb_page(vma)) {
+ hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
+ floor, next? next->vm_start: ceiling);
+ } else {
+ /*
+ * Optimization: gather nearby vmas into one call down
+ */
+ while (next && next->vm_start <= vma->vm_end + PMD_SIZE
+ && !is_vm_hugetlb_page(next)) {
+ vma = next;
+ next = vma->vm_next;
+ anon_vma_unlink(vma);
+ unlink_file_vma(vma);
+ }
+ free_pgd_range(tlb, addr, vma->vm_end,
+ floor, next? next->vm_start: ceiling);
+ }
+ vma = next;
+ }
+}
+
+int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+{
+ pgtable_t new = pte_alloc_one(mm, address);
+ if (!new)
+ return -ENOMEM;
+
+ /*
+ * Ensure all pte setup (eg. pte page lock and page clearing) are
+ * visible before the pte is made visible to other CPUs by being
+ * put into page tables.
+ *
+ * The other side of the story is the pointer chasing in the page
+ * table walking code (when walking the page table without locking;
+ * ie. most of the time). Fortunately, these data accesses consist
+ * of a chain of data-dependent loads, meaning most CPUs (alpha
+ * being the notable exception) will already guarantee loads are
+ * seen in-order. See the alpha page table accessors for the
+ * smp_read_barrier_depends() barriers in page table walking code.
+ */
+ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
+
+ spin_lock(&mm->page_table_lock);
+ if (!pmd_present(*pmd)) { /* Has another populated it ? */
+ mm->nr_ptes++;
+ pmd_populate(mm, pmd, new);
+ new = NULL;
+ }
+ spin_unlock(&mm->page_table_lock);
+ if (new)
+ pte_free(mm, new);
+ return 0;
+}
+
+int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+{
+ pte_t *new = pte_alloc_one_kernel(&init_mm, address);
+ if (!new)
+ return -ENOMEM;
+
+ smp_wmb(); /* See comment in __pte_alloc */
+
+ spin_lock(&init_mm.page_table_lock);
+ if (!pmd_present(*pmd)) { /* Has another populated it ? */
+ pmd_populate_kernel(&init_mm, pmd, new);
+ new = NULL;
+ }
+ spin_unlock(&init_mm.page_table_lock);
+ if (new)
+ pte_free_kernel(&init_mm, new);
+ return 0;
+}
+
+static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
+{
+ if (file_rss)
+ add_mm_counter(mm, file_rss, file_rss);
+ if (anon_rss)
+ add_mm_counter(mm, anon_rss, anon_rss);
+}
+
+/*
+ * This function is called to print an error when a bad pte
+ * is found. For example, we might have a PFN-mapped pte in
+ * a region that doesn't allow it.
+ *
+ * The calling function must still handle the error.
+ */
+static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
+ unsigned long vaddr)
+{
+ printk(KERN_ERR "Bad pte = %08llx, process = %s, "
+ "vm_flags = %lx, vaddr = %lx\n",
+ (long long)pte_val(pte),
+ (vma->vm_mm == current->mm ? current->comm : "???"),
+ vma->vm_flags, vaddr);
+ dump_stack();
+}
+
+static inline int is_cow_mapping(unsigned int flags)
+{
+ return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+}
+
+/*
+ * vm_normal_page -- This function gets the "struct page" associated with a pte.
+ *
+ * "Special" mappings do not wish to be associated with a "struct page" (either
+ * it doesn't exist, or it exists but they don't want to touch it). In this
+ * case, NULL is returned here. "Normal" mappings do have a struct page.
+ *
+ * There are 2 broad cases. Firstly, an architecture may define a pte_special()
+ * pte bit, in which case this function is trivial. Secondly, an architecture
+ * may not have a spare pte bit, which requires a more complicated scheme,
+ * described below.
+ *
+ * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
+ * special mapping (even if there are underlying and valid "struct pages").
+ * COWed pages of a VM_PFNMAP are always normal.
+ *
+ * The way we recognize COWed pages within VM_PFNMAP mappings is through the
+ * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
+ * set, and the vm_pgoff will point to the first PFN mapped: thus every special
+ * mapping will always honor the rule
+ *
+ * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
+ *
+ * And for normal mappings this is false.
+ *
+ * This restricts such mappings to be a linear translation from virtual address
+ * to pfn. To get around this restriction, we allow arbitrary mappings so long
+ * as the vma is not a COW mapping; in that case, we know that all ptes are
+ * special (because none can have been COWed).
+ *
+ *
+ * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
+ *
+ * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
+ * page" backing, however the difference is that _all_ pages with a struct
+ * page (that is, those where pfn_valid is true) are refcounted and considered
+ * normal pages by the VM. The disadvantage is that pages are refcounted
+ * (which can be slower and simply not an option for some PFNMAP users). The
+ * advantage is that we don't have to follow the strict linearity rule of
+ * PFNMAP mappings in order to support COWable mappings.
+ *
+ */
+#ifdef __HAVE_ARCH_PTE_SPECIAL
+# define HAVE_PTE_SPECIAL 1
+#else
+# define HAVE_PTE_SPECIAL 0
+#endif
+struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
+ pte_t pte)
+{
+ unsigned long pfn;
+
+ if (HAVE_PTE_SPECIAL) {
+ if (likely(!pte_special(pte))) {
+ VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
+ return pte_page(pte);
+ }
+ VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
+ return NULL;
+ }
+
+ /* !HAVE_PTE_SPECIAL case follows: */
+
+ pfn = pte_pfn(pte);
+
+ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
+ if (vma->vm_flags & VM_MIXEDMAP) {
+ if (!pfn_valid(pfn))
+ return NULL;
+ goto out;
+ } else {
+ unsigned long off;
+ off = (addr - vma->vm_start) >> PAGE_SHIFT;
+ if (pfn == vma->vm_pgoff + off)
+ return NULL;
+ if (!is_cow_mapping(vma->vm_flags))
+ return NULL;
+ }
+ }
+
+ VM_BUG_ON(!pfn_valid(pfn));
+
+ /*
+ * NOTE! We still have PageReserved() pages in the page tables.
+ *
+ * eg. VDSO mappings can cause them to exist.
+ */
+out:
+ return pfn_to_page(pfn);
+}
+
+/*
+ * copy one vm_area from one task to the other. Assumes the page tables
+ * already present in the new task to be cleared in the whole range
+ * covered by this vma.
+ */
+
+static inline void
+copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
+ unsigned long addr, int *rss)
+{
+ unsigned long vm_flags = vma->vm_flags;
+ pte_t pte = *src_pte;
+ struct page *page;
+
+ /* pte contains position in swap or file, so copy. */
+ if (unlikely(!pte_present(pte))) {
+ if (!pte_file(pte)) {
+ swp_entry_t entry = pte_to_swp_entry(pte);
+
+ swap_duplicate(entry);
+ /* make sure dst_mm is on swapoff's mmlist. */
+ if (unlikely(list_empty(&dst_mm->mmlist))) {
+ spin_lock(&mmlist_lock);
+ if (list_empty(&dst_mm->mmlist))
+ list_add(&dst_mm->mmlist,
+ &src_mm->mmlist);
+ spin_unlock(&mmlist_lock);
+ }
+ if (is_write_migration_entry(entry) &&
+ is_cow_mapping(vm_flags)) {
+ /*
+ * COW mappings require pages in both parent
+ * and child to be set to read.
+ */
+ make_migration_entry_read(&entry);
+ pte = swp_entry_to_pte(entry);
+ set_pte_at(src_mm, addr, src_pte, pte);
+ }
+ }
+ goto out_set_pte;
+ }
+
+ /*
+ * If it's a COW mapping, write protect it both
+ * in the parent and the child
+ */
+ if (is_cow_mapping(vm_flags)) {
+ ptep_set_wrprotect(src_mm, addr, src_pte);
+ pte = pte_wrprotect(pte);
+ }
+
+ /*
+ * If it's a shared mapping, mark it clean in
+ * the child
+ */
+ if (vm_flags & VM_SHARED)
+ pte = pte_mkclean(pte);
+ pte = pte_mkold(pte);
+
+ page = vm_normal_page(vma, addr, pte);
+ if (page) {
+ get_page(page);
+ page_dup_rmap(page, vma, addr);
+ rss[!!PageAnon(page)]++;
+ }
+
+out_set_pte:
+ set_pte_at(dst_mm, addr, dst_pte, pte);
+}
+
+static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end)
+{
+ pte_t *src_pte, *dst_pte;
+ spinlock_t *src_ptl, *dst_ptl;
+ int progress = 0;
+ int rss[2];
+
+again:
+ rss[1] = rss[0] = 0;
+ dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
+ if (!dst_pte)
+ return -ENOMEM;
+ src_pte = pte_offset_map_nested(src_pmd, addr);
+ src_ptl = pte_lockptr(src_mm, src_pmd);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+ arch_enter_lazy_mmu_mode();
+
+ do {
+ /*
+ * We are holding two locks at this point - either of them
+ * could generate latencies in another task on another CPU.
+ */
+ if (progress >= 32) {
+ progress = 0;
+ if (need_resched() ||
+ spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
+ break;
+ }
+ if (pte_none(*src_pte)) {
+ progress++;
+ continue;
+ }
+ copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
+ progress += 8;
+ } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
+
+ arch_leave_lazy_mmu_mode();
+ spin_unlock(src_ptl);
+ pte_unmap_nested(src_pte - 1);
+ add_mm_rss(dst_mm, rss[0], rss[1]);
+ pte_unmap_unlock(dst_pte - 1, dst_ptl);
+ cond_resched();
+ if (addr != end)
+ goto again;
+ return 0;
+}
+
+static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end)
+{
+ pmd_t *src_pmd, *dst_pmd;
+ unsigned long next;
+
+ dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
+ if (!dst_pmd)
+ return -ENOMEM;
+ src_pmd = pmd_offset(src_pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ if (pmd_none_or_clear_bad(src_pmd))
+ continue;
+ if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
+ vma, addr, next))
+ return -ENOMEM;
+ } while (dst_pmd++, src_pmd++, addr = next, addr != end);
+ return 0;
+}
+
+static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end)
+{
+ pud_t *src_pud, *dst_pud;
+ unsigned long next;
+
+ dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
+ if (!dst_pud)
+ return -ENOMEM;
+ src_pud = pud_offset(src_pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ if (pud_none_or_clear_bad(src_pud))
+ continue;
+ if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
+ vma, addr, next))
+ return -ENOMEM;
+ } while (dst_pud++, src_pud++, addr = next, addr != end);
+ return 0;
+}
+
+int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ struct vm_area_struct *vma)
+{
+ pgd_t *src_pgd, *dst_pgd;
+ unsigned long next;
+ unsigned long addr = vma->vm_start;
+ unsigned long end = vma->vm_end;
+ int ret;
+
+ /*
+ * Don't copy ptes where a page fault will fill them correctly.
+ * Fork becomes much lighter when there are big shared or private
+ * readonly mappings. The tradeoff is that copy_page_range is more
+ * efficient than faulting.
+ */
+ if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
+ if (!vma->anon_vma)
+ return 0;
+ }
+
+ if (is_vm_hugetlb_page(vma))
+ return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+
+ /*
+ * We need to invalidate the secondary MMU mappings only when
+ * there could be a permission downgrade on the ptes of the
+ * parent mm. And a permission downgrade will only happen if
+ * is_cow_mapping() returns true.
+ */
+ if (is_cow_mapping(vma->vm_flags))
+ mmu_notifier_invalidate_range_start(src_mm, addr, end);
+
+ ret = 0;
+ dst_pgd = pgd_offset(dst_mm, addr);
+ src_pgd = pgd_offset(src_mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_none_or_clear_bad(src_pgd))
+ continue;
+ if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
+ vma, addr, next))) {
+ ret = -ENOMEM;
+ break;
+ }
+ } while (dst_pgd++, src_pgd++, addr = next, addr != end);
+
+ if (is_cow_mapping(vma->vm_flags))
+ mmu_notifier_invalidate_range_end(src_mm,
+ vma->vm_start, end);
+ return ret;
+}
+
+static unsigned long zap_pte_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ long *zap_work, struct zap_details *details)
+{
+ struct mm_struct *mm = tlb->mm;
+ pte_t *pte;
+ spinlock_t *ptl;
+ int file_rss = 0;
+ int anon_rss = 0;
+
+ pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+ arch_enter_lazy_mmu_mode();
+ do {
+ pte_t ptent = *pte;
+ if (pte_none(ptent)) {
+ (*zap_work)--;
+ continue;
+ }
+
+ (*zap_work) -= PAGE_SIZE;
+
+ if (pte_present(ptent)) {
+ struct page *page;
+
+ page = vm_normal_page(vma, addr, ptent);
+ if (unlikely(details) && page) {
+ /*
+ * unmap_shared_mapping_pages() wants to
+ * invalidate cache without truncating:
+ * unmap shared but keep private pages.
+ */
+ if (details->check_mapping &&
+ details->check_mapping != page->mapping)
+ continue;
+ /*
+ * Each page->index must be checked when
+ * invalidating or truncating nonlinear.
+ */
+ if (details->nonlinear_vma &&
+ (page->index < details->first_index ||
+ page->index > details->last_index))
+ continue;
+ }
+ ptent = ptep_get_and_clear_full(mm, addr, pte,
+ tlb->fullmm);
+ tlb_remove_tlb_entry(tlb, pte, addr);
+ if (unlikely(!page))
+ continue;
+ if (unlikely(details) && details->nonlinear_vma
+ && linear_page_index(details->nonlinear_vma,
+ addr) != page->index)
+ set_pte_at(mm, addr, pte,
+ pgoff_to_pte(page->index));
+ if (PageAnon(page))
+ anon_rss--;
+ else {
+ if (pte_dirty(ptent))
+ set_page_dirty(page);
+ if (pte_young(ptent))
+ SetPageReferenced(page);
+ file_rss--;
+ }
+ page_remove_rmap(page, vma);
+ tlb_remove_page(tlb, page);
+ continue;
+ }
+ /*
+ * If details->check_mapping, we leave swap entries;
+ * if details->nonlinear_vma, we leave file entries.
+ */
+ if (unlikely(details))
+ continue;
+ if (!pte_file(ptent))
+ free_swap_and_cache(pte_to_swp_entry(ptent));
+ pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
+ } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
+
+ add_mm_rss(mm, file_rss, anon_rss);
+ arch_leave_lazy_mmu_mode();
+ pte_unmap_unlock(pte - 1, ptl);
+
+ return addr;
+}
+
+static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ long *zap_work, struct zap_details *details)
+{
+ pmd_t *pmd;
+ unsigned long next;
+
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ if (pmd_none_or_clear_bad(pmd)) {
+ (*zap_work)--;
+ continue;
+ }
+ next = zap_pte_range(tlb, vma, pmd, addr, next,
+ zap_work, details);
+ } while (pmd++, addr = next, (addr != end && *zap_work > 0));
+
+ return addr;
+}
+
+static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ long *zap_work, struct zap_details *details)
+{
+ pud_t *pud;
+ unsigned long next;
+
+ pud = pud_offset(pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ if (pud_none_or_clear_bad(pud)) {
+ (*zap_work)--;
+ continue;
+ }
+ next = zap_pmd_range(tlb, vma, pud, addr, next,
+ zap_work, details);
+ } while (pud++, addr = next, (addr != end && *zap_work > 0));
+
+ return addr;
+}
+
+static unsigned long unmap_page_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma,
+ unsigned long addr, unsigned long end,
+ long *zap_work, struct zap_details *details)
+{
+ pgd_t *pgd;
+ unsigned long next;
+
+ if (details && !details->check_mapping && !details->nonlinear_vma)
+ details = NULL;
+
+ BUG_ON(addr >= end);
+ tlb_start_vma(tlb, vma);
+ pgd = pgd_offset(vma->vm_mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_none_or_clear_bad(pgd)) {
+ (*zap_work)--;
+ continue;
+ }
+ next = zap_pud_range(tlb, vma, pgd, addr, next,
+ zap_work, details);
+ } while (pgd++, addr = next, (addr != end && *zap_work > 0));
+ tlb_end_vma(tlb, vma);
+
+ return addr;
+}
+
+#ifdef CONFIG_PREEMPT
+# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
+#else
+/* No preempt: go for improved straight-line efficiency */
+# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
+#endif
+
+/**
+ * unmap_vmas - unmap a range of memory covered by a list of vma's
+ * @tlbp: address of the caller's struct mmu_gather
+ * @vma: the starting vma
+ * @start_addr: virtual address at which to start unmapping
+ * @end_addr: virtual address at which to end unmapping
+ * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
+ * @details: details of nonlinear truncation or shared cache invalidation
+ *
+ * Returns the end address of the unmapping (restart addr if interrupted).
+ *
+ * Unmap all pages in the vma list.
+ *
+ * We aim to not hold locks for too long (for scheduling latency reasons).
+ * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
+ * return the ending mmu_gather to the caller.
+ *
+ * Only addresses between `start' and `end' will be unmapped.
+ *
+ * The VMA list must be sorted in ascending virtual address order.
+ *
+ * unmap_vmas() assumes that the caller will flush the whole unmapped address
+ * range after unmap_vmas() returns. So the only responsibility here is to
+ * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
+ * drops the lock and schedules.
+ */
+unsigned long unmap_vmas(struct mmu_gather **tlbp,
+ struct vm_area_struct *vma, unsigned long start_addr,
+ unsigned long end_addr, unsigned long *nr_accounted,
+ struct zap_details *details)
+{
+ long zap_work = ZAP_BLOCK_SIZE;
+ unsigned long tlb_start = 0; /* For tlb_finish_mmu */
+ int tlb_start_valid = 0;
+ unsigned long start = start_addr;
+ spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
+ int fullmm = (*tlbp)->fullmm;
+ struct mm_struct *mm = vma->vm_mm;
+
+ mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
+ for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
+ unsigned long end;
+
+ start = max(vma->vm_start, start_addr);
+ if (start >= vma->vm_end)
+ continue;
+ end = min(vma->vm_end, end_addr);
+ if (end <= vma->vm_start)
+ continue;
+
+ if (vma->vm_flags & VM_ACCOUNT)
+ *nr_accounted += (end - start) >> PAGE_SHIFT;
+
+ while (start != end) {
+ if (!tlb_start_valid) {
+ tlb_start = start;
+ tlb_start_valid = 1;
+ }
+
+ if (unlikely(is_vm_hugetlb_page(vma))) {
+ /*
+ * It is undesirable to test vma->vm_file as it
+ * should be non-null for valid hugetlb area.
+ * However, vm_file will be NULL in the error
+ * cleanup path of do_mmap_pgoff. When
+ * hugetlbfs ->mmap method fails,
+ * do_mmap_pgoff() nullifies vma->vm_file
+ * before calling this function to clean up.
+ * Since no pte has actually been setup, it is
+ * safe to do nothing in this case.
+ */
+ if (vma->vm_file) {
+ unmap_hugepage_range(vma, start, end, NULL);
+ zap_work -= (end - start) /
+ pages_per_huge_page(hstate_vma(vma));
+ }
+
+ start = end;
+ } else
+ start = unmap_page_range(*tlbp, vma,
+ start, end, &zap_work, details);
+
+ if (zap_work > 0) {
+ BUG_ON(start != end);
+ break;
+ }
+
+ tlb_finish_mmu(*tlbp, tlb_start, start);
+
+ if (need_resched() ||
+ (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
+ if (i_mmap_lock) {
+ *tlbp = NULL;
+ goto out;
+ }
+ cond_resched();
+ }
+
+ *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
+ tlb_start_valid = 0;
+ zap_work = ZAP_BLOCK_SIZE;
+ }
+ }
+out:
+ mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
+ return start; /* which is now the end (or restart) address */
+}
+
+/**
+ * zap_page_range - remove user pages in a given range
+ * @vma: vm_area_struct holding the applicable pages
+ * @address: starting address of pages to zap
+ * @size: number of bytes to zap
+ * @details: details of nonlinear truncation or shared cache invalidation
+ */
+unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
+ unsigned long size, struct zap_details *details)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ struct mmu_gather *tlb;
+ unsigned long end = address + size;
+ unsigned long nr_accounted = 0;
+
+ lru_add_drain();
+ tlb = tlb_gather_mmu(mm, 0);
+ update_hiwater_rss(mm);
+ end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
+ if (tlb)
+ tlb_finish_mmu(tlb, address, end);
+ return end;
+}
+
+/**
+ * zap_vma_ptes - remove ptes mapping the vma
+ * @vma: vm_area_struct holding ptes to be zapped
+ * @address: starting address of pages to zap
+ * @size: number of bytes to zap
+ *
+ * This function only unmaps ptes assigned to VM_PFNMAP vmas.
+ *
+ * The entire address range must be fully contained within the vma.
+ *
+ * Returns 0 if successful.
+ */
+int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
+ unsigned long size)
+{
+ if (address < vma->vm_start || address + size > vma->vm_end ||
+ !(vma->vm_flags & VM_PFNMAP))
+ return -1;
+ zap_page_range(vma, address, size, NULL);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(zap_vma_ptes);
+
+/*
+ * Do a quick page-table lookup for a single page.
+ */
+struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
+ unsigned int flags)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+ spinlock_t *ptl;
+ struct page *page;
+ struct mm_struct *mm = vma->vm_mm;
+
+ page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
+ if (!IS_ERR(page)) {
+ BUG_ON(flags & FOLL_GET);
+ goto out;
+ }
+
+ page = NULL;
+ pgd = pgd_offset(mm, address);
+ if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+ goto no_page_table;
+
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud))
+ goto no_page_table;
+ if (pud_huge(*pud)) {
+ BUG_ON(flags & FOLL_GET);
+ page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
+ goto out;
+ }
+ if (unlikely(pud_bad(*pud)))
+ goto no_page_table;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd))
+ goto no_page_table;
+ if (pmd_huge(*pmd)) {
+ BUG_ON(flags & FOLL_GET);
+ page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
+ goto out;
+ }
+ if (unlikely(pmd_bad(*pmd)))
+ goto no_page_table;
+
+ ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
+
+ pte = *ptep;
+ if (!pte_present(pte))
+ goto no_page;
+ if ((flags & FOLL_WRITE) && !pte_write(pte))
+ goto unlock;
+ page = vm_normal_page(vma, address, pte);
+ if (unlikely(!page))
+ goto bad_page;
+
+ if (flags & FOLL_GET)
+ get_page(page);
+ if (flags & FOLL_TOUCH) {
+ if ((flags & FOLL_WRITE) &&
+ !pte_dirty(pte) && !PageDirty(page))
+ set_page_dirty(page);
+ mark_page_accessed(page);
+ }
+unlock:
+ pte_unmap_unlock(ptep, ptl);
+out:
+ return page;
+
+bad_page:
+ pte_unmap_unlock(ptep, ptl);
+ return ERR_PTR(-EFAULT);
+
+no_page:
+ pte_unmap_unlock(ptep, ptl);
+ if (!pte_none(pte))
+ return page;
+ /* Fall through to ZERO_PAGE handling */
+no_page_table:
+ /*
+ * When core dumping an enormous anonymous area that nobody
+ * has touched so far, we don't want to allocate page tables.
+ */
+ if (flags & FOLL_ANON) {
+ page = ZERO_PAGE(0);
+ if (flags & FOLL_GET)
+ get_page(page);
+ BUG_ON(flags & FOLL_WRITE);
+ }
+ return page;
+}
+
+/* Can we do the FOLL_ANON optimization? */
+static inline int use_zero_page(struct vm_area_struct *vma)
+{
+ /*
+ * We don't want to optimize FOLL_ANON for make_pages_present()
+ * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
+ * we want to get the page from the page tables to make sure
+ * that we serialize and update with any other user of that
+ * mapping.
+ */
+ if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
+ return 0;
+ /*
+ * And if we have a fault routine, it's not an anonymous region.
+ */
+ return !vma->vm_ops || !vma->vm_ops->fault;
+}
+
+
+
+int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int flags,
+ struct page **pages, struct vm_area_struct **vmas)
+{
+ int i;
+ unsigned int vm_flags = 0;
+ int write = !!(flags & GUP_FLAGS_WRITE);
+ int force = !!(flags & GUP_FLAGS_FORCE);
+ int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
+
+ if (len <= 0)
+ return 0;
+ /*
+ * Require read or write permissions.
+ * If 'force' is set, we only require the "MAY" flags.
+ */
+ vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
+ vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
+ i = 0;
+
+ do {
+ struct vm_area_struct *vma;
+ unsigned int foll_flags;
+
+ vma = find_extend_vma(mm, start);
+ if (!vma && in_gate_area(tsk, start)) {
+ unsigned long pg = start & PAGE_MASK;
+ struct vm_area_struct *gate_vma = get_gate_vma(tsk);
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ /* user gate pages are read-only */
+ if (!ignore && write)
+ return i ? : -EFAULT;
+ if (pg > TASK_SIZE)
+ pgd = pgd_offset_k(pg);
+ else
+ pgd = pgd_offset_gate(mm, pg);
+ BUG_ON(pgd_none(*pgd));
+ pud = pud_offset(pgd, pg);
+ BUG_ON(pud_none(*pud));
+ pmd = pmd_offset(pud, pg);
+ if (pmd_none(*pmd))
+ return i ? : -EFAULT;
+ pte = pte_offset_map(pmd, pg);
+ if (pte_none(*pte)) {
+ pte_unmap(pte);
+ return i ? : -EFAULT;
+ }
+ if (pages) {
+ struct page *page = vm_normal_page(gate_vma, start, *pte);
+ pages[i] = page;
+ if (page)
+ get_page(page);
+ }
+ pte_unmap(pte);
+ if (vmas)
+ vmas[i] = gate_vma;
+ i++;
+ start += PAGE_SIZE;
+ len--;
+ continue;
+ }
+
+ if (!vma ||
+ (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
+ (!ignore && !(vm_flags & vma->vm_flags)))
+ return i ? : -EFAULT;
+
+ if (is_vm_hugetlb_page(vma)) {
+ i = follow_hugetlb_page(mm, vma, pages, vmas,
+ &start, &len, i, write);
+ continue;
+ }
+
+ foll_flags = FOLL_TOUCH;
+ if (pages)
+ foll_flags |= FOLL_GET;
+ if (!write && use_zero_page(vma))
+ foll_flags |= FOLL_ANON;
+
+ do {
+ struct page *page;
+
+ /*
+ * If tsk is ooming, cut off its access to large memory
+ * allocations. It has a pending SIGKILL, but it can't
+ * be processed until returning to user space.
+ */
+ if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
+ return i ? i : -ENOMEM;
+
+ if (write)
+ foll_flags |= FOLL_WRITE;
+
+ cond_resched();
+ while (!(page = follow_page(vma, start, foll_flags))) {
+ int ret;
+ ret = handle_mm_fault(mm, vma, start,
+ foll_flags & FOLL_WRITE);
+ if (ret & VM_FAULT_ERROR) {
+ if (ret & VM_FAULT_OOM)
+ return i ? i : -ENOMEM;
+ else if (ret & VM_FAULT_SIGBUS)
+ return i ? i : -EFAULT;
+ BUG();
+ }
+ if (ret & VM_FAULT_MAJOR)
+ tsk->maj_flt++;
+ else
+ tsk->min_flt++;
+
+ /*
+ * The VM_FAULT_WRITE bit tells us that
+ * do_wp_page has broken COW when necessary,
+ * even if maybe_mkwrite decided not to set
+ * pte_write. We can thus safely do subsequent
+ * page lookups as if they were reads.
+ */
+ if (ret & VM_FAULT_WRITE)
+ foll_flags &= ~FOLL_WRITE;
+
+ cond_resched();
+ }
+ if (IS_ERR(page))
+ return i ? i : PTR_ERR(page);
+ if (pages) {
+ pages[i] = page;
+
+ flush_anon_page(vma, page, start);
+ flush_dcache_page(page);
+ }
+ if (vmas)
+ vmas[i] = vma;
+ i++;
+ start += PAGE_SIZE;
+ len--;
+ } while (len && start < vma->vm_end);
+ } while (len);
+ return i;
+}
+
+int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int write, int force,
+ struct page **pages, struct vm_area_struct **vmas)
+{
+ int flags = 0;
+
+ if (write)
+ flags |= GUP_FLAGS_WRITE;
+ if (force)
+ flags |= GUP_FLAGS_FORCE;
+
+ return __get_user_pages(tsk, mm,
+ start, len, flags,
+ pages, vmas);
+}
+
+EXPORT_SYMBOL(get_user_pages);
+
+pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
+ spinlock_t **ptl)
+{
+ pgd_t * pgd = pgd_offset(mm, addr);
+ pud_t * pud = pud_alloc(mm, pgd, addr);
+ if (pud) {
+ pmd_t * pmd = pmd_alloc(mm, pud, addr);
+ if (pmd)
+ return pte_alloc_map_lock(mm, pmd, addr, ptl);
+ }
+ return NULL;
+}
+
+/*
+ * This is the old fallback for page remapping.
+ *
+ * For historical reasons, it only allows reserved pages. Only
+ * old drivers should use this, and they needed to mark their
+ * pages reserved for the old functions anyway.
+ */
+static int insert_page(struct vm_area_struct *vma, unsigned long addr,
+ struct page *page, pgprot_t prot)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ int retval;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ retval = -EINVAL;
+ if (PageAnon(page))
+ goto out;
+ retval = -ENOMEM;
+ flush_dcache_page(page);
+ pte = get_locked_pte(mm, addr, &ptl);
+ if (!pte)
+ goto out;
+ retval = -EBUSY;
+ if (!pte_none(*pte))
+ goto out_unlock;
+
+ /* Ok, finally just insert the thing.. */
+ get_page(page);
+ inc_mm_counter(mm, file_rss);
+ page_add_file_rmap(page);
+ set_pte_at(mm, addr, pte, mk_pte(page, prot));
+
+ retval = 0;
+ pte_unmap_unlock(pte, ptl);
+ return retval;
+out_unlock:
+ pte_unmap_unlock(pte, ptl);
+out:
+ return retval;
+}
+
+/**
+ * vm_insert_page - insert single page into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @page: source kernel page
+ *
+ * This allows drivers to insert individual pages they've allocated
+ * into a user vma.
+ *
+ * The page has to be a nice clean _individual_ kernel allocation.
+ * If you allocate a compound page, you need to have marked it as
+ * such (__GFP_COMP), or manually just split the page up yourself
+ * (see split_page()).
+ *
+ * NOTE! Traditionally this was done with "remap_pfn_range()" which
+ * took an arbitrary page protection parameter. This doesn't allow
+ * that. Your vma protection will have to be set up correctly, which
+ * means that if you want a shared writable mapping, you'd better
+ * ask for a shared writable mapping!
+ *
+ * The page does not need to be reserved.
+ */
+int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
+ struct page *page)
+{
+ if (addr < vma->vm_start || addr >= vma->vm_end)
+ return -EFAULT;
+ if (!page_count(page))
+ return -EINVAL;
+ vma->vm_flags |= VM_INSERTPAGE;
+ return insert_page(vma, addr, page, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_page);
+
+static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, pgprot_t prot)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ int retval;
+ pte_t *pte, entry;
+ spinlock_t *ptl;
+
+ retval = -ENOMEM;
+ pte = get_locked_pte(mm, addr, &ptl);
+ if (!pte)
+ goto out;
+ retval = -EBUSY;
+ if (!pte_none(*pte))
+ goto out_unlock;
+
+ /* Ok, finally just insert the thing.. */
+ entry = pte_mkspecial(pfn_pte(pfn, prot));
+ set_pte_at(mm, addr, pte, entry);
+ update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
+
+ retval = 0;
+out_unlock:
+ pte_unmap_unlock(pte, ptl);
+out:
+ return retval;
+}
+
+/**
+ * vm_insert_pfn - insert single pfn into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @pfn: source kernel pfn
+ *
+ * Similar to vm_inert_page, this allows drivers to insert individual pages
+ * they've allocated into a user vma. Same comments apply.
+ *
+ * This function should only be called from a vm_ops->fault handler, and
+ * in that case the handler should return NULL.
+ *
+ * vma cannot be a COW mapping.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ */
+int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn)
+{
+ /*
+ * Technically, architectures with pte_special can avoid all these
+ * restrictions (same for remap_pfn_range). However we would like
+ * consistency in testing and feature parity among all, so we should
+ * try to keep these invariants in place for everybody.
+ */
+ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
+ BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
+ (VM_PFNMAP|VM_MIXEDMAP));
+ BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
+ BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
+
+ if (addr < vma->vm_start || addr >= vma->vm_end)
+ return -EFAULT;
+ return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_pfn);
+
+int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn)
+{
+ BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
+
+ if (addr < vma->vm_start || addr >= vma->vm_end)
+ return -EFAULT;
+
+ /*
+ * If we don't have pte special, then we have to use the pfn_valid()
+ * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
+ * refcount the page if pfn_valid is true (hence insert_page rather
+ * than insert_pfn).
+ */
+ if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
+ struct page *page;
+
+ page = pfn_to_page(pfn);
+ return insert_page(vma, addr, page, vma->vm_page_prot);
+ }
+ return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_mixed);
+
+/*
+ * maps a range of physical memory into the requested pages. the old
+ * mappings are removed. any references to nonexistent pages results
+ * in null mappings (currently treated as "copy-on-access")
+ */
+static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return -ENOMEM;
+ arch_enter_lazy_mmu_mode();
+ do {
+ BUG_ON(!pte_none(*pte));
+ set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
+ pfn++;
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+ arch_leave_lazy_mmu_mode();
+ pte_unmap_unlock(pte - 1, ptl);
+ return 0;
+}
+
+static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pmd_t *pmd;
+ unsigned long next;
+
+ pfn -= addr >> PAGE_SHIFT;
+ pmd = pmd_alloc(mm, pud, addr);
+ if (!pmd)
+ return -ENOMEM;
+ do {
+ next = pmd_addr_end(addr, end);
+ if (remap_pte_range(mm, pmd, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot))
+ return -ENOMEM;
+ } while (pmd++, addr = next, addr != end);
+ return 0;
+}
+
+static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pud_t *pud;
+ unsigned long next;
+
+ pfn -= addr >> PAGE_SHIFT;
+ pud = pud_alloc(mm, pgd, addr);
+ if (!pud)
+ return -ENOMEM;
+ do {
+ next = pud_addr_end(addr, end);
+ if (remap_pmd_range(mm, pud, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot))
+ return -ENOMEM;
+ } while (pud++, addr = next, addr != end);
+ return 0;
+}
+
+/**
+ * remap_pfn_range - remap kernel memory to userspace
+ * @vma: user vma to map to
+ * @addr: target user address to start at
+ * @pfn: physical address of kernel memory
+ * @size: size of map area
+ * @prot: page protection flags for this mapping
+ *
+ * Note: this is only safe if the mm semaphore is held when called.
+ */
+int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ pgd_t *pgd;
+ unsigned long next;
+ unsigned long end = addr + PAGE_ALIGN(size);
+ struct mm_struct *mm = vma->vm_mm;
+ int err;
+
+ /*
+ * Physically remapped pages are special. Tell the
+ * rest of the world about it:
+ * VM_IO tells people not to look at these pages
+ * (accesses can have side effects).
+ * VM_RESERVED is specified all over the place, because
+ * in 2.4 it kept swapout's vma scan off this vma; but
+ * in 2.6 the LRU scan won't even find its pages, so this
+ * flag means no more than count its pages in reserved_vm,
+ * and omit it from core dump, even when VM_IO turned off.
+ * VM_PFNMAP tells the core MM that the base pages are just
+ * raw PFN mappings, and do not have a "struct page" associated
+ * with them.
+ *
+ * There's a horrible special case to handle copy-on-write
+ * behaviour that some programs depend on. We mark the "original"
+ * un-COW'ed pages by matching them up with "vma->vm_pgoff".
+ */
+ if (is_cow_mapping(vma->vm_flags)) {
+ if (addr != vma->vm_start || end != vma->vm_end)
+ return -EINVAL;
+ vma->vm_pgoff = pfn;
+ }
+
+ vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
+
+ BUG_ON(addr >= end);
+ pfn -= addr >> PAGE_SHIFT;
+ pgd = pgd_offset(mm, addr);
+ flush_cache_range(vma, addr, end);
+ do {
+ next = pgd_addr_end(addr, end);
+ err = remap_pud_range(mm, pgd, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot);
+ if (err)
+ break;
+ } while (pgd++, addr = next, addr != end);
+ return err;
+}
+EXPORT_SYMBOL(remap_pfn_range);
+
+static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pte_t *pte;
+ int err;
+ pgtable_t token;
+ spinlock_t *uninitialized_var(ptl);
+
+ pte = (mm == &init_mm) ?
+ pte_alloc_kernel(pmd, addr) :
+ pte_alloc_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return -ENOMEM;
+
+ BUG_ON(pmd_huge(*pmd));
+
+ token = pmd_pgtable(*pmd);
+
+ do {
+ err = fn(pte, token, addr, data);
+ if (err)
+ break;
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (mm != &init_mm)
+ pte_unmap_unlock(pte-1, ptl);
+ return err;
+}
+
+static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pmd_t *pmd;
+ unsigned long next;
+ int err;
+
+ BUG_ON(pud_huge(*pud));
+
+ pmd = pmd_alloc(mm, pud, addr);
+ if (!pmd)
+ return -ENOMEM;
+ do {
+ next = pmd_addr_end(addr, end);
+ err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pmd++, addr = next, addr != end);
+ return err;
+}
+
+static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pud_t *pud;
+ unsigned long next;
+ int err;
+
+ pud = pud_alloc(mm, pgd, addr);
+ if (!pud)
+ return -ENOMEM;
+ do {
+ next = pud_addr_end(addr, end);
+ err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pud++, addr = next, addr != end);
+ return err;
+}
+
+/*
+ * Scan a region of virtual memory, filling in page tables as necessary
+ * and calling a provided function on each leaf page table.
+ */
+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+ unsigned long size, pte_fn_t fn, void *data)
+{
+ pgd_t *pgd;
+ unsigned long next;
+ unsigned long start = addr, end = addr + size;
+ int err;
+
+ BUG_ON(addr >= end);
+ mmu_notifier_invalidate_range_start(mm, start, end);
+ pgd = pgd_offset(mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pgd++, addr = next, addr != end);
+ mmu_notifier_invalidate_range_end(mm, start, end);
+ return err;
+}
+EXPORT_SYMBOL_GPL(apply_to_page_range);
+
+/*
+ * handle_pte_fault chooses page fault handler according to an entry
+ * which was read non-atomically. Before making any commitment, on
+ * those architectures or configurations (e.g. i386 with PAE) which
+ * might give a mix of unmatched parts, do_swap_page and do_file_page
+ * must check under lock before unmapping the pte and proceeding
+ * (but do_wp_page is only called after already making such a check;
+ * and do_anonymous_page and do_no_page can safely check later on).
+ */
+static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
+ pte_t *page_table, pte_t orig_pte)
+{
+ int same = 1;
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
+ if (sizeof(pte_t) > sizeof(unsigned long)) {
+ spinlock_t *ptl = pte_lockptr(mm, pmd);
+ spin_lock(ptl);
+ same = pte_same(*page_table, orig_pte);
+ spin_unlock(ptl);
+ }
+#endif
+ pte_unmap(page_table);
+ return same;
+}
+
+/*
+ * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
+ * servicing faults for write access. In the normal case, do always want
+ * pte_mkwrite. But get_user_pages can cause write faults for mappings
+ * that do not have writing enabled, when used by access_process_vm.
+ */
+static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
+{
+ if (likely(vma->vm_flags & VM_WRITE))
+ pte = pte_mkwrite(pte);
+ return pte;
+}
+
+static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
+{
+ /*
+ * If the source page was a PFN mapping, we don't have
+ * a "struct page" for it. We do a best-effort copy by
+ * just copying from the original user address. If that
+ * fails, we just zero-fill it. Live with it.
+ */
+ if (unlikely(!src)) {
+ void *kaddr = kmap_atomic(dst, KM_USER0);
+ void __user *uaddr = (void __user *)(va & PAGE_MASK);
+
+ /*
+ * This really shouldn't fail, because the page is there
+ * in the page tables. But it might just be unreadable,
+ * in which case we just give up and fill the result with
+ * zeroes.
+ */
+ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
+ memset(kaddr, 0, PAGE_SIZE);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(dst);
+ } else
+ copy_user_highpage(dst, src, va, vma);
+}
+
+/*
+ * This routine handles present pages, when users try to write
+ * to a shared page. It is done by copying the page to a new address
+ * and decrementing the shared-page counter for the old page.
+ *
+ * Note that this routine assumes that the protection checks have been
+ * done by the caller (the low-level page fault routine in most cases).
+ * Thus we can safely just mark it writable once we've done any necessary
+ * COW.
+ *
+ * We also mark the page dirty at this point even though the page will
+ * change only once the write actually happens. This avoids a few races,
+ * and potentially makes it more efficient.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), with pte both mapped and locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ spinlock_t *ptl, pte_t orig_pte)
+{
+ struct page *old_page, *new_page;
+ pte_t entry;
+ int reuse = 0, ret = 0;
+ int page_mkwrite = 0;
+ struct page *dirty_page = NULL;
+
+ old_page = vm_normal_page(vma, address, orig_pte);
+ if (!old_page) {
+ /*
+ * VM_MIXEDMAP !pfn_valid() case
+ *
+ * We should not cow pages in a shared writeable mapping.
+ * Just mark the pages writable as we can't do any dirty
+ * accounting on raw pfn maps.
+ */
+ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+ (VM_WRITE|VM_SHARED))
+ goto reuse;
+ goto gotten;
+ }
+
+ /*
+ * Take out anonymous pages first, anonymous shared vmas are
+ * not dirty accountable.
+ */
+ if (PageAnon(old_page)) {
+ if (trylock_page(old_page)) {
+ reuse = can_share_swap_page(old_page);
+ unlock_page(old_page);
+ }
+ } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+ (VM_WRITE|VM_SHARED))) {
+ /*
+ * Only catch write-faults on shared writable pages,
+ * read-only shared pages can get COWed by
+ * get_user_pages(.write=1, .force=1).
+ */
+ if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
+ /*
+ * Notify the address space that the page is about to
+ * become writable so that it can prohibit this or wait
+ * for the page to get into an appropriate state.
+ *
+ * We do this without the lock held, so that it can
+ * sleep if it needs to.
+ */
+ page_cache_get(old_page);
+ pte_unmap_unlock(page_table, ptl);
+
+ if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
+ goto unwritable_page;
+
+ /*
+ * Since we dropped the lock we need to revalidate
+ * the PTE as someone else may have changed it. If
+ * they did, we just return, as we can count on the
+ * MMU to tell us if they didn't also make it writable.
+ */
+ page_table = pte_offset_map_lock(mm, pmd, address,
+ &ptl);
+ page_cache_release(old_page);
+ if (!pte_same(*page_table, orig_pte))
+ goto unlock;
+
+ page_mkwrite = 1;
+ }
+ dirty_page = old_page;
+ get_page(dirty_page);
+ reuse = 1;
+ }
+
+ if (reuse) {
+reuse:
+ flush_cache_page(vma, address, pte_pfn(orig_pte));
+ entry = pte_mkyoung(orig_pte);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (ptep_set_access_flags(vma, address, page_table, entry,1))
+ update_mmu_cache(vma, address, entry);
+ ret |= VM_FAULT_WRITE;
+ goto unlock;
+ }
+
+ /*
+ * Ok, we need to copy. Oh, well..
+ */
+ page_cache_get(old_page);
+gotten:
+ pte_unmap_unlock(page_table, ptl);
+
+ if (unlikely(anon_vma_prepare(vma)))
+ goto oom;
+ VM_BUG_ON(old_page == ZERO_PAGE(0));
+ new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
+ if (!new_page)
+ goto oom;
+ /*
+ * Don't let another task, with possibly unlocked vma,
+ * keep the mlocked page.
+ */
+ if ((vma->vm_flags & VM_LOCKED) && old_page) {
+ lock_page(old_page); /* for LRU manipulation */
+ clear_page_mlock(old_page);
+ unlock_page(old_page);
+ }
+ cow_user_page(new_page, old_page, address, vma);
+ __SetPageUptodate(new_page);
+
+ if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
+ goto oom_free_new;
+
+ /*
+ * Re-check the pte - we dropped the lock
+ */
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (likely(pte_same(*page_table, orig_pte))) {
+ if (old_page) {
+ if (!PageAnon(old_page)) {
+ dec_mm_counter(mm, file_rss);
+ inc_mm_counter(mm, anon_rss);
+ }
+ } else
+ inc_mm_counter(mm, anon_rss);
+ flush_cache_page(vma, address, pte_pfn(orig_pte));
+ entry = mk_pte(new_page, vma->vm_page_prot);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ /*
+ * Clear the pte entry and flush it first, before updating the
+ * pte with the new entry. This will avoid a race condition
+ * seen in the presence of one thread doing SMC and another
+ * thread doing COW.
+ */
+ ptep_clear_flush_notify(vma, address, page_table);
+ SetPageSwapBacked(new_page);
+ lru_cache_add_active_or_unevictable(new_page, vma);
+ page_add_new_anon_rmap(new_page, vma, address);
+
+//TODO: is this safe? do_anonymous_page() does it this way.
+ set_pte_at(mm, address, page_table, entry);
+ update_mmu_cache(vma, address, entry);
+ if (old_page) {
+ /*
+ * Only after switching the pte to the new page may
+ * we remove the mapcount here. Otherwise another
+ * process may come and find the rmap count decremented
+ * before the pte is switched to the new page, and
+ * "reuse" the old page writing into it while our pte
+ * here still points into it and can be read by other
+ * threads.
+ *
+ * The critical issue is to order this
+ * page_remove_rmap with the ptp_clear_flush above.
+ * Those stores are ordered by (if nothing else,)
+ * the barrier present in the atomic_add_negative
+ * in page_remove_rmap.
+ *
+ * Then the TLB flush in ptep_clear_flush ensures that
+ * no process can access the old page before the
+ * decremented mapcount is visible. And the old page
+ * cannot be reused until after the decremented
+ * mapcount is visible. So transitively, TLBs to
+ * old page will be flushed before it can be reused.
+ */
+ page_remove_rmap(old_page, vma);
+ }
+
+ /* Free the old page.. */
+ new_page = old_page;
+ ret |= VM_FAULT_WRITE;
+ } else
+ mem_cgroup_uncharge_page(new_page);
+
+ if (new_page)
+ page_cache_release(new_page);
+ if (old_page)
+ page_cache_release(old_page);
+unlock:
+ pte_unmap_unlock(page_table, ptl);
+ if (dirty_page) {
+ if (vma->vm_file)
+ file_update_time(vma->vm_file);
+
+ /*
+ * Yes, Virginia, this is actually required to prevent a race
+ * with clear_page_dirty_for_io() from clearing the page dirty
+ * bit after it clear all dirty ptes, but before a racing
+ * do_wp_page installs a dirty pte.
+ *
+ * do_no_page is protected similarly.
+ */
+ wait_on_page_locked(dirty_page);
+ set_page_dirty_balance(dirty_page, page_mkwrite);
+ put_page(dirty_page);
+ }
+ return ret;
+oom_free_new:
+ page_cache_release(new_page);
+oom:
+ if (old_page)
+ page_cache_release(old_page);
+ return VM_FAULT_OOM;
+
+unwritable_page:
+ page_cache_release(old_page);
+ return VM_FAULT_SIGBUS;
+}
+
+/*
+ * Helper functions for unmap_mapping_range().
+ *
+ * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
+ *
+ * We have to restart searching the prio_tree whenever we drop the lock,
+ * since the iterator is only valid while the lock is held, and anyway
+ * a later vma might be split and reinserted earlier while lock dropped.
+ *
+ * The list of nonlinear vmas could be handled more efficiently, using
+ * a placeholder, but handle it in the same way until a need is shown.
+ * It is important to search the prio_tree before nonlinear list: a vma
+ * may become nonlinear and be shifted from prio_tree to nonlinear list
+ * while the lock is dropped; but never shifted from list to prio_tree.
+ *
+ * In order to make forward progress despite restarting the search,
+ * vm_truncate_count is used to mark a vma as now dealt with, so we can
+ * quickly skip it next time around. Since the prio_tree search only
+ * shows us those vmas affected by unmapping the range in question, we
+ * can't efficiently keep all vmas in step with mapping->truncate_count:
+ * so instead reset them all whenever it wraps back to 0 (then go to 1).
+ * mapping->truncate_count and vma->vm_truncate_count are protected by
+ * i_mmap_lock.
+ *
+ * In order to make forward progress despite repeatedly restarting some
+ * large vma, note the restart_addr from unmap_vmas when it breaks out:
+ * and restart from that address when we reach that vma again. It might
+ * have been split or merged, shrunk or extended, but never shifted: so
+ * restart_addr remains valid so long as it remains in the vma's range.
+ * unmap_mapping_range forces truncate_count to leap over page-aligned
+ * values so we can save vma's restart_addr in its truncate_count field.
+ */
+#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
+
+static void reset_vma_truncate_counts(struct address_space *mapping)
+{
+ struct vm_area_struct *vma;
+ struct prio_tree_iter iter;
+
+ vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
+ vma->vm_truncate_count = 0;
+ list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
+ vma->vm_truncate_count = 0;
+}
+
+static int unmap_mapping_range_vma(struct vm_area_struct *vma,
+ unsigned long start_addr, unsigned long end_addr,
+ struct zap_details *details)
+{
+ unsigned long restart_addr;
+ int need_break;
+
+ /*
+ * files that support invalidating or truncating portions of the
+ * file from under mmaped areas must have their ->fault function
+ * return a locked page (and set VM_FAULT_LOCKED in the return).
+ * This provides synchronisation against concurrent unmapping here.
+ */
+
+again:
+ restart_addr = vma->vm_truncate_count;
+ if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
+ start_addr = restart_addr;
+ if (start_addr >= end_addr) {
+ /* Top of vma has been split off since last time */
+ vma->vm_truncate_count = details->truncate_count;
+ return 0;
+ }
+ }
+
+ restart_addr = zap_page_range(vma, start_addr,
+ end_addr - start_addr, details);
+ need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
+
+ if (restart_addr >= end_addr) {
+ /* We have now completed this vma: mark it so */
+ vma->vm_truncate_count = details->truncate_count;
+ if (!need_break)
+ return 0;
+ } else {
+ /* Note restart_addr in vma's truncate_count field */
+ vma->vm_truncate_count = restart_addr;
+ if (!need_break)
+ goto again;
+ }
+
+ spin_unlock(details->i_mmap_lock);
+ cond_resched();
+ spin_lock(details->i_mmap_lock);
+ return -EINTR;
+}
+
+static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
+ struct zap_details *details)
+{
+ struct vm_area_struct *vma;
+ struct prio_tree_iter iter;
+ pgoff_t vba, vea, zba, zea;
+
+restart:
+ vma_prio_tree_foreach(vma, &iter, root,
+ details->first_index, details->last_index) {
+ /* Skip quickly over those we have already dealt with */
+ if (vma->vm_truncate_count == details->truncate_count)
+ continue;
+
+ vba = vma->vm_pgoff;
+ vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
+ /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
+ zba = details->first_index;
+ if (zba < vba)
+ zba = vba;
+ zea = details->last_index;
+ if (zea > vea)
+ zea = vea;
+
+ if (unmap_mapping_range_vma(vma,
+ ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
+ ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
+ details) < 0)
+ goto restart;
+ }
+}
+
+static inline void unmap_mapping_range_list(struct list_head *head,
+ struct zap_details *details)
+{
+ struct vm_area_struct *vma;
+
+ /*
+ * In nonlinear VMAs there is no correspondence between virtual address
+ * offset and file offset. So we must perform an exhaustive search
+ * across *all* the pages in each nonlinear VMA, not just the pages
+ * whose virtual address lies outside the file truncation point.
+ */
+restart:
+ list_for_each_entry(vma, head, shared.vm_set.list) {
+ /* Skip quickly over those we have already dealt with */
+ if (vma->vm_truncate_count == details->truncate_count)
+ continue;
+ details->nonlinear_vma = vma;
+ if (unmap_mapping_range_vma(vma, vma->vm_start,
+ vma->vm_end, details) < 0)
+ goto restart;
+ }
+}
+
+/**
+ * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
+ * @mapping: the address space containing mmaps to be unmapped.
+ * @holebegin: byte in first page to unmap, relative to the start of
+ * the underlying file. This will be rounded down to a PAGE_SIZE
+ * boundary. Note that this is different from vmtruncate(), which
+ * must keep the partial page. In contrast, we must get rid of
+ * partial pages.
+ * @holelen: size of prospective hole in bytes. This will be rounded
+ * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
+ * end of the file.
+ * @even_cows: 1 when truncating a file, unmap even private COWed pages;
+ * but 0 when invalidating pagecache, don't throw away private data.
+ */
+void unmap_mapping_range(struct address_space *mapping,
+ loff_t const holebegin, loff_t const holelen, int even_cows)
+{
+ struct zap_details details;
+ pgoff_t hba = holebegin >> PAGE_SHIFT;
+ pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
+
+ /* Check for overflow. */
+ if (sizeof(holelen) > sizeof(hlen)) {
+ long long holeend =
+ (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ if (holeend & ~(long long)ULONG_MAX)
+ hlen = ULONG_MAX - hba + 1;
+ }
+
+ details.check_mapping = even_cows? NULL: mapping;
+ details.nonlinear_vma = NULL;
+ details.first_index = hba;
+ details.last_index = hba + hlen - 1;
+ if (details.last_index < details.first_index)
+ details.last_index = ULONG_MAX;
+ details.i_mmap_lock = &mapping->i_mmap_lock;
+
+ spin_lock(&mapping->i_mmap_lock);
+
+ /* Protect against endless unmapping loops */
+ mapping->truncate_count++;
+ if (unlikely(is_restart_addr(mapping->truncate_count))) {
+ if (mapping->truncate_count == 0)
+ reset_vma_truncate_counts(mapping);
+ mapping->truncate_count++;
+ }
+ details.truncate_count = mapping->truncate_count;
+
+ if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
+ unmap_mapping_range_tree(&mapping->i_mmap, &details);
+ if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
+ unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
+ spin_unlock(&mapping->i_mmap_lock);
+}
+EXPORT_SYMBOL(unmap_mapping_range);
+
+/**
+ * vmtruncate - unmap mappings "freed" by truncate() syscall
+ * @inode: inode of the file used
+ * @offset: file offset to start truncating
+ *
+ * NOTE! We have to be ready to update the memory sharing
+ * between the file and the memory map for a potential last
+ * incomplete page. Ugly, but necessary.
+ */
+int vmtruncate(struct inode * inode, loff_t offset)
+{
+ if (inode->i_size < offset) {
+ unsigned long limit;
+
+ limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
+ if (limit != RLIM_INFINITY && offset > limit)
+ goto out_sig;
+ if (offset > inode->i_sb->s_maxbytes)
+ goto out_big;
+ i_size_write(inode, offset);
+ } else {
+ struct address_space *mapping = inode->i_mapping;
+
+ /*
+ * truncation of in-use swapfiles is disallowed - it would
+ * cause subsequent swapout to scribble on the now-freed
+ * blocks.
+ */
+ if (IS_SWAPFILE(inode))
+ return -ETXTBSY;
+ i_size_write(inode, offset);
+
+ /*
+ * unmap_mapping_range is called twice, first simply for
+ * efficiency so that truncate_inode_pages does fewer
+ * single-page unmaps. However after this first call, and
+ * before truncate_inode_pages finishes, it is possible for
+ * private pages to be COWed, which remain after
+ * truncate_inode_pages finishes, hence the second
+ * unmap_mapping_range call must be made for correctness.
+ */
+ unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
+ truncate_inode_pages(mapping, offset);
+ unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
+ }
+
+ if (inode->i_op && inode->i_op->truncate)
+ inode->i_op->truncate(inode);
+ return 0;
+
+out_sig:
+ send_sig(SIGXFSZ, current, 0);
+out_big:
+ return -EFBIG;
+}
+EXPORT_SYMBOL(vmtruncate);
+
+int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
+{
+ struct address_space *mapping = inode->i_mapping;
+
+ /*
+ * If the underlying filesystem is not going to provide
+ * a way to truncate a range of blocks (punch a hole) -
+ * we should return failure right now.
+ */
+ if (!inode->i_op || !inode->i_op->truncate_range)
+ return -ENOSYS;
+
+ mutex_lock(&inode->i_mutex);
+ down_write(&inode->i_alloc_sem);
+ unmap_mapping_range(mapping, offset, (end - offset), 1);
+ truncate_inode_pages_range(mapping, offset, end);
+ unmap_mapping_range(mapping, offset, (end - offset), 1);
+ inode->i_op->truncate_range(inode, offset, end);
+ up_write(&inode->i_alloc_sem);
+ mutex_unlock(&inode->i_mutex);
+
+ return 0;
+}
+
+/*
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ int write_access, pte_t orig_pte)
+{
+ spinlock_t *ptl;
+ struct page *page;
+ swp_entry_t entry;
+ pte_t pte;
+ int ret = 0;
+
+ if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+ goto out;
+
+ entry = pte_to_swp_entry(orig_pte);
+ if (is_migration_entry(entry)) {
+ migration_entry_wait(mm, pmd, address);
+ goto out;
+ }
+ delayacct_set_flag(DELAYACCT_PF_SWAPIN);
+ page = lookup_swap_cache(entry);
+ if (!page) {
+ grab_swap_token(); /* Contend for token _before_ read-in */
+ page = swapin_readahead(entry,
+ GFP_HIGHUSER_MOVABLE, vma, address);
+ if (!page) {
+ /*
+ * Back out if somebody else faulted in this pte
+ * while we released the pte lock.
+ */
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (likely(pte_same(*page_table, orig_pte)))
+ ret = VM_FAULT_OOM;
+ delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+ goto unlock;
+ }
+
+ /* Had to read the page from swap area: Major fault */
+ ret = VM_FAULT_MAJOR;
+ count_vm_event(PGMAJFAULT);
+ }
+
+ mark_page_accessed(page);
+
+ lock_page(page);
+ delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+
+ if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
+ ret = VM_FAULT_OOM;
+ unlock_page(page);
+ goto out;
+ }
+
+ /*
+ * Back out if somebody else already faulted in this pte.
+ */
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (unlikely(!pte_same(*page_table, orig_pte)))
+ goto out_nomap;
+
+ if (unlikely(!PageUptodate(page))) {
+ ret = VM_FAULT_SIGBUS;
+ goto out_nomap;
+ }
+
+ /* The page isn't present yet, go ahead with the fault. */
+
+ inc_mm_counter(mm, anon_rss);
+ pte = mk_pte(page, vma->vm_page_prot);
+ if (write_access && can_share_swap_page(page)) {
+ pte = maybe_mkwrite(pte_mkdirty(pte), vma);
+ write_access = 0;
+ }
+
+ flush_icache_page(vma, page);
+ set_pte_at(mm, address, page_table, pte);
+ page_add_anon_rmap(page, vma, address);
+
+ swap_free(entry);
+ if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
+ remove_exclusive_swap_page(page);
+ unlock_page(page);
+
+ if (write_access) {
+ ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
+ if (ret & VM_FAULT_ERROR)
+ ret &= VM_FAULT_ERROR;
+ goto out;
+ }
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(vma, address, pte);
+unlock:
+ pte_unmap_unlock(page_table, ptl);
+out:
+ return ret;
+out_nomap:
+ mem_cgroup_uncharge_page(page);
+ pte_unmap_unlock(page_table, ptl);
+ unlock_page(page);
+ page_cache_release(page);
+ return ret;
+}
+
+/*
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ int write_access)
+{
+ struct page *page;
+ spinlock_t *ptl;
+ pte_t entry;
+
+ /* Allocate our own private page. */
+ pte_unmap(page_table);
+
+ if (unlikely(anon_vma_prepare(vma)))
+ goto oom;
+ page = alloc_zeroed_user_highpage_movable(vma, address);
+ if (!page)
+ goto oom;
+ __SetPageUptodate(page);
+
+ if (mem_cgroup_charge(page, mm, GFP_KERNEL))
+ goto oom_free_page;
+
+ entry = mk_pte(page, vma->vm_page_prot);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (!pte_none(*page_table))
+ goto release;
+ inc_mm_counter(mm, anon_rss);
+ SetPageSwapBacked(page);
+ lru_cache_add_active_or_unevictable(page, vma);
+ page_add_new_anon_rmap(page, vma, address);
+ set_pte_at(mm, address, page_table, entry);
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(vma, address, entry);
+unlock:
+ pte_unmap_unlock(page_table, ptl);
+ return 0;
+release:
+ mem_cgroup_uncharge_page(page);
+ page_cache_release(page);
+ goto unlock;
+oom_free_page:
+ page_cache_release(page);
+oom:
+ return VM_FAULT_OOM;
+}
+
+/*
+ * __do_fault() tries to create a new page mapping. It aggressively
+ * tries to share with existing pages, but makes a separate copy if
+ * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
+ * the next page fault.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte neither mapped nor locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd,
+ pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+ pte_t *page_table;
+ spinlock_t *ptl;
+ struct page *page;
+ pte_t entry;
+ int anon = 0;
+ int charged = 0;
+ struct page *dirty_page = NULL;
+ struct vm_fault vmf;
+ int ret;
+ int page_mkwrite = 0;
+
+ vmf.virtual_address = (void __user *)(address & PAGE_MASK);
+ vmf.pgoff = pgoff;
+ vmf.flags = flags;
+ vmf.page = NULL;
+
+ ret = vma->vm_ops->fault(vma, &vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
+ return ret;
+
+ /*
+ * For consistency in subsequent calls, make the faulted page always
+ * locked.
+ */
+ if (unlikely(!(ret & VM_FAULT_LOCKED)))
+ lock_page(vmf.page);
+ else
+ VM_BUG_ON(!PageLocked(vmf.page));
+
+ /*
+ * Should we do an early C-O-W break?
+ */
+ page = vmf.page;
+ if (flags & FAULT_FLAG_WRITE) {
+ if (!(vma->vm_flags & VM_SHARED)) {
+ anon = 1;
+ if (unlikely(anon_vma_prepare(vma))) {
+ ret = VM_FAULT_OOM;
+ goto out;
+ }
+ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
+ vma, address);
+ if (!page) {
+ ret = VM_FAULT_OOM;
+ goto out;
+ }
+ if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
+ ret = VM_FAULT_OOM;
+ page_cache_release(page);
+ goto out;
+ }
+ charged = 1;
+ /*
+ * Don't let another task, with possibly unlocked vma,
+ * keep the mlocked page.
+ */
+ if (vma->vm_flags & VM_LOCKED)
+ clear_page_mlock(vmf.page);
+ copy_user_highpage(page, vmf.page, address, vma);
+ __SetPageUptodate(page);
+ } else {
+ /*
+ * If the page will be shareable, see if the backing
+ * address space wants to know that the page is about
+ * to become writable
+ */
+ if (vma->vm_ops->page_mkwrite) {
+ unlock_page(page);
+ if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
+ ret = VM_FAULT_SIGBUS;
+ anon = 1; /* no anon but release vmf.page */
+ goto out_unlocked;
+ }
+ lock_page(page);
+ /*
+ * XXX: this is not quite right (racy vs
+ * invalidate) to unlock and relock the page
+ * like this, however a better fix requires
+ * reworking page_mkwrite locking API, which
+ * is better done later.
+ */
+ if (!page->mapping) {
+ ret = 0;
+ anon = 1; /* no anon but release vmf.page */
+ goto out;
+ }
+ page_mkwrite = 1;
+ }
+ }
+
+ }
+
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+
+ /*
+ * This silly early PAGE_DIRTY setting removes a race
+ * due to the bad i386 page protection. But it's valid
+ * for other architectures too.
+ *
+ * Note that if write_access is true, we either now have
+ * an exclusive copy of the page, or this is a shared mapping,
+ * so we can make it writable and dirty to avoid having to
+ * handle that later.
+ */
+ /* Only go through if we didn't race with anybody else... */
+ if (likely(pte_same(*page_table, orig_pte))) {
+ flush_icache_page(vma, page);
+ entry = mk_pte(page, vma->vm_page_prot);
+ if (flags & FAULT_FLAG_WRITE)
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (anon) {
+ inc_mm_counter(mm, anon_rss);
+ SetPageSwapBacked(page);
+ lru_cache_add_active_or_unevictable(page, vma);
+ page_add_new_anon_rmap(page, vma, address);
+ } else {
+ inc_mm_counter(mm, file_rss);
+ page_add_file_rmap(page);
+ if (flags & FAULT_FLAG_WRITE) {
+ dirty_page = page;
+ get_page(dirty_page);
+ }
+ }
+//TODO: is this safe? do_anonymous_page() does it this way.
+ set_pte_at(mm, address, page_table, entry);
+
+ /* no need to invalidate: a not-present page won't be cached */
+ update_mmu_cache(vma, address, entry);
+ } else {
+ if (charged)
+ mem_cgroup_uncharge_page(page);
+ if (anon)
+ page_cache_release(page);
+ else
+ anon = 1; /* no anon but release faulted_page */
+ }
+
+ pte_unmap_unlock(page_table, ptl);
+
+out:
+ unlock_page(vmf.page);
+out_unlocked:
+ if (anon)
+ page_cache_release(vmf.page);
+ else if (dirty_page) {
+ if (vma->vm_file)
+ file_update_time(vma->vm_file);
+
+ set_page_dirty_balance(dirty_page, page_mkwrite);
+ put_page(dirty_page);
+ }
+
+ return ret;
+}
+
+static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ int write_access, pte_t orig_pte)
+{
+ pgoff_t pgoff = (((address & PAGE_MASK)
+ - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
+ unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
+
+ pte_unmap(page_table);
+ return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+}
+
+/*
+ * Fault of a previously existing named mapping. Repopulate the pte
+ * from the encoded file_pte if possible. This enables swappable
+ * nonlinear vmas.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ int write_access, pte_t orig_pte)
+{
+ unsigned int flags = FAULT_FLAG_NONLINEAR |
+ (write_access ? FAULT_FLAG_WRITE : 0);
+ pgoff_t pgoff;
+
+ if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+ return 0;
+
+ if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
+ !(vma->vm_flags & VM_CAN_NONLINEAR))) {
+ /*
+ * Page table corrupted: show pte and kill process.
+ */
+ print_bad_pte(vma, orig_pte, address);
+ return VM_FAULT_OOM;
+ }
+
+ pgoff = pte_to_pgoff(orig_pte);
+ return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+}
+
+/*
+ * These routines also need to handle stuff like marking pages dirty
+ * and/or accessed for architectures that don't do it in hardware (most
+ * RISC architectures). The early dirtying is also good on the i386.
+ *
+ * There is also a hook called "update_mmu_cache()" that architectures
+ * with external mmu caches can use to update those (ie the Sparc or
+ * PowerPC hashed page tables that act as extended TLBs).
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static inline int handle_pte_fault(struct mm_struct *mm,
+ struct vm_area_struct *vma, unsigned long address,
+ pte_t *pte, pmd_t *pmd, int write_access)
+{
+ pte_t entry;
+ spinlock_t *ptl;
+
+ entry = *pte;
+ if (!pte_present(entry)) {
+ if (pte_none(entry)) {
+ if (vma->vm_ops) {
+ if (likely(vma->vm_ops->fault))
+ return do_linear_fault(mm, vma, address,
+ pte, pmd, write_access, entry);
+ }
+ return do_anonymous_page(mm, vma, address,
+ pte, pmd, write_access);
+ }
+ if (pte_file(entry))
+ return do_nonlinear_fault(mm, vma, address,
+ pte, pmd, write_access, entry);
+ return do_swap_page(mm, vma, address,
+ pte, pmd, write_access, entry);
+ }
+
+ ptl = pte_lockptr(mm, pmd);
+ spin_lock(ptl);
+ if (unlikely(!pte_same(*pte, entry)))
+ goto unlock;
+ if (write_access) {
+ if (!pte_write(entry))
+ return do_wp_page(mm, vma, address,
+ pte, pmd, ptl, entry);
+ entry = pte_mkdirty(entry);
+ }
+ entry = pte_mkyoung(entry);
+ if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
+ update_mmu_cache(vma, address, entry);
+ } else {
+ /*
+ * This is needed only for protection faults but the arch code
+ * is not yet telling us if this is a protection fault or not.
+ * This still avoids useless tlb flushes for .text page faults
+ * with threads.
+ */
+ if (write_access)
+ flush_tlb_page(vma, address);
+ }
+unlock:
+ pte_unmap_unlock(pte, ptl);
+ return 0;
+}
+
+/*
+ * By the time we get here, we already hold the mm semaphore
+ */
+int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, int write_access)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ __set_current_state(TASK_RUNNING);
+
+ count_vm_event(PGFAULT);
+
+ if (unlikely(is_vm_hugetlb_page(vma)))
+ return hugetlb_fault(mm, vma, address, write_access);
+
+ pgd = pgd_offset(mm, address);
+ pud = pud_alloc(mm, pgd, address);
+ if (!pud)
+ return VM_FAULT_OOM;
+ pmd = pmd_alloc(mm, pud, address);
+ if (!pmd)
+ return VM_FAULT_OOM;
+ pte = pte_alloc_map(mm, pmd, address);
+ if (!pte)
+ return VM_FAULT_OOM;
+
+ return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
+}
+
+#ifndef __PAGETABLE_PUD_FOLDED
+/*
+ * Allocate page upper directory.
+ * We've already handled the fast-path in-line.
+ */
+int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+{
+ pud_t *new = pud_alloc_one(mm, address);
+ if (!new)
+ return -ENOMEM;
+
+ smp_wmb(); /* See comment in __pte_alloc */
+
+ spin_lock(&mm->page_table_lock);
+ if (pgd_present(*pgd)) /* Another has populated it */
+ pud_free(mm, new);
+ else
+ pgd_populate(mm, pgd, new);
+ spin_unlock(&mm->page_table_lock);
+ return 0;
+}
+#endif /* __PAGETABLE_PUD_FOLDED */
+
+#ifndef __PAGETABLE_PMD_FOLDED
+/*
+ * Allocate page middle directory.
+ * We've already handled the fast-path in-line.
+ */
+int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
+{
+ pmd_t *new = pmd_alloc_one(mm, address);
+ if (!new)
+ return -ENOMEM;
+
+ smp_wmb(); /* See comment in __pte_alloc */
+
+ spin_lock(&mm->page_table_lock);
+#ifndef __ARCH_HAS_4LEVEL_HACK
+ if (pud_present(*pud)) /* Another has populated it */
+ pmd_free(mm, new);
+ else
+ pud_populate(mm, pud, new);
+#else
+ if (pgd_present(*pud)) /* Another has populated it */
+ pmd_free(mm, new);
+ else
+ pgd_populate(mm, pud, new);
+#endif /* __ARCH_HAS_4LEVEL_HACK */
+ spin_unlock(&mm->page_table_lock);
+ return 0;
+}
+#endif /* __PAGETABLE_PMD_FOLDED */
+
+int make_pages_present(unsigned long addr, unsigned long end)
+{
+ int ret, len, write;
+ struct vm_area_struct * vma;
+
+ vma = find_vma(current->mm, addr);
+ if (!vma)
+ return -ENOMEM;
+ write = (vma->vm_flags & VM_WRITE) != 0;
+ BUG_ON(addr >= end);
+ BUG_ON(end > vma->vm_end);
+ len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
+ ret = get_user_pages(current, current->mm, addr,
+ len, write, 0, NULL, NULL);
+ if (ret < 0)
+ return ret;
+ return ret == len ? 0 : -EFAULT;
+}
+
+#if !defined(__HAVE_ARCH_GATE_AREA)
+
+#if defined(AT_SYSINFO_EHDR)
+static struct vm_area_struct gate_vma;
+
+static int __init gate_vma_init(void)
+{
+ gate_vma.vm_mm = NULL;
+ gate_vma.vm_start = FIXADDR_USER_START;
+ gate_vma.vm_end = FIXADDR_USER_END;
+ gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
+ gate_vma.vm_page_prot = __P101;
+ /*
+ * Make sure the vDSO gets into every core dump.
+ * Dumping its contents makes post-mortem fully interpretable later
+ * without matching up the same kernel and hardware config to see
+ * what PC values meant.
+ */
+ gate_vma.vm_flags |= VM_ALWAYSDUMP;
+ return 0;
+}
+__initcall(gate_vma_init);
+#endif
+
+struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
+{
+#ifdef AT_SYSINFO_EHDR
+ return &gate_vma;
+#else
+ return NULL;
+#endif
+}
+
+int in_gate_area_no_task(unsigned long addr)
+{
+#ifdef AT_SYSINFO_EHDR
+ if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
+ return 1;
+#endif
+ return 0;
+}
+
+#endif /* __HAVE_ARCH_GATE_AREA */
+
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+static resource_size_t follow_phys(struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags,
+ unsigned long *prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+ spinlock_t *ptl;
+ resource_size_t phys_addr = 0;
+ struct mm_struct *mm = vma->vm_mm;
+
+ VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
+
+ pgd = pgd_offset(mm, address);
+ if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+ goto no_page_table;
+
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+ goto no_page_table;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+ goto no_page_table;
+
+ /* We cannot handle huge page PFN maps. Luckily they don't exist. */
+ if (pmd_huge(*pmd))
+ goto no_page_table;
+
+ ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (!ptep)
+ goto out;
+
+ pte = *ptep;
+ if (!pte_present(pte))
+ goto unlock;
+ if ((flags & FOLL_WRITE) && !pte_write(pte))
+ goto unlock;
+ phys_addr = pte_pfn(pte);
+ phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
+
+ *prot = pgprot_val(pte_pgprot(pte));
+
+unlock:
+ pte_unmap_unlock(ptep, ptl);
+out:
+ return phys_addr;
+no_page_table:
+ return 0;
+}
+
+int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
+ void *buf, int len, int write)
+{
+ resource_size_t phys_addr;
+ unsigned long prot = 0;
+ void *maddr;
+ int offset = addr & (PAGE_SIZE-1);
+
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ return -EINVAL;
+
+ phys_addr = follow_phys(vma, addr, write, &prot);
+
+ if (!phys_addr)
+ return -EINVAL;
+
+ maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
+ if (write)
+ memcpy_toio(maddr + offset, buf, len);
+ else
+ memcpy_fromio(buf, maddr + offset, len);
+ iounmap(maddr);
+
+ return len;
+}
+#endif
+
+/*
+ * Access another process' address space.
+ * Source/target buffer must be kernel space,
+ * Do not walk the page table directly, use get_user_pages
+ */
+int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
+{
+ struct mm_struct *mm;
+ struct vm_area_struct *vma;
+ void *old_buf = buf;
+
+ mm = get_task_mm(tsk);
+ if (!mm)
+ return 0;
+
+ down_read(&mm->mmap_sem);
+ /* ignore errors, just check how much was successfully transferred */
+ while (len) {
+ int bytes, ret, offset;
+ void *maddr;
+ struct page *page = NULL;
+
+ ret = get_user_pages(tsk, mm, addr, 1,
+ write, 1, &page, &vma);
+ if (ret <= 0) {
+ /*
+ * Check if this is a VM_IO | VM_PFNMAP VMA, which
+ * we can access using slightly different code.
+ */
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+ vma = find_vma(mm, addr);
+ if (!vma)
+ break;
+ if (vma->vm_ops && vma->vm_ops->access)
+ ret = vma->vm_ops->access(vma, addr, buf,
+ len, write);
+ if (ret <= 0)
+#endif
+ break;
+ bytes = ret;
+ } else {
+ bytes = len;
+ offset = addr & (PAGE_SIZE-1);
+ if (bytes > PAGE_SIZE-offset)
+ bytes = PAGE_SIZE-offset;
+
+ maddr = kmap(page);
+ if (write) {
+ copy_to_user_page(vma, page, addr,
+ maddr + offset, buf, bytes);
+ set_page_dirty_lock(page);
+ } else {
+ copy_from_user_page(vma, page, addr,
+ buf, maddr + offset, bytes);
+ }
+ kunmap(page);
+ page_cache_release(page);
+ }
+ len -= bytes;
+ buf += bytes;
+ addr += bytes;
+ }
+ up_read(&mm->mmap_sem);
+ mmput(mm);
+
+ return buf - old_buf;
+}
+
+/*
+ * Print the name of a VMA.
+ */
+void print_vma_addr(char *prefix, unsigned long ip)
+{
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma;
+
+ /*
+ * Do not print if we are in atomic
+ * contexts (in exception stacks, etc.):
+ */
+ if (preempt_count())
+ return;
+
+ down_read(&mm->mmap_sem);
+ vma = find_vma(mm, ip);
+ if (vma && vma->vm_file) {
+ struct file *f = vma->vm_file;
+ char *buf = (char *)__get_free_page(GFP_KERNEL);
+ if (buf) {
+ char *p, *s;
+
+ p = d_path(&f->f_path, buf, PAGE_SIZE);
+ if (IS_ERR(p))
+ p = "?";
+ s = strrchr(p, '/');
+ if (s)
+ p = s+1;
+ printk("%s%s[%lx+%lx]", prefix, p,
+ vma->vm_start,
+ vma->vm_end - vma->vm_start);
+ free_page((unsigned long)buf);
+ }
+ }
+ up_read(&current->mm->mmap_sem);
+}
OpenPOWER on IntegriCloud