summaryrefslogtreecommitdiffstats
path: root/drivers/char/rio/rioboot.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/rio/rioboot.c')
-rw-r--r--drivers/char/rio/rioboot.c1113
1 files changed, 1113 insertions, 0 deletions
diff --git a/drivers/char/rio/rioboot.c b/drivers/char/rio/rioboot.c
new file mode 100644
index 0000000..d956dd3
--- /dev/null
+++ b/drivers/char/rio/rioboot.c
@@ -0,0 +1,1113 @@
+/*
+** -----------------------------------------------------------------------------
+**
+** Perle Specialix driver for Linux
+** Ported from existing RIO Driver for SCO sources.
+ *
+ * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+**
+** Module : rioboot.c
+** SID : 1.3
+** Last Modified : 11/6/98 10:33:36
+** Retrieved : 11/6/98 10:33:48
+**
+** ident @(#)rioboot.c 1.3
+**
+** -----------------------------------------------------------------------------
+*/
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/termios.h>
+#include <linux/serial.h>
+#include <linux/vmalloc.h>
+#include <linux/generic_serial.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <asm/system.h>
+#include <asm/string.h>
+#include <asm/uaccess.h>
+
+
+#include "linux_compat.h"
+#include "rio_linux.h"
+#include "pkt.h"
+#include "daemon.h"
+#include "rio.h"
+#include "riospace.h"
+#include "cmdpkt.h"
+#include "map.h"
+#include "rup.h"
+#include "port.h"
+#include "riodrvr.h"
+#include "rioinfo.h"
+#include "func.h"
+#include "errors.h"
+#include "pci.h"
+
+#include "parmmap.h"
+#include "unixrup.h"
+#include "board.h"
+#include "host.h"
+#include "phb.h"
+#include "link.h"
+#include "cmdblk.h"
+#include "route.h"
+
+static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
+
+static const unsigned char RIOAtVec2Ctrl[] = {
+ /* 0 */ INTERRUPT_DISABLE,
+ /* 1 */ INTERRUPT_DISABLE,
+ /* 2 */ INTERRUPT_DISABLE,
+ /* 3 */ INTERRUPT_DISABLE,
+ /* 4 */ INTERRUPT_DISABLE,
+ /* 5 */ INTERRUPT_DISABLE,
+ /* 6 */ INTERRUPT_DISABLE,
+ /* 7 */ INTERRUPT_DISABLE,
+ /* 8 */ INTERRUPT_DISABLE,
+ /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
+ /* 10 */ INTERRUPT_DISABLE,
+ /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
+ /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
+ /* 13 */ INTERRUPT_DISABLE,
+ /* 14 */ INTERRUPT_DISABLE,
+ /* 15 */ IRQ_15 | INTERRUPT_ENABLE
+};
+
+/**
+ * RIOBootCodeRTA - Load RTA boot code
+ * @p: RIO to load
+ * @rbp: Download descriptor
+ *
+ * Called when the user process initiates booting of the card firmware.
+ * Lads the firmware
+ */
+
+int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
+{
+ int offset;
+
+ func_enter();
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
+
+ /*
+ ** Check that we have set asside enough memory for this
+ */
+ if (rbp->Count > SIXTY_FOUR_K) {
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
+ p->RIOError.Error = HOST_FILE_TOO_LARGE;
+ func_exit();
+ return -ENOMEM;
+ }
+
+ if (p->RIOBooting) {
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
+ p->RIOError.Error = BOOT_IN_PROGRESS;
+ func_exit();
+ return -EBUSY;
+ }
+
+ /*
+ ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
+ ** so calculate how far we have to move the data up the buffer
+ ** to achieve this.
+ */
+ offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
+
+ /*
+ ** Be clean, and clear the 'unused' portion of the boot buffer,
+ ** because it will (eventually) be part of the Rta run time environment
+ ** and so should be zeroed.
+ */
+ memset(p->RIOBootPackets, 0, offset);
+
+ /*
+ ** Copy the data from user space into the array
+ */
+
+ if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
+ p->RIOError.Error = COPYIN_FAILED;
+ func_exit();
+ return -EFAULT;
+ }
+
+ /*
+ ** Make sure that our copy of the size includes that offset we discussed
+ ** earlier.
+ */
+ p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
+ p->RIOBootCount = rbp->Count;
+
+ func_exit();
+ return 0;
+}
+
+/**
+ * rio_start_card_running - host card start
+ * @HostP: The RIO to kick off
+ *
+ * Start a RIO processor unit running. Encapsulates the knowledge
+ * of the card type.
+ */
+
+void rio_start_card_running(struct Host *HostP)
+{
+ switch (HostP->Type) {
+ case RIO_AT:
+ rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
+ writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
+ break;
+ case RIO_PCI:
+ /*
+ ** PCI is much the same as MCA. Everything is once again memory
+ ** mapped, so we are writing to memory registers instead of io
+ ** ports.
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
+ writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
+ break;
+ default:
+ rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
+ break;
+ }
+ return;
+}
+
+/*
+** Load in the host boot code - load it directly onto all halted hosts
+** of the correct type.
+**
+** Put your rubber pants on before messing with this code - even the magic
+** numbers have trouble understanding what they are doing here.
+*/
+
+int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
+{
+ struct Host *HostP;
+ u8 __iomem *Cad;
+ PARM_MAP __iomem *ParmMapP;
+ int RupN;
+ int PortN;
+ unsigned int host;
+ u8 __iomem *StartP;
+ u8 __iomem *DestP;
+ int wait_count;
+ u16 OldParmMap;
+ u16 offset; /* It is very important that this is a u16 */
+ u8 *DownCode = NULL;
+ unsigned long flags;
+
+ HostP = NULL; /* Assure the compiler we've initialized it */
+
+
+ /* Walk the hosts */
+ for (host = 0; host < p->RIONumHosts; host++) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
+ HostP = &p->RIOHosts[host];
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
+
+ /* Don't boot hosts already running */
+ if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
+ rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
+ continue;
+ }
+
+ /*
+ ** Grab a pointer to the card (ioremapped)
+ */
+ Cad = HostP->Caddr;
+
+ /*
+ ** We are going to (try) and load in rbp->Count bytes.
+ ** The last byte will reside at p->RIOConf.HostLoadBase-1;
+ ** Therefore, we need to start copying at address
+ ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
+ */
+ StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
+
+ rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
+ rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
+ rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
+ rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
+
+ /* Make sure it fits */
+ if (p->RIOConf.HostLoadBase < rbp->Count) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
+ p->RIOError.Error = HOST_FILE_TOO_LARGE;
+ func_exit();
+ return -EFBIG;
+ }
+ /*
+ ** Ensure that the host really is stopped.
+ ** Disable it's external bus & twang its reset line.
+ */
+ RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
+
+ /*
+ ** Copy the data directly from user space to the SRAM.
+ ** This ain't going to be none too clever if the download
+ ** code is bigger than this segment.
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
+
+ /* Buffer to local memory as we want to use I/O space and
+ some cards only do 8 or 16 bit I/O */
+
+ DownCode = vmalloc(rbp->Count);
+ if (!DownCode) {
+ p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
+ func_exit();
+ return -ENOMEM;
+ }
+ if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
+ kfree(DownCode);
+ p->RIOError.Error = COPYIN_FAILED;
+ func_exit();
+ return -EFAULT;
+ }
+ HostP->Copy(DownCode, StartP, rbp->Count);
+ vfree(DownCode);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
+
+ /*
+ ** S T O P !
+ **
+ ** Upto this point the code has been fairly rational, and possibly
+ ** even straight forward. What follows is a pile of crud that will
+ ** magically turn into six bytes of transputer assembler. Normally
+ ** you would expect an array or something, but, being me, I have
+ ** chosen [been told] to use a technique whereby the startup code
+ ** will be correct if we change the loadbase for the code. Which
+ ** brings us onto another issue - the loadbase is the *end* of the
+ ** code, not the start.
+ **
+ ** If I were you I wouldn't start from here.
+ */
+
+ /*
+ ** We now need to insert a short boot section into
+ ** the memory at the end of Sram2. This is normally (de)composed
+ ** of the last eight bytes of the download code. The
+ ** download has been assembled/compiled to expect to be
+ ** loaded from 0x7FFF downwards. We have loaded it
+ ** at some other address. The startup code goes into the small
+ ** ram window at Sram2, in the last 8 bytes, which are really
+ ** at addresses 0x7FF8-0x7FFF.
+ **
+ ** If the loadbase is, say, 0x7C00, then we need to branch to
+ ** address 0x7BFE to run the host.bin startup code. We assemble
+ ** this jump manually.
+ **
+ ** The two byte sequence 60 08 is loaded into memory at address
+ ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
+ ** which adds '0' to the .O register, complements .O, and then shifts
+ ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
+ ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
+ ** location. Now, the branch starts from the value of .PC (or .IP or
+ ** whatever the bloody register is called on this chip), and the .PC
+ ** will be pointing to the location AFTER the branch, in this case
+ ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
+ **
+ ** A long branch is coded at 0x7FF8. This consists of loading a four
+ ** byte offset into .O using nfix (as above) and pfix operators. The
+ ** pfix operates in exactly the same way as the nfix operator, but
+ ** without the complement operation. The offset, of course, must be
+ ** relative to the address of the byte AFTER the branch instruction,
+ ** which will be (urm) 0x7FFC, so, our final destination of the branch
+ ** (loadbase-2), has to be reached from here. Imagine that the loadbase
+ ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
+ ** is the first byte of the initial two byte short local branch of the
+ ** download code).
+ **
+ ** To code a jump from 0x7FFC (which is where the branch will start
+ ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
+ ** 0x7BFE.
+ ** This will be coded as four bytes:
+ ** 60 2C 20 02
+ ** being nfix .O+0
+ ** pfix .O+C
+ ** pfix .O+0
+ ** jump .O+2
+ **
+ ** The nfix operator is used, so that the startup code will be
+ ** compatible with the whole Tp family. (lies, damn lies, it'll never
+ ** work in a month of Sundays).
+ **
+ ** The nfix nyble is the 1s complement of the nyble value you
+ ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
+ */
+
+
+ /*
+ ** Dest points to the top 8 bytes of Sram2. The Tp jumps
+ ** to 0x7FFE at reset time, and starts executing. This is
+ ** a short branch to 0x7FF8, where a long branch is coded.
+ */
+
+ DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
+
+#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
+#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
+#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
+
+ /*
+ ** 0x7FFC is the address of the location following the last byte of
+ ** the four byte jump instruction.
+ ** READ THE ABOVE COMMENTS
+ **
+ ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
+ ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
+ ** cos I don't understand 2's complement).
+ */
+ offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
+
+ writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
+ writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
+ writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
+ writeb(JUMP(offset & 0xF), DestP + 3);
+
+ writeb(NFIX(0), DestP + 6);
+ writeb(JUMP(8), DestP + 7);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
+ rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
+
+ /*
+ ** Flag what is going on
+ */
+ HostP->Flags &= ~RUN_STATE;
+ HostP->Flags |= RC_STARTUP;
+
+ /*
+ ** Grab a copy of the current ParmMap pointer, so we
+ ** can tell when it has changed.
+ */
+ OldParmMap = readw(&HostP->__ParmMapR);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
+
+ /*
+ ** And start it running (I hope).
+ ** As there is nothing dodgy or obscure about the
+ ** above code, this is guaranteed to work every time.
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
+
+ rio_start_card_running(HostP);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
+
+ /*
+ ** Now, wait for upto five seconds for the Tp to setup the parmmap
+ ** pointer:
+ */
+ for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
+ mdelay(100);
+
+ }
+
+ /*
+ ** If the parmmap pointer is unchanged, then the host code
+ ** has crashed & burned in a really spectacular way
+ */
+ if (readw(&HostP->__ParmMapR) == OldParmMap) {
+ rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
+ rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
+ HostP->Flags &= ~RUN_STATE;
+ HostP->Flags |= RC_STUFFED;
+ RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
+ continue;
+ }
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
+
+ /*
+ ** Well, the board thought it was OK, and setup its parmmap
+ ** pointer. For the time being, we will pretend that this
+ ** board is running, and check out what the error flag says.
+ */
+
+ /*
+ ** Grab a 32 bit pointer to the parmmap structure
+ */
+ ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
+ rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
+ ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
+ rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
+
+ /*
+ ** The links entry should be 0xFFFF; we set it up
+ ** with a mask to say how many PHBs to use, and
+ ** which links to use.
+ */
+ if (readw(&ParmMapP->links) != 0xFFFF) {
+ rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
+ rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
+ HostP->Flags &= ~RUN_STATE;
+ HostP->Flags |= RC_STUFFED;
+ RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
+ continue;
+ }
+
+ writew(RIO_LINK_ENABLE, &ParmMapP->links);
+
+ /*
+ ** now wait for the card to set all the parmmap->XXX stuff
+ ** this is a wait of upto two seconds....
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
+ HostP->timeout_id = 0;
+ for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
+ mdelay(100);
+ }
+ rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
+
+ if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
+ rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
+ rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
+ HostP->Flags &= ~RUN_STATE;
+ HostP->Flags |= RC_STUFFED;
+ RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
+ continue;
+ }
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
+
+ /*
+ ** It runs! It runs!
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
+
+ /*
+ ** set the time period between interrupts.
+ */
+ writew(p->RIOConf.Timer, &ParmMapP->timer);
+
+ /*
+ ** Translate all the 16 bit pointers in the __ParmMapR into
+ ** 32 bit pointers for the driver in ioremap space.
+ */
+ HostP->ParmMapP = ParmMapP;
+ HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
+ HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
+ HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
+ HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
+
+ /*
+ ** point the UnixRups at the real Rups
+ */
+ for (RupN = 0; RupN < MAX_RUP; RupN++) {
+ HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
+ HostP->UnixRups[RupN].Id = RupN + 1;
+ HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
+ spin_lock_init(&HostP->UnixRups[RupN].RupLock);
+ }
+
+ for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
+ HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
+ HostP->UnixRups[RupN + MAX_RUP].Id = 0;
+ HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
+ spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
+ }
+
+ /*
+ ** point the PortP->Phbs at the real Phbs
+ */
+ for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
+ if (p->RIOPortp[PortN]->HostP == HostP) {
+ struct Port *PortP = p->RIOPortp[PortN];
+ struct PHB __iomem *PhbP;
+ /* int oldspl; */
+
+ if (!PortP->Mapped)
+ continue;
+
+ PhbP = &HostP->PhbP[PortP->HostPort];
+ rio_spin_lock_irqsave(&PortP->portSem, flags);
+
+ PortP->PhbP = PhbP;
+
+ PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
+ PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
+ PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
+ PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
+ PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
+ PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
+
+ rio_spin_unlock_irqrestore(&PortP->portSem, flags);
+ /*
+ ** point the UnixRup at the base SysPort
+ */
+ if (!(PortN % PORTS_PER_RTA))
+ HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
+ }
+ }
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
+ /*
+ ** last thing - show the world that everything is in place
+ */
+ HostP->Flags &= ~RUN_STATE;
+ HostP->Flags |= RC_RUNNING;
+ }
+ /*
+ ** MPX always uses a poller. This is actually patched into the system
+ ** configuration and called directly from each clock tick.
+ **
+ */
+ p->RIOPolling = 1;
+
+ p->RIOSystemUp++;
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
+ func_exit();
+ return 0;
+}
+
+
+
+/**
+ * RIOBootRup - Boot an RTA
+ * @p: rio we are working with
+ * @Rup: Rup number
+ * @HostP: host object
+ * @PacketP: packet to use
+ *
+ * If we have successfully processed this boot, then
+ * return 1. If we havent, then return 0.
+ */
+
+int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
+{
+ struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
+ struct PktCmd_M *PktReplyP;
+ struct CmdBlk *CmdBlkP;
+ unsigned int sequence;
+
+ /*
+ ** If we haven't been told what to boot, we can't boot it.
+ */
+ if (p->RIONumBootPkts == 0) {
+ rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
+ return 0;
+ }
+
+ /*
+ ** Special case of boot completed - if we get one of these then we
+ ** don't need a command block. For all other cases we do, so handle
+ ** this first and then get a command block, then handle every other
+ ** case, relinquishing the command block if disaster strikes!
+ */
+ if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
+ return RIOBootComplete(p, HostP, Rup, PktCmdP);
+
+ /*
+ ** Try to allocate a command block. This is in kernel space
+ */
+ if (!(CmdBlkP = RIOGetCmdBlk())) {
+ rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
+ return 0;
+ }
+
+ /*
+ ** Fill in the default info on the command block
+ */
+ CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
+ CmdBlkP->Packet.dest_port = BOOT_RUP;
+ CmdBlkP->Packet.src_unit = 0;
+ CmdBlkP->Packet.src_port = BOOT_RUP;
+
+ CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
+ PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
+
+ /*
+ ** process COMMANDS on the boot rup!
+ */
+ if (readb(&PacketP->len) & PKT_CMD_BIT) {
+ /*
+ ** We only expect one type of command - a BOOT_REQUEST!
+ */
+ if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
+ RIOFreeCmdBlk(CmdBlkP);
+ return 1;
+ }
+
+ /*
+ ** Build a Boot Sequence command block
+ **
+ ** We no longer need to use "Boot Mode", we'll always allow
+ ** boot requests - the boot will not complete if the device
+ ** appears in the bindings table.
+ **
+ ** We'll just (always) set the command field in packet reply
+ ** to allow an attempted boot sequence :
+ */
+ PktReplyP->Command = BOOT_SEQUENCE;
+
+ PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
+ PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
+ PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
+
+ CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
+
+ memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
+
+ /*
+ ** If this host is in slave mode, send the RTA an invalid boot
+ ** sequence command block to force it to kill the boot. We wait
+ ** for half a second before sending this packet to prevent the RTA
+ ** attempting to boot too often. The master host should then grab
+ ** the RTA and make it its own.
+ */
+ p->RIOBooting++;
+ RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
+ return 1;
+ }
+
+ /*
+ ** It is a request for boot data.
+ */
+ sequence = readw(&PktCmdP->Sequence);
+
+ rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
+
+ if (sequence >= p->RIONumBootPkts) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
+ }
+
+ PktReplyP->Sequence = sequence;
+ memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
+ CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
+ RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
+ return 1;
+}
+
+/**
+ * RIOBootComplete - RTA boot is done
+ * @p: RIO we are working with
+ * @HostP: Host structure
+ * @Rup: RUP being used
+ * @PktCmdP: Packet command that was used
+ *
+ * This function is called when an RTA been booted.
+ * If booted by a host, HostP->HostUniqueNum is the booting host.
+ * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
+ * RtaUniq is the booted RTA.
+ */
+
+static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
+{
+ struct Map *MapP = NULL;
+ struct Map *MapP2 = NULL;
+ int Flag;
+ int found;
+ int host, rta;
+ int EmptySlot = -1;
+ int entry, entry2;
+ char *MyType, *MyName;
+ unsigned int MyLink;
+ unsigned short RtaType;
+ u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
+
+ p->RIOBooting = 0;
+
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
+
+ /*
+ ** Determine type of unit (16/8 port RTA).
+ */
+
+ RtaType = GetUnitType(RtaUniq);
+ if (Rup >= (unsigned short) MAX_RUP)
+ rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
+ else
+ rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
+
+ rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
+
+ if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
+ return 1;
+ }
+
+ /*
+ ** If this RTA has just booted an RTA which doesn't belong to this
+ ** system, or the system is in slave mode, do not attempt to create
+ ** a new table entry for it.
+ */
+
+ if (!RIOBootOk(p, HostP, RtaUniq)) {
+ MyLink = readb(&PktCmdP->LinkNum);
+ if (Rup < (unsigned short) MAX_RUP) {
+ /*
+ ** RtaUniq was clone booted (by this RTA). Instruct this RTA
+ ** to hold off further attempts to boot on this link for 30
+ ** seconds.
+ */
+ if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
+ }
+ } else
+ /*
+ ** RtaUniq was booted by this host. Set the booting link
+ ** to hold off for 30 seconds to give another unit a
+ ** chance to boot it.
+ */
+ writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
+ return 1;
+ }
+
+ /*
+ ** Check for a SLOT_IN_USE entry for this RTA attached to the
+ ** current host card in the driver table.
+ **
+ ** If it exists, make a note that we have booted it. Other parts of
+ ** the driver are interested in this information at a later date,
+ ** in particular when the booting RTA asks for an ID for this unit,
+ ** we must have set the BOOTED flag, and the NEWBOOT flag is used
+ ** to force an open on any ports that where previously open on this
+ ** unit.
+ */
+ for (entry = 0; entry < MAX_RUP; entry++) {
+ unsigned int sysport;
+
+ if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
+ HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
+ if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
+ if (sysport < p->RIOFirstPortsBooted)
+ p->RIOFirstPortsBooted = sysport;
+ if (sysport > p->RIOLastPortsBooted)
+ p->RIOLastPortsBooted = sysport;
+ /*
+ ** For a 16 port RTA, check the second bank of 8 ports
+ */
+ if (RtaType == TYPE_RTA16) {
+ entry2 = HostP->Mapping[entry].ID2 - 1;
+ HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
+ sysport = HostP->Mapping[entry2].SysPort;
+ if (sysport < p->RIOFirstPortsBooted)
+ p->RIOFirstPortsBooted = sysport;
+ if (sysport > p->RIOLastPortsBooted)
+ p->RIOLastPortsBooted = sysport;
+ }
+ }
+ if (RtaType == TYPE_RTA16)
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
+ else
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
+ return 1;
+ }
+ }
+
+ rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
+
+ if (Rup >= (unsigned short) MAX_RUP) {
+ /*
+ ** It was a host that did the booting
+ */
+ MyType = "Host";
+ MyName = HostP->Name;
+ } else {
+ /*
+ ** It was an RTA that did the booting
+ */
+ MyType = "RTA";
+ MyName = HostP->Mapping[Rup].Name;
+ }
+ MyLink = readb(&PktCmdP->LinkNum);
+
+ /*
+ ** There is no SLOT_IN_USE entry for this RTA attached to the current
+ ** host card in the driver table.
+ **
+ ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
+ ** current host card in the driver table.
+ **
+ ** If we find one, then we re-use that slot.
+ */
+ for (entry = 0; entry < MAX_RUP; entry++) {
+ if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
+ if (RtaType == TYPE_RTA16) {
+ entry2 = HostP->Mapping[entry].ID2 - 1;
+ if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
+ rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
+ else
+ continue;
+ } else
+ rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
+ if (!p->RIONoMessage)
+ printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
+ return 1;
+ }
+ }
+
+ /*
+ ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
+ ** attached to the current host card in the driver table.
+ **
+ ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
+ ** host for this RTA in the driver table.
+ **
+ ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
+ ** entry from the other host and add it to this host (using some of
+ ** the functions from table.c which do this).
+ ** For a SLOT_TENTATIVE entry on another host, we must cope with the
+ ** following scenario:
+ **
+ ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
+ ** in table)
+ ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
+ ** entries)
+ ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
+ ** + Unplug RTA and plug back into host A.
+ ** + Configure RTA on host A. We now have the same RTA configured
+ ** with different ports on two different hosts.
+ */
+ rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
+ found = 0;
+ Flag = 0; /* Convince the compiler this variable is initialized */
+ for (host = 0; !found && (host < p->RIONumHosts); host++) {
+ for (rta = 0; rta < MAX_RUP; rta++) {
+ if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
+ Flag = p->RIOHosts[host].Mapping[rta].Flags;
+ MapP = &p->RIOHosts[host].Mapping[rta];
+ if (RtaType == TYPE_RTA16) {
+ MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
+ } else
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
+ found = 1;
+ break;
+ }
+ }
+ }
+
+ /*
+ ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
+ ** attached to the current host card in the driver table.
+ **
+ ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
+ ** another host for this RTA in the driver table...
+ **
+ ** Check for a SLOT_IN_USE entry for this RTA in the config table.
+ */
+ if (!MapP) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
+ for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
+ rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
+
+ if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
+ MapP = &p->RIOSavedTable[rta];
+ Flag = p->RIOSavedTable[rta].Flags;
+ if (RtaType == TYPE_RTA16) {
+ for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
+ if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
+ break;
+ }
+ MapP2 = &p->RIOSavedTable[entry2];
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
+ } else
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
+ break;
+ }
+ }
+ }
+
+ /*
+ ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
+ ** attached to the current host card in the driver table.
+ **
+ ** We may have found a SLOT_IN_USE entry on another host for this
+ ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
+ ** on another host for this RTA in the driver table.
+ **
+ ** Check the driver table for room to fit this newly discovered RTA.
+ ** RIOFindFreeID() first looks for free slots and if it does not
+ ** find any free slots it will then attempt to oust any
+ ** tentative entry in the table.
+ */
+ EmptySlot = 1;
+ if (RtaType == TYPE_RTA16) {
+ if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
+ RIODefaultName(p, HostP, entry);
+ rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
+ EmptySlot = 0;
+ }
+ } else {
+ if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
+ RIODefaultName(p, HostP, entry);
+ rio_fill_host_slot(entry, 0, RtaUniq, HostP);
+ EmptySlot = 0;
+ }
+ }
+
+ /*
+ ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
+ ** attached to the current host card in the driver table.
+ **
+ ** If we found a SLOT_IN_USE entry on another host for this
+ ** RTA in the config or driver table, and there are enough free
+ ** slots in the driver table, then we need to move it over and
+ ** delete it from the other host.
+ ** If we found a SLOT_TENTATIVE entry on another host for this
+ ** RTA in the driver table, just delete the other host entry.
+ */
+ if (EmptySlot == 0) {
+ if (MapP) {
+ if (Flag & SLOT_IN_USE) {
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
+ HostP->Mapping[entry].SysPort = MapP->SysPort;
+ memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
+ HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
+ RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
+ if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
+ p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
+ if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
+ p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
+ rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
+ } else {
+ rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
+ HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
+ }
+ if (RtaType == TYPE_RTA16) {
+ if (Flag & SLOT_IN_USE) {
+ HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
+ HostP->Mapping[entry2].SysPort = MapP2->SysPort;
+ /*
+ ** Map second block of ttys for 16 port RTA
+ */
+ RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
+ if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
+ p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
+ if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
+ p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
+ rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
+ } else
+ HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
+ memset(MapP2, 0, sizeof(struct Map));
+ }
+ memset(MapP, 0, sizeof(struct Map));
+ if (!p->RIONoMessage)
+ printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
+ } else if (!p->RIONoMessage)
+ printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
+ RIOSetChange(p);
+ return 1;
+ }
+
+ /*
+ ** There is no room in the driver table to make an entry for the
+ ** booted RTA. Keep a note of its Uniq Num in the overflow table,
+ ** so we can ignore it's ID requests.
+ */
+ if (!p->RIONoMessage)
+ printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
+ for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
+ if (HostP->ExtraUnits[entry] == RtaUniq) {
+ /*
+ ** already got it!
+ */
+ return 1;
+ }
+ }
+ /*
+ ** If there is room, add the unit to the list of extras
+ */
+ if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
+ HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
+ return 1;
+}
+
+
+/*
+** If the RTA or its host appears in the RIOBindTab[] structure then
+** we mustn't boot the RTA and should return 0.
+** This operation is slightly different from the other drivers for RIO
+** in that this is designed to work with the new utilities
+** not config.rio and is FAR SIMPLER.
+** We no longer support the RIOBootMode variable. It is all done from the
+** "boot/noboot" field in the rio.cf file.
+*/
+int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
+{
+ int Entry;
+ unsigned int HostUniq = HostP->UniqueNum;
+
+ /*
+ ** Search bindings table for RTA or its parent.
+ ** If it exists, return 0, else 1.
+ */
+ for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
+ if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Make an empty slot tentative. If this is a 16 port RTA, make both
+** slots tentative, and the second one RTA_SECOND_SLOT as well.
+*/
+
+void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
+{
+ int link;
+
+ rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
+
+ host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
+ host->Mapping[entry].SysPort = NO_PORT;
+ host->Mapping[entry].RtaUniqueNum = rta_uniq;
+ host->Mapping[entry].HostUniqueNum = host->UniqueNum;
+ host->Mapping[entry].ID = entry + 1;
+ host->Mapping[entry].ID2 = 0;
+ if (entry2) {
+ host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
+ host->Mapping[entry2].SysPort = NO_PORT;
+ host->Mapping[entry2].RtaUniqueNum = rta_uniq;
+ host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
+ host->Mapping[entry2].Name[0] = '\0';
+ host->Mapping[entry2].ID = entry2 + 1;
+ host->Mapping[entry2].ID2 = entry + 1;
+ host->Mapping[entry].ID2 = entry2 + 1;
+ }
+ /*
+ ** Must set these up, so that utilities show
+ ** topology of 16 port RTAs correctly
+ */
+ for (link = 0; link < LINKS_PER_UNIT; link++) {
+ host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
+ host->Mapping[entry].Topology[link].Link = NO_LINK;
+ if (entry2) {
+ host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
+ host->Mapping[entry2].Topology[link].Link = NO_LINK;
+ }
+ }
+}
OpenPOWER on IntegriCloud