/* * This file is part of the flashrom project. * * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger * Copyright (C) 2008 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Contains the common SPI chip driver functions */ #include #include "flash.h" #include "flashchips.h" #include "chipdrivers.h" #include "programmer.h" #include "spi.h" static int spi_rdid(unsigned char *readarr, int bytes) { static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID }; int ret; int i; ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); if (ret) return ret; msg_cspew("RDID returned"); for (i = 0; i < bytes; i++) msg_cspew(" 0x%02x", readarr[i]); msg_cspew(". "); return 0; } static int spi_rems(unsigned char *readarr) { unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 }; uint32_t readaddr; int ret; ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); if (ret == SPI_INVALID_ADDRESS) { /* Find the lowest even address allowed for reads. */ readaddr = (spi_get_valid_read_addr() + 1) & ~1; cmd[1] = (readaddr >> 16) & 0xff, cmd[2] = (readaddr >> 8) & 0xff, cmd[3] = (readaddr >> 0) & 0xff, ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); } if (ret) return ret; msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]); return 0; } static int spi_res(unsigned char *readarr, int bytes) { unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 }; uint32_t readaddr; int ret; int i; ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); if (ret == SPI_INVALID_ADDRESS) { /* Find the lowest even address allowed for reads. */ readaddr = (spi_get_valid_read_addr() + 1) & ~1; cmd[1] = (readaddr >> 16) & 0xff, cmd[2] = (readaddr >> 8) & 0xff, cmd[3] = (readaddr >> 0) & 0xff, ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); } if (ret) return ret; msg_cspew("RES returned"); for (i = 0; i < bytes; i++) msg_cspew(" 0x%02x", readarr[i]); msg_cspew(". "); return 0; } int spi_write_enable(void) { static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN }; int result; /* Send WREN (Write Enable) */ result = spi_send_command(sizeof(cmd), 0, cmd, NULL); if (result) msg_cerr("%s failed\n", __func__); return result; } int spi_write_disable(void) { static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI }; /* Send WRDI (Write Disable) */ return spi_send_command(sizeof(cmd), 0, cmd, NULL); } static int probe_spi_rdid_generic(struct flashchip *flash, int bytes) { unsigned char readarr[4]; uint32_t id1; uint32_t id2; if (spi_rdid(readarr, bytes)) { msg_cdbg("\n"); return 0; } if (!oddparity(readarr[0])) msg_cdbg("RDID byte 0 parity violation. "); /* Check if this is a continuation vendor ID. * FIXME: Handle continuation device IDs. */ if (readarr[0] == 0x7f) { if (!oddparity(readarr[1])) msg_cdbg("RDID byte 1 parity violation. "); id1 = (readarr[0] << 8) | readarr[1]; id2 = readarr[2]; if (bytes > 3) { id2 <<= 8; id2 |= readarr[3]; } } else { id1 = readarr[0]; id2 = (readarr[1] << 8) | readarr[2]; } msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); if (id1 == flash->manufacture_id && id2 == flash->model_id) { /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } /* Test if this is a pure vendor match. */ if (id1 == flash->manufacture_id && GENERIC_DEVICE_ID == flash->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == flash->manufacture_id && id1 != 0xff) return 1; return 0; } int probe_spi_rdid(struct flashchip *flash) { return probe_spi_rdid_generic(flash, 3); } int probe_spi_rdid4(struct flashchip *flash) { /* Some SPI controllers do not support commands with writecnt=1 and * readcnt=4. */ switch (spi_programmer->type) { #if CONFIG_INTERNAL == 1 #if defined(__i386__) || defined(__x86_64__) case SPI_CONTROLLER_IT87XX: case SPI_CONTROLLER_WBSIO: msg_cinfo("4 byte RDID not supported on this SPI controller\n"); return 0; break; #endif #endif default: return probe_spi_rdid_generic(flash, 4); } return 0; } int probe_spi_rems(struct flashchip *flash) { unsigned char readarr[JEDEC_REMS_INSIZE]; uint32_t id1, id2; if (spi_rems(readarr)) { msg_cdbg("\n"); return 0; } id1 = readarr[0]; id2 = readarr[1]; msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 == flash->manufacture_id && id2 == flash->model_id) { /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } /* Test if this is a pure vendor match. */ if (id1 == flash->manufacture_id && GENERIC_DEVICE_ID == flash->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == flash->manufacture_id && id1 != 0xff) return 1; return 0; } int probe_spi_res1(struct flashchip *flash) { static const unsigned char allff[] = {0xff, 0xff, 0xff}; static const unsigned char all00[] = {0x00, 0x00, 0x00}; unsigned char readarr[3]; uint32_t id2; /* We only want one-byte RES if RDID and REMS are unusable. */ /* Check if RDID is usable and does not return 0xff 0xff 0xff or * 0x00 0x00 0x00. In that case, RES is pointless. */ if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) && memcmp(readarr, all00, 3)) { msg_cdbg("Ignoring RES in favour of RDID.\n"); return 0; } /* Check if REMS is usable and does not return 0xff 0xff or * 0x00 0x00. In that case, RES is pointless. */ if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) && memcmp(readarr, all00, JEDEC_REMS_INSIZE)) { msg_cdbg("Ignoring RES in favour of REMS.\n"); return 0; } if (spi_res(readarr, 1)) { msg_cdbg("\n"); return 0; } id2 = readarr[0]; msg_cdbg("%s: id 0x%x\n", __func__, id2); if (id2 != flash->model_id) return 0; /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } int probe_spi_res2(struct flashchip *flash) { unsigned char readarr[2]; uint32_t id1, id2; if (spi_res(readarr, 2)) { msg_cdbg("\n"); return 0; } id1 = readarr[0]; id2 = readarr[1]; msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 != flash->manufacture_id || id2 != flash->model_id) return 0; /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } uint8_t spi_read_status_register(void) { static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR }; /* FIXME: No workarounds for driver/hardware bugs in generic code. */ unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */ int ret; /* Read Status Register */ ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr); if (ret) msg_cerr("RDSR failed!\n"); return readarr[0]; } /* Prettyprint the status register. Common definitions. */ void spi_prettyprint_status_register_welwip(uint8_t status) { msg_cdbg("Chip status register: Write Enable Latch (WEL) is " "%sset\n", (status & (1 << 1)) ? "" : "not "); msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is " "%sset\n", (status & (1 << 0)) ? "" : "not "); } /* Prettyprint the status register. Common definitions. */ void spi_prettyprint_status_register_bp3210(uint8_t status, int bp) { switch (bp) { /* Fall through. */ case 3: msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) " "is %sset\n", (status & (1 << 5)) ? "" : "not "); case 2: msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) " "is %sset\n", (status & (1 << 4)) ? "" : "not "); case 1: msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) " "is %sset\n", (status & (1 << 3)) ? "" : "not "); case 0: msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) " "is %sset\n", (status & (1 << 2)) ? "" : "not "); } } /* Prettyprint the status register. Unnamed bits. */ void spi_prettyprint_status_register_bit(uint8_t status, int bit) { msg_cdbg("Chip status register: Bit %i " "is %sset\n", bit, (status & (1 << bit)) ? "" : "not "); } static void spi_prettyprint_status_register_common(uint8_t status) { spi_prettyprint_status_register_bp3210(status, 3); spi_prettyprint_status_register_welwip(status); } /* Prettyprint the status register. Works for * ST M25P series * MX MX25L series */ void spi_prettyprint_status_register_st_m25p(uint8_t status) { msg_cdbg("Chip status register: Status Register Write Disable " "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not "); msg_cdbg("Chip status register: Bit 6 is " "%sset\n", (status & (1 << 6)) ? "" : "not "); spi_prettyprint_status_register_common(status); } void spi_prettyprint_status_register_sst25(uint8_t status) { msg_cdbg("Chip status register: Block Protect Write Disable " "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not "); msg_cdbg("Chip status register: Auto Address Increment Programming " "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not "); spi_prettyprint_status_register_common(status); } /* Prettyprint the status register. Works for * SST 25VF016 */ void spi_prettyprint_status_register_sst25vf016(uint8_t status) { static const char *const bpt[] = { "none", "1F0000H-1FFFFFH", "1E0000H-1FFFFFH", "1C0000H-1FFFFFH", "180000H-1FFFFFH", "100000H-1FFFFFH", "all", "all" }; spi_prettyprint_status_register_sst25(status); msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]); } void spi_prettyprint_status_register_sst25vf040b(uint8_t status) { static const char *const bpt[] = { "none", "0x70000-0x7ffff", "0x60000-0x7ffff", "0x40000-0x7ffff", "all blocks", "all blocks", "all blocks", "all blocks" }; spi_prettyprint_status_register_sst25(status); msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]); } int spi_prettyprint_status_register(struct flashchip *flash) { uint8_t status; status = spi_read_status_register(); msg_cdbg("Chip status register is %02x\n", status); switch (flash->manufacture_id) { case ST_ID: if (((flash->model_id & 0xff00) == 0x2000) || ((flash->model_id & 0xff00) == 0x2500)) spi_prettyprint_status_register_st_m25p(status); break; case MACRONIX_ID: if ((flash->model_id & 0xff00) == 0x2000) spi_prettyprint_status_register_st_m25p(status); break; case SST_ID: switch (flash->model_id) { case 0x2541: spi_prettyprint_status_register_sst25vf016(status); break; case 0x8d: case 0x258d: spi_prettyprint_status_register_sst25vf040b(status); break; default: spi_prettyprint_status_register_sst25(status); break; } break; } return 0; } int spi_chip_erase_60(struct flashchip *flash) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_CE_60_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_CE_60 }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution\n", __func__); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 1-85 s, so wait in 1 s steps. */ /* FIXME: We assume spi_read_status_register will never fail. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(1000 * 1000); /* FIXME: Check the status register for errors. */ return 0; } int spi_chip_erase_c7(struct flashchip *flash) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_CE_C7_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_CE_C7 }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution\n", __func__); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 1-85 s, so wait in 1 s steps. */ /* FIXME: We assume spi_read_status_register will never fail. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(1000 * 1000); /* FIXME: Check the status register for errors. */ return 0; } int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_52_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_52, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); /* FIXME: Check the status register for errors. */ return 0; } /* Block size is usually * 64k for Macronix * 32k for SST * 4-32k non-uniform for EON */ int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_D8_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_D8, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); /* FIXME: Check the status register for errors. */ return 0; } /* Block size is usually * 4k for PMC */ int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_D7_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_D7, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); /* FIXME: Check the status register for errors. */ return 0; } /* Sector size is usually 4k, though Macronix eliteflash has 64k */ int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_SE_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_SE, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 15-800 ms, so wait in 10 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10 * 1000); /* FIXME: Check the status register for errors. */ return 0; } int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->total_size * 1024)) { msg_cerr("%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_60(flash); } int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->total_size * 1024)) { msg_cerr("%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_c7(flash); } int spi_write_status_enable(void) { static const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR }; int result; /* Send EWSR (Enable Write Status Register). */ result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL); if (result) msg_cerr("%s failed\n", __func__); return result; } /* * This is according the SST25VF016 datasheet, who knows it is more * generic that this... */ static int spi_write_status_register_ewsr(struct flashchip *flash, int status) { int result; int i = 0; struct spi_command cmds[] = { { /* WRSR requires either EWSR or WREN depending on chip type. */ .writecnt = JEDEC_EWSR_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_EWSR }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_WRSR_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution\n", __func__); /* No point in waiting for the command to complete if execution * failed. */ return result; } /* WRSR performs a self-timed erase before the changes take effect. * This may take 50-85 ms in most cases, and some chips apparently * allow running RDSR only once. Therefore pick an initial delay of * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed. */ programmer_delay(100 * 1000); while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) { if (++i > 490) { msg_cerr("Error: WIP bit after WRSR never cleared\n"); return TIMEOUT_ERROR; } programmer_delay(10 * 1000); } return 0; } static int spi_write_status_register_wren(struct flashchip *flash, int status) { int result; int i = 0; struct spi_command cmds[] = { { /* WRSR requires either EWSR or WREN depending on chip type. */ .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_WRSR_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution\n", __func__); /* No point in waiting for the command to complete if execution * failed. */ return result; } /* WRSR performs a self-timed erase before the changes take effect. * This may take 50-85 ms in most cases, and some chips apparently * allow running RDSR only once. Therefore pick an initial delay of * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed. */ programmer_delay(100 * 1000); while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) { if (++i > 490) { msg_cerr("Error: WIP bit after WRSR never cleared\n"); return TIMEOUT_ERROR; } programmer_delay(10 * 1000); } return 0; } int spi_write_status_register(struct flashchip *flash, int status) { int ret = 1; if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) { msg_cdbg("Missing status register write definition, assuming " "EWSR is needed\n"); flash->feature_bits |= FEATURE_WRSR_EWSR; } if (flash->feature_bits & FEATURE_WRSR_WREN) ret = spi_write_status_register_wren(flash, status); if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR)) ret = spi_write_status_register_ewsr(flash, status); return ret; } int spi_byte_program(int addr, uint8_t databyte) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BYTE_PROGRAM, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff), databyte }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); } return result; } int spi_nbyte_program(int addr, uint8_t *bytes, int len) { int result; /* FIXME: Switch to malloc based on len unless that kills speed. */ unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = { JEDEC_BYTE_PROGRAM, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr >> 0) & 0xff, }; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len, .writearr = cmd, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; if (!len) { msg_cerr("%s called for zero-length write\n", __func__); return 1; } if (len > 256) { msg_cerr("%s called for too long a write\n", __func__); return 1; } memcpy(&cmd[4], bytes, len); result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); } return result; } /* A generic brute-force block protection disable works like this: * Write 0x00 to the status register. Check if any locks are still set (that * part is chip specific). Repeat once. */ int spi_disable_blockprotect(struct flashchip *flash) { uint8_t status; int result; status = spi_read_status_register(); /* If block protection is disabled, stop here. */ if ((status & 0x3c) == 0) return 0; msg_cdbg("Some block protection in effect, disabling\n"); result = spi_write_status_register(flash, status & ~0x3c); if (result) { msg_cerr("spi_write_status_register failed\n"); return result; } status = spi_read_status_register(); if ((status & 0x3c) != 0) { msg_cerr("Block protection could not be disabled!\n"); return 1; } return 0; } int spi_nbyte_read(int address, uint8_t *bytes, int len) { const unsigned char cmd[JEDEC_READ_OUTSIZE] = { JEDEC_READ, (address >> 16) & 0xff, (address >> 8) & 0xff, (address >> 0) & 0xff, }; /* Send Read */ return spi_send_command(sizeof(cmd), len, cmd, bytes); } /* * Read a part of the flash chip. * FIXME: Use the chunk code from Michael Karcher instead. * Each page is read separately in chunks with a maximum size of chunksize. */ int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize) { int rc = 0; int i, j, starthere, lenhere; int page_size = flash->page_size; int toread; /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each page with at least one affected * byte. The lowest page number is (start / page_size) since that * division rounds down. The highest page number we want is the page * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest page number is * (start + len - 1) / page_size. Since we want to include that last * page as well, the loop condition uses <=. */ for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { /* Byte position of the first byte in the range in this page. */ /* starthere is an offset to the base address of the chip. */ starthere = max(start, i * page_size); /* Length of bytes in the range in this page. */ lenhere = min(start + len, (i + 1) * page_size) - starthere; for (j = 0; j < lenhere; j += chunksize) { toread = min(chunksize, lenhere - j); rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread); if (rc) break; } if (rc) break; } return rc; } /* * Write a part of the flash chip. * FIXME: Use the chunk code from Michael Karcher instead. * Each page is written separately in chunks with a maximum size of chunksize. */ int spi_write_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize) { int rc = 0; int i, j, starthere, lenhere; /* FIXME: page_size is the wrong variable. We need max_writechunk_size * in struct flashchip to do this properly. All chips using * spi_chip_write_256 have page_size set to max_writechunk_size, so * we're OK for now. */ int page_size = flash->page_size; int towrite; /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each page with at least one affected * byte. The lowest page number is (start / page_size) since that * division rounds down. The highest page number we want is the page * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest page number is * (start + len - 1) / page_size. Since we want to include that last * page as well, the loop condition uses <=. */ for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { /* Byte position of the first byte in the range in this page. */ /* starthere is an offset to the base address of the chip. */ starthere = max(start, i * page_size); /* Length of bytes in the range in this page. */ lenhere = min(start + len, (i + 1) * page_size) - starthere; for (j = 0; j < lenhere; j += chunksize) { towrite = min(chunksize, lenhere - j); rc = spi_nbyte_program(starthere + j, buf + starthere - start + j, towrite); if (rc) break; while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10); } if (rc) break; } return rc; } /* * Program chip using byte programming. (SLOW!) * This is for chips which can only handle one byte writes * and for chips where memory mapped programming is impossible * (e.g. due to size constraints in IT87* for over 512 kB) */ /* real chunksize is 1, logical chunksize is 1 */ int spi_chip_write_1(struct flashchip *flash, uint8_t *buf, int start, int len) { int i, result = 0; for (i = start; i < start + len; i++) { result = spi_byte_program(i, buf[i - start]); if (result) return 1; while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10); } return 0; } int spi_aai_write(struct flashchip *flash, uint8_t *buf, int start, int len) { uint32_t pos = start; int result; unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = { JEDEC_AAI_WORD_PROGRAM, }; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_AAI_WORD_PROGRAM_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_AAI_WORD_PROGRAM, (start >> 16) & 0xff, (start >> 8) & 0xff, (start & 0xff), buf[0], buf[1] }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; switch (spi_programmer->type) { #if CONFIG_INTERNAL == 1 #if defined(__i386__) || defined(__x86_64__) case SPI_CONTROLLER_IT87XX: case SPI_CONTROLLER_WBSIO: msg_perr("%s: impossible with this SPI controller," " degrading to byte program\n", __func__); return spi_chip_write_1(flash, buf, start, len); #endif #endif default: break; } /* The even start address and even length requirements can be either * honored outside this function, or we can call spi_byte_program * for the first and/or last byte and use AAI for the rest. * FIXME: Move this to generic code. */ /* The data sheet requires a start address with the low bit cleared. */ if (start % 2) { msg_cerr("%s: start address not even! Please report a bug at " "flashrom@flashrom.org\n", __func__); if (spi_chip_write_1(flash, buf, start, start % 2)) return SPI_GENERIC_ERROR; pos += start % 2; cmds[1].writearr = (const unsigned char[]){ JEDEC_AAI_WORD_PROGRAM, (pos >> 16) & 0xff, (pos >> 8) & 0xff, (pos & 0xff), buf[pos - start], buf[pos - start + 1] }; /* Do not return an error for now. */ //return SPI_GENERIC_ERROR; } /* The data sheet requires total AAI write length to be even. */ if (len % 2) { msg_cerr("%s: total write length not even! Please report a " "bug at flashrom@flashrom.org\n", __func__); /* Do not return an error for now. */ //return SPI_GENERIC_ERROR; } result = spi_send_multicommand(cmds); if (result) { msg_cerr("%s failed during start command execution\n", __func__); /* FIXME: Should we send WRDI here as well to make sure the chip * is not in AAI mode? */ return result; } while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10); /* We already wrote 2 bytes in the multicommand step. */ pos += 2; /* Are there at least two more bytes to write? */ while (pos < start + len - 1) { cmd[1] = buf[pos++ - start]; cmd[2] = buf[pos++ - start]; spi_send_command(JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL); while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10); } /* Use WRDI to exit AAI mode. This needs to be done before issuing any * other non-AAI command. */ spi_write_disable(); /* Write remaining byte (if any). */ if (pos < start + len) { if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2)) return SPI_GENERIC_ERROR; pos += pos % 2; } return 0; }