/* * This file is part of the flashrom project. * * Copyright (C) 2007, 2008, 2009 Carl-Daniel Hailfinger * Copyright (C) 2008 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Contains the generic SPI framework */ #include #include "flash.h" #include "flashchips.h" #include "spi.h" enum spi_controller spi_controller = SPI_CONTROLLER_NONE; void *spibar = NULL; void spi_prettyprint_status_register(struct flashchip *flash); const struct spi_programmer spi_programmer[] = { { /* SPI_CONTROLLER_NONE */ .command = NULL, .multicommand = NULL, .read = NULL, .write_256 = NULL, }, #if INTERNAL_SUPPORT == 1 { /* SPI_CONTROLLER_ICH7 */ .command = ich_spi_send_command, .multicommand = ich_spi_send_multicommand, .read = ich_spi_read, .write_256 = ich_spi_write_256, }, { /* SPI_CONTROLLER_ICH9 */ .command = ich_spi_send_command, .multicommand = ich_spi_send_multicommand, .read = ich_spi_read, .write_256 = ich_spi_write_256, }, { /* SPI_CONTROLLER_IT87XX */ .command = it8716f_spi_send_command, .multicommand = default_spi_send_multicommand, .read = it8716f_spi_chip_read, .write_256 = it8716f_spi_chip_write_256, }, { /* SPI_CONTROLLER_SB600 */ .command = sb600_spi_send_command, .multicommand = default_spi_send_multicommand, .read = sb600_spi_read, .write_256 = sb600_spi_write_1, }, { /* SPI_CONTROLLER_VIA */ .command = ich_spi_send_command, .multicommand = ich_spi_send_multicommand, .read = ich_spi_read, .write_256 = ich_spi_write_256, }, { /* SPI_CONTROLLER_WBSIO */ .command = wbsio_spi_send_command, .multicommand = default_spi_send_multicommand, .read = wbsio_spi_read, .write_256 = wbsio_spi_write_1, }, #endif #if FT2232_SPI_SUPPORT == 1 { /* SPI_CONTROLLER_FT2232 */ .command = ft2232_spi_send_command, .multicommand = default_spi_send_multicommand, .read = ft2232_spi_read, .write_256 = ft2232_spi_write_256, }, #endif #if DUMMY_SUPPORT == 1 { /* SPI_CONTROLLER_DUMMY */ .command = dummy_spi_send_command, .multicommand = default_spi_send_multicommand, .read = NULL, .write_256 = NULL, }, #endif #if BUSPIRATE_SPI_SUPPORT == 1 { /* SPI_CONTROLLER_BUSPIRATE */ .command = buspirate_spi_send_command, .multicommand = default_spi_send_multicommand, .read = buspirate_spi_read, .write_256 = spi_chip_write_1, }, #endif #if DEDIPROG_SUPPORT == 1 { /* SPI_CONTROLLER_DEDIPROG */ .command = dediprog_spi_send_command, .multicommand = default_spi_send_multicommand, .read = dediprog_spi_read, .write_256 = spi_chip_write_1, }, #endif {}, /* This entry corresponds to SPI_CONTROLLER_INVALID. */ }; const int spi_programmer_count = ARRAY_SIZE(spi_programmer); int spi_send_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { if (!spi_programmer[spi_controller].command) { fprintf(stderr, "%s called, but SPI is unsupported on this " "hardware. Please report a bug.\n", __func__); return 1; } return spi_programmer[spi_controller].command(writecnt, readcnt, writearr, readarr); } int spi_send_multicommand(struct spi_command *cmds) { if (!spi_programmer[spi_controller].multicommand) { fprintf(stderr, "%s called, but SPI is unsupported on this " "hardware. Please report a bug.\n", __func__); return 1; } return spi_programmer[spi_controller].multicommand(cmds); } int default_spi_send_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { struct spi_command cmd[] = { { .writecnt = writecnt, .readcnt = readcnt, .writearr = writearr, .readarr = readarr, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; return spi_send_multicommand(cmd); } int default_spi_send_multicommand(struct spi_command *cmds) { int result = 0; for (; (cmds->writecnt || cmds->readcnt) && !result; cmds++) { result = spi_send_command(cmds->writecnt, cmds->readcnt, cmds->writearr, cmds->readarr); } return result; } static int spi_rdid(unsigned char *readarr, int bytes) { const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID }; int ret; int i; ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr); if (ret) return ret; printf_debug("RDID returned"); for (i = 0; i < bytes; i++) printf_debug(" 0x%02x", readarr[i]); printf_debug(". "); return 0; } static int spi_rems(unsigned char *readarr) { unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 }; uint32_t readaddr; int ret; ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); if (ret == SPI_INVALID_ADDRESS) { /* Find the lowest even address allowed for reads. */ readaddr = (spi_get_valid_read_addr() + 1) & ~1; cmd[1] = (readaddr >> 16) & 0xff, cmd[2] = (readaddr >> 8) & 0xff, cmd[3] = (readaddr >> 0) & 0xff, ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); } if (ret) return ret; printf_debug("REMS returned %02x %02x. ", readarr[0], readarr[1]); return 0; } static int spi_res(unsigned char *readarr) { unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 }; uint32_t readaddr; int ret; ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr); if (ret == SPI_INVALID_ADDRESS) { /* Find the lowest even address allowed for reads. */ readaddr = (spi_get_valid_read_addr() + 1) & ~1; cmd[1] = (readaddr >> 16) & 0xff, cmd[2] = (readaddr >> 8) & 0xff, cmd[3] = (readaddr >> 0) & 0xff, ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr); } if (ret) return ret; printf_debug("RES returned %02x. ", readarr[0]); return 0; } int spi_write_enable(void) { const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN }; int result; /* Send WREN (Write Enable) */ result = spi_send_command(sizeof(cmd), 0, cmd, NULL); if (result) fprintf(stderr, "%s failed\n", __func__); return result; } int spi_write_disable(void) { const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI }; /* Send WRDI (Write Disable) */ return spi_send_command(sizeof(cmd), 0, cmd, NULL); } static int probe_spi_rdid_generic(struct flashchip *flash, int bytes) { unsigned char readarr[4]; uint32_t id1; uint32_t id2; if (spi_rdid(readarr, bytes)) return 0; if (!oddparity(readarr[0])) printf_debug("RDID byte 0 parity violation. "); /* Check if this is a continuation vendor ID */ if (readarr[0] == 0x7f) { if (!oddparity(readarr[1])) printf_debug("RDID byte 1 parity violation. "); id1 = (readarr[0] << 8) | readarr[1]; id2 = readarr[2]; if (bytes > 3) { id2 <<= 8; id2 |= readarr[3]; } } else { id1 = readarr[0]; id2 = (readarr[1] << 8) | readarr[2]; } printf_debug("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); if (id1 == flash->manufacture_id && id2 == flash->model_id) { /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } /* Test if this is a pure vendor match. */ if (id1 == flash->manufacture_id && GENERIC_DEVICE_ID == flash->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == flash->manufacture_id && id1 != 0xff) return 1; return 0; } int probe_spi_rdid(struct flashchip *flash) { return probe_spi_rdid_generic(flash, 3); } /* support 4 bytes flash ID */ int probe_spi_rdid4(struct flashchip *flash) { /* only some SPI chipsets support 4 bytes commands */ switch (spi_controller) { #if INTERNAL_SUPPORT == 1 case SPI_CONTROLLER_ICH7: case SPI_CONTROLLER_ICH9: case SPI_CONTROLLER_VIA: case SPI_CONTROLLER_SB600: case SPI_CONTROLLER_WBSIO: #endif #if FT2232_SPI_SUPPORT == 1 case SPI_CONTROLLER_FT2232: #endif #if DUMMY_SUPPORT == 1 case SPI_CONTROLLER_DUMMY: #endif #if BUSPIRATE_SPI_SUPPORT == 1 case SPI_CONTROLLER_BUSPIRATE: #endif #if DEDIPROG_SUPPORT == 1 case SPI_CONTROLLER_DEDIPROG: #endif return probe_spi_rdid_generic(flash, 4); default: printf_debug("4b ID not supported on this SPI controller\n"); } return 0; } int probe_spi_rems(struct flashchip *flash) { unsigned char readarr[JEDEC_REMS_INSIZE]; uint32_t id1, id2; if (spi_rems(readarr)) return 0; id1 = readarr[0]; id2 = readarr[1]; printf_debug("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 == flash->manufacture_id && id2 == flash->model_id) { /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } /* Test if this is a pure vendor match. */ if (id1 == flash->manufacture_id && GENERIC_DEVICE_ID == flash->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == flash->manufacture_id && id1 != 0xff) return 1; return 0; } int probe_spi_res(struct flashchip *flash) { unsigned char readarr[3]; uint32_t id2; const unsigned char allff[] = {0xff, 0xff, 0xff}; const unsigned char all00[] = {0x00, 0x00, 0x00}; /* Check if RDID is usable and does not return 0xff 0xff 0xff or * 0x00 0x00 0x00. In that case, RES is pointless. */ if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) && memcmp(readarr, all00, 3)) { msg_cdbg("Ignoring RES in favour of RDID.\n"); return 0; } /* Check if REMS is usable and does not return 0xff 0xff or * 0x00 0x00. In that case, RES is pointless. */ if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) && memcmp(readarr, all00, JEDEC_REMS_INSIZE)) { msg_cdbg("Ignoring RES in favour of REMS.\n"); return 0; } if (spi_res(readarr)) return 0; /* FIXME: Handle the case where RES gives a 2-byte response. */ id2 = readarr[0]; printf_debug("%s: id 0x%x\n", __func__, id2); if (id2 != flash->model_id) return 0; /* Print the status register to tell the * user about possible write protection. */ spi_prettyprint_status_register(flash); return 1; } uint8_t spi_read_status_register(void) { const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR }; /* FIXME: No workarounds for driver/hardware bugs in generic code. */ unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */ int ret; /* Read Status Register */ ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr); if (ret) fprintf(stderr, "RDSR failed!\n"); return readarr[0]; } /* Prettyprint the status register. Common definitions. */ void spi_prettyprint_status_register_common(uint8_t status) { printf_debug("Chip status register: Bit 5 / Block Protect 3 (BP3) is " "%sset\n", (status & (1 << 5)) ? "" : "not "); printf_debug("Chip status register: Bit 4 / Block Protect 2 (BP2) is " "%sset\n", (status & (1 << 4)) ? "" : "not "); printf_debug("Chip status register: Bit 3 / Block Protect 1 (BP1) is " "%sset\n", (status & (1 << 3)) ? "" : "not "); printf_debug("Chip status register: Bit 2 / Block Protect 0 (BP0) is " "%sset\n", (status & (1 << 2)) ? "" : "not "); printf_debug("Chip status register: Write Enable Latch (WEL) is " "%sset\n", (status & (1 << 1)) ? "" : "not "); printf_debug("Chip status register: Write In Progress (WIP/BUSY) is " "%sset\n", (status & (1 << 0)) ? "" : "not "); } /* Prettyprint the status register. Works for * ST M25P series * MX MX25L series */ void spi_prettyprint_status_register_st_m25p(uint8_t status) { printf_debug("Chip status register: Status Register Write Disable " "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not "); printf_debug("Chip status register: Bit 6 is " "%sset\n", (status & (1 << 6)) ? "" : "not "); spi_prettyprint_status_register_common(status); } void spi_prettyprint_status_register_sst25(uint8_t status) { printf_debug("Chip status register: Block Protect Write Disable " "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not "); printf_debug("Chip status register: Auto Address Increment Programming " "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not "); spi_prettyprint_status_register_common(status); } /* Prettyprint the status register. Works for * SST 25VF016 */ void spi_prettyprint_status_register_sst25vf016(uint8_t status) { const char *bpt[] = { "none", "1F0000H-1FFFFFH", "1E0000H-1FFFFFH", "1C0000H-1FFFFFH", "180000H-1FFFFFH", "100000H-1FFFFFH", "all", "all" }; spi_prettyprint_status_register_sst25(status); printf_debug("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]); } void spi_prettyprint_status_register_sst25vf040b(uint8_t status) { const char *bpt[] = { "none", "0x70000-0x7ffff", "0x60000-0x7ffff", "0x40000-0x7ffff", "all blocks", "all blocks", "all blocks", "all blocks" }; spi_prettyprint_status_register_sst25(status); printf_debug("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]); } void spi_prettyprint_status_register(struct flashchip *flash) { uint8_t status; status = spi_read_status_register(); printf_debug("Chip status register is %02x\n", status); switch (flash->manufacture_id) { case ST_ID: if (((flash->model_id & 0xff00) == 0x2000) || ((flash->model_id & 0xff00) == 0x2500)) spi_prettyprint_status_register_st_m25p(status); break; case MX_ID: if ((flash->model_id & 0xff00) == 0x2000) spi_prettyprint_status_register_st_m25p(status); break; case SST_ID: switch (flash->model_id) { case 0x2541: spi_prettyprint_status_register_sst25vf016(status); break; case 0x8d: case 0x258d: spi_prettyprint_status_register_sst25vf040b(status); break; default: spi_prettyprint_status_register_sst25(status); break; } break; } } int spi_chip_erase_60(struct flashchip *flash) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_CE_60_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_CE_60 }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_disable_blockprotect(); if (result) { fprintf(stderr, "spi_disable_blockprotect failed\n"); return result; } result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution\n", __func__); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 1-85 s, so wait in 1 s steps. */ /* FIXME: We assume spi_read_status_register will never fail. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(1000 * 1000); if (check_erased_range(flash, 0, flash->total_size * 1024)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } int spi_chip_erase_c7(struct flashchip *flash) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_CE_C7_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_CE_C7 }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_disable_blockprotect(); if (result) { fprintf(stderr, "spi_disable_blockprotect failed\n"); return result; } result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution\n", __func__); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 1-85 s, so wait in 1 s steps. */ /* FIXME: We assume spi_read_status_register will never fail. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(1000 * 1000); if (check_erased_range(flash, 0, flash->total_size * 1024)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } int spi_chip_erase_60_c7(struct flashchip *flash) { int result; result = spi_chip_erase_60(flash); if (result) { printf_debug("spi_chip_erase_60 failed, trying c7\n"); result = spi_chip_erase_c7(flash); } return result; } int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_52_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_52, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); if (check_erased_range(flash, addr, blocklen)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } /* Block size is usually * 64k for Macronix * 32k for SST * 4-32k non-uniform for EON */ int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_D8_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_D8, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); if (check_erased_range(flash, addr, blocklen)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } /* Block size is usually * 4k for PMC */ int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BE_D7_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BE_D7, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 100-4000 ms, so wait in 100 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(100 * 1000); if (check_erased_range(flash, addr, blocklen)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } int spi_chip_erase_d8(struct flashchip *flash) { int i, rc = 0; int total_size = flash->total_size * 1024; int erase_size = 64 * 1024; spi_disable_blockprotect(); printf("Erasing chip: \n"); for (i = 0; i < total_size / erase_size; i++) { rc = spi_block_erase_d8(flash, i * erase_size, erase_size); if (rc) { fprintf(stderr, "Error erasing block at 0x%x\n", i); break; } } printf("\n"); return rc; } /* Sector size is usually 4k, though Macronix eliteflash has 64k */ int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_SE_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_SE, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); return result; } /* Wait until the Write-In-Progress bit is cleared. * This usually takes 15-800 ms, so wait in 10 ms steps. */ while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10 * 1000); if (check_erased_range(flash, addr, blocklen)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } return 0; } int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->total_size * 1024)) { fprintf(stderr, "%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_60(flash); } int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->total_size * 1024)) { fprintf(stderr, "%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_c7(flash); } int spi_write_status_enable(void) { const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR }; int result; /* Send EWSR (Enable Write Status Register). */ result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL); if (result) fprintf(stderr, "%s failed\n", __func__); return result; } /* * This is according the SST25VF016 datasheet, who knows it is more * generic that this... */ int spi_write_status_register(int status) { int result; struct spi_command cmds[] = { { /* FIXME: WRSR requires either EWSR or WREN depending on chip type. */ .writecnt = JEDEC_EWSR_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_EWSR }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_WRSR_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution\n", __func__); } return result; } int spi_byte_program(int addr, uint8_t databyte) { int result; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_BYTE_PROGRAM, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff), databyte }, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); } return result; } int spi_nbyte_program(int addr, uint8_t *bytes, int len) { int result; /* FIXME: Switch to malloc based on len unless that kills speed. */ unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = { JEDEC_BYTE_PROGRAM, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr >> 0) & 0xff, }; struct spi_command cmds[] = { { .writecnt = JEDEC_WREN_OUTSIZE, .writearr = (const unsigned char[]){ JEDEC_WREN }, .readcnt = 0, .readarr = NULL, }, { .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len, .writearr = cmd, .readcnt = 0, .readarr = NULL, }, { .writecnt = 0, .writearr = NULL, .readcnt = 0, .readarr = NULL, }}; if (!len) { fprintf(stderr, "%s called for zero-length write\n", __func__); return 1; } if (len > 256) { fprintf(stderr, "%s called for too long a write\n", __func__); return 1; } memcpy(&cmd[4], bytes, len); result = spi_send_multicommand(cmds); if (result) { fprintf(stderr, "%s failed during command execution at address 0x%x\n", __func__, addr); } return result; } int spi_disable_blockprotect(void) { uint8_t status; int result; status = spi_read_status_register(); /* If there is block protection in effect, unprotect it first. */ if ((status & 0x3c) != 0) { printf_debug("Some block protection in effect, disabling\n"); result = spi_write_status_register(status & ~0x3c); if (result) { fprintf(stderr, "spi_write_status_register failed\n"); return result; } } return 0; } int spi_nbyte_read(int address, uint8_t *bytes, int len) { const unsigned char cmd[JEDEC_READ_OUTSIZE] = { JEDEC_READ, (address >> 16) & 0xff, (address >> 8) & 0xff, (address >> 0) & 0xff, }; /* Send Read */ return spi_send_command(sizeof(cmd), len, cmd, bytes); } /* * Read a complete flash chip. * Each page is read separately in chunks with a maximum size of chunksize. */ int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize) { int rc = 0; int i, j, starthere, lenhere; int page_size = flash->page_size; int toread; /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each page with at least one affected * byte. The lowest page number is (start / page_size) since that * division rounds down. The highest page number we want is the page * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest page number is * (start + len - 1) / page_size. Since we want to include that last * page as well, the loop condition uses <=. */ for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { /* Byte position of the first byte in the range in this page. */ /* starthere is an offset to the base address of the chip. */ starthere = max(start, i * page_size); /* Length of bytes in the range in this page. */ lenhere = min(start + len, (i + 1) * page_size) - starthere; for (j = 0; j < lenhere; j += chunksize) { toread = min(chunksize, lenhere - j); rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread); if (rc) break; } if (rc) break; } return rc; } int spi_chip_read(struct flashchip *flash, uint8_t *buf, int start, int len) { if (!spi_programmer[spi_controller].read) { fprintf(stderr, "%s called, but SPI read is unsupported on this" " hardware. Please report a bug.\n", __func__); return 1; } return spi_programmer[spi_controller].read(flash, buf, start, len); } /* * Program chip using byte programming. (SLOW!) * This is for chips which can only handle one byte writes * and for chips where memory mapped programming is impossible * (e.g. due to size constraints in IT87* for over 512 kB) */ int spi_chip_write_1(struct flashchip *flash, uint8_t *buf) { int total_size = 1024 * flash->total_size; int i, result = 0; spi_disable_blockprotect(); /* Erase first */ printf("Erasing flash before programming... "); if (erase_flash(flash)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } printf("done.\n"); for (i = 0; i < total_size; i++) { result = spi_byte_program(i, buf[i]); if (result) return 1; while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(10); } return 0; } /* * Program chip using page (256 bytes) programming. * Some SPI masters can't do this, they use single byte programming instead. */ int spi_chip_write_256(struct flashchip *flash, uint8_t *buf) { if (!spi_programmer[spi_controller].write_256) { fprintf(stderr, "%s called, but SPI page write is unsupported " " on this hardware. Please report a bug.\n", __func__); return 1; } return spi_programmer[spi_controller].write_256(flash, buf); } uint32_t spi_get_valid_read_addr(void) { /* Need to return BBAR for ICH chipsets. */ return 0; } int spi_aai_write(struct flashchip *flash, uint8_t *buf) { uint32_t pos = 2, size = flash->total_size * 1024; unsigned char w[6] = {0xad, 0, 0, 0, buf[0], buf[1]}; int result; switch (spi_controller) { #if INTERNAL_SUPPORT == 1 case SPI_CONTROLLER_WBSIO: fprintf(stderr, "%s: impossible with Winbond SPI masters," " degrading to byte program\n", __func__); return spi_chip_write_1(flash, buf); #endif default: break; } if (erase_flash(flash)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } /* FIXME: This will fail on ICH/VIA SPI. */ result = spi_write_enable(); if (result) return result; spi_send_command(6, 0, w, NULL); while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(5); /* SST25VF040B Tbp is max 10us */ while (pos < size) { w[1] = buf[pos++]; w[2] = buf[pos++]; spi_send_command(3, 0, w, NULL); while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) programmer_delay(5); /* SST25VF040B Tbp is max 10us */ } spi_write_disable(); return 0; }