/* * This file is part of the flashrom project. * * Copyright (C) 2009,2010 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__) #include #include #endif #if !defined (__DJGPP__) #include #endif #include "flash.h" #if defined(__i386__) || defined(__x86_64__) /* sync primitive is not needed because x86 uses uncached accesses * which have a strongly ordered memory model. */ static inline void sync_primitive(void) { } #if defined(__FreeBSD__) || defined(__DragonFly__) int io_fd; #endif void get_io_perms(void) { #if defined(__DJGPP__) || defined(__LIBPAYLOAD__) /* We have full permissions by default. */ return; #else #if defined (__sun) && (defined(__i386) || defined(__amd64)) if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) { #elif defined(__FreeBSD__) || defined (__DragonFly__) if ((io_fd = open("/dev/io", O_RDWR)) < 0) { #else if (iopl(3) != 0) { #endif msg_perr("ERROR: Could not get I/O privileges (%s).\n" "You need to be root.\n", strerror(errno)); #if defined (__OpenBSD__) msg_perr("Please set securelevel=-1 in /etc/rc.securelevel " "and reboot, or reboot into \n"); msg_perr("single user mode.\n"); #endif exit(1); } #endif } void release_io_perms(void) { #if defined(__FreeBSD__) || defined(__DragonFly__) close(io_fd); #endif } #elif defined(__powerpc__) || defined(__powerpc64__) || defined(__ppc__) || defined(__ppc64__) static inline void sync_primitive(void) { /* Prevent reordering and/or merging of reads/writes to hardware. * Such reordering and/or merging would break device accesses which * depend on the exact access order. */ asm("eieio" : : : "memory"); } /* PCI port I/O is not yet implemented on PowerPC. */ void get_io_perms(void) { } /* PCI port I/O is not yet implemented on PowerPC. */ void release_io_perms(void) { } #elif defined (__mips) || defined (__mips__) || defined (_mips) || defined (mips) /* sync primitive is not needed because /dev/mem on MIPS uses uncached accesses * in mode 2 which has a strongly ordered memory model. */ static inline void sync_primitive(void) { } /* PCI port I/O is not yet implemented on MIPS. */ void get_io_perms(void) { } /* PCI port I/O is not yet implemented on MIPS. */ void release_io_perms(void) { } #else #error Unknown architecture #endif void mmio_writeb(uint8_t val, void *addr) { *(volatile uint8_t *) addr = val; sync_primitive(); } void mmio_writew(uint16_t val, void *addr) { *(volatile uint16_t *) addr = val; sync_primitive(); } void mmio_writel(uint32_t val, void *addr) { *(volatile uint32_t *) addr = val; sync_primitive(); } uint8_t mmio_readb(void *addr) { return *(volatile uint8_t *) addr; } uint16_t mmio_readw(void *addr) { return *(volatile uint16_t *) addr; } uint32_t mmio_readl(void *addr) { return *(volatile uint32_t *) addr; } void mmio_le_writeb(uint8_t val, void *addr) { mmio_writeb(cpu_to_le8(val), addr); } void mmio_le_writew(uint16_t val, void *addr) { mmio_writew(cpu_to_le16(val), addr); } void mmio_le_writel(uint32_t val, void *addr) { mmio_writel(cpu_to_le32(val), addr); } uint8_t mmio_le_readb(void *addr) { return le_to_cpu8(mmio_readb(addr)); } uint16_t mmio_le_readw(void *addr) { return le_to_cpu16(mmio_readw(addr)); } uint32_t mmio_le_readl(void *addr) { return le_to_cpu32(mmio_readl(addr)); } enum mmio_write_type { mmio_write_type_b, mmio_write_type_w, mmio_write_type_l, }; struct undo_mmio_write_data { void *addr; int reg; enum mmio_write_type type; union { uint8_t bdata; uint16_t wdata; uint32_t ldata; }; }; int undo_mmio_write(void *p) { struct undo_mmio_write_data *data = p; msg_pdbg("Restoring MMIO space at %p\n", data->addr); switch (data->type) { case mmio_write_type_b: mmio_writeb(data->bdata, data->addr); break; case mmio_write_type_w: mmio_writew(data->wdata, data->addr); break; case mmio_write_type_l: mmio_writel(data->ldata, data->addr); break; } /* p was allocated in register_undo_mmio_write. */ free(p); return 0; } #define register_undo_mmio_write(a, c) \ { \ struct undo_mmio_write_data *undo_mmio_write_data; \ undo_mmio_write_data = malloc(sizeof(struct undo_mmio_write_data)); \ if (!undo_mmio_write_data) { \ msg_gerr("Out of memory!\n"); \ exit(1); \ } \ undo_mmio_write_data->addr = a; \ undo_mmio_write_data->type = mmio_write_type_##c; \ undo_mmio_write_data->c##data = mmio_read##c(a); \ register_shutdown(undo_mmio_write, undo_mmio_write_data); \ } #define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b) #define register_undo_mmio_writew(a) register_undo_mmio_write(a, w) #define register_undo_mmio_writel(a) register_undo_mmio_write(a, l) void rmmio_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_writeb(val, addr); } void rmmio_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_writew(val, addr); } void rmmio_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_writel(val, addr); } void rmmio_le_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_le_writeb(val, addr); } void rmmio_le_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_le_writew(val, addr); } void rmmio_le_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_le_writel(val, addr); } void rmmio_valb(void *addr) { register_undo_mmio_writeb(addr); } void rmmio_valw(void *addr) { register_undo_mmio_writew(addr); } void rmmio_vall(void *addr) { register_undo_mmio_writel(addr); }