/* * This file is part of the flashrom project. * * Copyright (C) 2009 Paul Fox * Copyright (C) 2009 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include "flash.h" #include "spi.h" #if FT2232_SPI_SUPPORT == 1 #include /* the 'H' chips can run internally at either 12Mhz or 60Mhz. * the non-H chips can only run at 12Mhz. */ #define CLOCK_5X 1 /* in either case, the divisor is a simple integer clock divider. * if CLOCK_5X is set, this divisor divides 30Mhz, else it * divides 6Mhz */ #define DIVIDE_BY 3 // e.g. '3' will give either 10Mhz or 2Mhz spi clock static struct ftdi_context ftdic_context; int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) { int r; r = ftdi_write_data(ftdic, (unsigned char *) buf, size); if (r < 0) { fprintf(stderr, "ftdi_write_data: %d, %s\n", r, ftdi_get_error_string(ftdic)); return 1; } return 0; } int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) { int r; r = ftdi_read_data(ftdic, (unsigned char *) buf, size); if (r < 0) { fprintf(stderr, "ftdi_read_data: %d, %s\n", r, ftdi_get_error_string(ftdic)); return 1; } return 0; } int ft2232_spi_init(void) { int f; struct ftdi_context *ftdic = &ftdic_context; unsigned char buf[512]; unsigned char port_val = 0; char *portpos = NULL; int ft2232_type = FTDI_FT4232H; enum ftdi_interface ft2232_interface = INTERFACE_B; if (ftdi_init(ftdic) < 0) { fprintf(stderr, "ftdi_init failed\n"); return EXIT_FAILURE; } if (programmer_param && !strlen(programmer_param)) { free(programmer_param); programmer_param = NULL; } if (programmer_param) { if (strstr(programmer_param, "2232")) ft2232_type = FTDI_FT2232H; if (strstr(programmer_param, "4232")) ft2232_type = FTDI_FT4232H; portpos = strstr(programmer_param, "port="); if (portpos) { portpos += 5; switch (toupper(*portpos)) { case 'A': ft2232_interface = INTERFACE_A; break; case 'B': ft2232_interface = INTERFACE_B; break; default: fprintf(stderr, "Invalid interface specified, " "using default.\n"); } } free(programmer_param); } printf_debug("Using device type %s ", (ft2232_type == FTDI_FT2232H) ? "2232H" : "4232H"); printf_debug("interface %s\n", (ft2232_interface == INTERFACE_A) ? "A" : "B"); f = ftdi_usb_open(ftdic, 0x0403, ft2232_type); if (f < 0 && f != -5) { fprintf(stderr, "Unable to open ftdi device: %d (%s)\n", f, ftdi_get_error_string(ftdic)); exit(-1); } if (ftdi_set_interface(ftdic, ft2232_interface) < 0) { fprintf(stderr, "Unable to select interface: %s\n", ftdic->error_str); } if (ftdi_usb_reset(ftdic) < 0) { fprintf(stderr, "Unable to reset ftdi device\n"); } if (ftdi_set_latency_timer(ftdic, 2) < 0) { fprintf(stderr, "Unable to set latency timer\n"); } if (ftdi_write_data_set_chunksize(ftdic, 512)) { fprintf(stderr, "Unable to set chunk size\n"); } if (ftdi_set_bitmode(ftdic, 0x00, 2) < 0) { fprintf(stderr, "Unable to set bitmode\n"); } #if CLOCK_5X printf_debug("Disable divide-by-5 front stage\n"); buf[0] = 0x8a; /* disable divide-by-5 */ if (send_buf(ftdic, buf, 1)) return -1; #define MPSSE_CLK 60.0 #else #define MPSSE_CLK 12.0 #endif printf_debug("Set clock divisor\n"); buf[0] = 0x86; /* command "set divisor" */ /* valueL/valueH are (desired_divisor - 1) */ buf[1] = (DIVIDE_BY-1) & 0xff; buf[2] = ((DIVIDE_BY-1) >> 8) & 0xff; if (send_buf(ftdic, buf, 3)) return -1; printf("SPI clock is %fMHz\n", (double)(MPSSE_CLK / (((DIVIDE_BY-1) + 1) * 2))); /* Disconnect TDI/DO to TDO/DI for Loopback */ printf_debug("No loopback of tdi/do tdo/di\n"); buf[0] = 0x85; if (send_buf(ftdic, buf, 1)) return -1; printf_debug("Set data bits\n"); /* Set data bits low-byte command: * value: 0x08 CS=high, DI=low, DO=low, SK=low * dir: 0x0b CS=output, DI=input, DO=output, SK=output */ #define CS_BIT 0x08 buf[0] = SET_BITS_LOW; buf[1] = (port_val = CS_BIT); buf[2] = 0x0b; if (send_buf(ftdic, buf, 3)) return -1; printf_debug("\nft2232 chosen\n"); buses_supported = CHIP_BUSTYPE_SPI; spi_controller = SPI_CONTROLLER_FT2232; return 0; } int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { struct ftdi_context *ftdic = &ftdic_context; static unsigned char *buf = NULL; unsigned char port_val = 0; int i, ret = 0; if (writecnt > 65536 || readcnt > 65536) return SPI_INVALID_LENGTH; buf = realloc(buf, writecnt + readcnt + 100); if (!buf) { fprintf(stderr, "Out of memory!\n"); exit(1); } i = 0; /* minimize USB transfers by packing as many commands * as possible together. if we're not expecting to * read, we can assert CS, write, and deassert CS all * in one shot. if reading, we do three separate * operations. */ printf_debug("Assert CS#\n"); buf[i++] = SET_BITS_LOW; buf[i++] = (port_val &= ~CS_BIT); buf[i++] = 0x0b; if (writecnt) { buf[i++] = 0x11; buf[i++] = (writecnt - 1) & 0xff; buf[i++] = ((writecnt - 1) >> 8) & 0xff; memcpy(buf+i, writearr, writecnt); i += writecnt; } /* optionally terminate this batch of commands with a * read command, then do the fetch of the results. */ if (readcnt) { buf[i++] = 0x20; buf[i++] = (readcnt - 1) & 0xff; buf[i++] = ((readcnt - 1) >> 8) & 0xff; ret = send_buf(ftdic, buf, i); i = 0; if (ret) goto deassert_cs; /* FIXME: This is unreliable. There's no guarantee that we read * the response directly after sending the read command. * We may be scheduled out etc. */ ret = get_buf(ftdic, readarr, readcnt); } deassert_cs: printf_debug("De-assert CS#\n"); buf[i++] = SET_BITS_LOW; buf[i++] = (port_val |= CS_BIT); buf[i++] = 0x0b; if (send_buf(ftdic, buf, i)) return -1; return ret; } int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) { /* Maximum read length is 64k bytes. */ return spi_read_chunked(flash, buf, start, len, 64 * 1024); } int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) { int total_size = 1024 * flash->total_size; int i; spi_disable_blockprotect(); /* Erase first */ printf("Erasing flash before programming... "); if (flash->erase(flash)) { fprintf(stderr, "ERASE FAILED!\n"); return -1; } printf("done.\n"); printf_debug("total_size is %d\n", total_size); for (i = 0; i < total_size; i += 256) { int l, r; if (i + 256 <= total_size) l = 256; else l = total_size - i; if ((r = spi_nbyte_program(i, &buf[i], l))) { fprintf(stderr, "%s: write fail %d\n", __FUNCTION__, r); return 1; } while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) /* loop */; } return 0; } #else int ft2232_spi_init(void) { fprintf(stderr, "FT2232 SPI support was not compiled in\n"); exit(1); } int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { fprintf(stderr, "FT2232 SPI support was not compiled in\n"); exit(1); } int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) { fprintf(stderr, "FT2232 SPI support was not compiled in\n"); exit(1); } int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) { fprintf(stderr, "FT2232 SPI support was not compiled in\n"); exit(1); } #endif