/* * This file is part of the flashrom project. * * Copyright (C) 2009 Paul Fox * Copyright (C) 2009 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if FT2232_SPI_SUPPORT == 1 #include #include #include #include #include #include "flash.h" #include "chipdrivers.h" #include "spi.h" #include /* * The 'H' chips can run internally at either 12MHz or 60MHz. * The non-H chips can only run at 12MHz. */ #define CLOCK_5X 1 /* * In either case, the divisor is a simple integer clock divider. * If CLOCK_5X is set, this divisor divides 30MHz, else it divides 6MHz. */ #define DIVIDE_BY 3 /* e.g. '3' will give either 10MHz or 2MHz SPI clock. */ #define BITMODE_BITBANG_NORMAL 1 #define BITMODE_BITBANG_SPI 2 static struct ftdi_context ftdic_context; int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) { int r; r = ftdi_write_data(ftdic, (unsigned char *) buf, size); if (r < 0) { msg_perr("ftdi_write_data: %d, %s\n", r, ftdi_get_error_string(ftdic)); return 1; } return 0; } int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, int size) { int r; r = ftdi_read_data(ftdic, (unsigned char *) buf, size); if (r < 0) { msg_perr("ftdi_read_data: %d, %s\n", r, ftdi_get_error_string(ftdic)); return 1; } return 0; } int ft2232_spi_init(void) { int f; struct ftdi_context *ftdic = &ftdic_context; unsigned char buf[512]; char *portpos = NULL; int ft2232_type = FTDI_FT4232H; enum ftdi_interface ft2232_interface = INTERFACE_B; if (ftdi_init(ftdic) < 0) { msg_perr("ftdi_init failed\n"); return EXIT_FAILURE; // TODO } if (programmer_param && !strlen(programmer_param)) { free(programmer_param); programmer_param = NULL; } if (programmer_param) { if (strstr(programmer_param, "2232")) ft2232_type = FTDI_FT2232H; if (strstr(programmer_param, "4232")) ft2232_type = FTDI_FT4232H; portpos = strstr(programmer_param, "port="); if (portpos) { portpos += 5; switch (toupper(*portpos)) { case 'A': ft2232_interface = INTERFACE_A; break; case 'B': ft2232_interface = INTERFACE_B; break; default: msg_perr("Invalid interface specified, " "using default.\n"); } } free(programmer_param); } msg_pdbg("Using device type %s ", (ft2232_type == FTDI_FT2232H) ? "2232H" : "4232H"); msg_pdbg("interface %s\n", (ft2232_interface == INTERFACE_A) ? "A" : "B"); f = ftdi_usb_open(ftdic, 0x0403, ft2232_type); if (f < 0 && f != -5) { msg_perr("Unable to open FTDI device: %d (%s)\n", f, ftdi_get_error_string(ftdic)); exit(-1); // TODO } if (ftdi_set_interface(ftdic, ft2232_interface) < 0) { msg_perr("Unable to select interface: %s\n", ftdic->error_str); } if (ftdi_usb_reset(ftdic) < 0) { msg_perr("Unable to reset FTDI device\n"); } if (ftdi_set_latency_timer(ftdic, 2) < 0) { msg_perr("Unable to set latency timer\n"); } if (ftdi_write_data_set_chunksize(ftdic, 512)) { msg_perr("Unable to set chunk size\n"); } if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) { msg_perr("Unable to set bitmode to SPI\n"); } #if CLOCK_5X msg_pdbg("Disable divide-by-5 front stage\n"); buf[0] = 0x8a; /* Disable divide-by-5. */ if (send_buf(ftdic, buf, 1)) return -1; #define MPSSE_CLK 60.0 #else #define MPSSE_CLK 12.0 #endif msg_pdbg("Set clock divisor\n"); buf[0] = 0x86; /* command "set divisor" */ /* valueL/valueH are (desired_divisor - 1) */ buf[1] = (DIVIDE_BY - 1) & 0xff; buf[2] = ((DIVIDE_BY - 1) >> 8) & 0xff; if (send_buf(ftdic, buf, 3)) return -1; msg_pdbg("SPI clock is %fMHz\n", (double)(MPSSE_CLK / (((DIVIDE_BY - 1) + 1) * 2))); /* Disconnect TDI/DO to TDO/DI for loopback. */ msg_pdbg("No loopback of TDI/DO TDO/DI\n"); buf[0] = 0x85; if (send_buf(ftdic, buf, 1)) return -1; msg_pdbg("Set data bits\n"); /* Set data bits low-byte command: * value: 0x08 CS=high, DI=low, DO=low, SK=low * dir: 0x0b CS=output, DI=input, DO=output, SK=output */ #define CS_BIT 0x08 buf[0] = SET_BITS_LOW; buf[1] = CS_BIT; buf[2] = 0x0b; if (send_buf(ftdic, buf, 3)) return -1; // msg_pdbg("\nft2232 chosen\n"); buses_supported = CHIP_BUSTYPE_SPI; spi_controller = SPI_CONTROLLER_FT2232; return 0; } int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { struct ftdi_context *ftdic = &ftdic_context; static unsigned char *buf = NULL; /* failed is special. We use bitwise ops, but it is essentially bool. */ int i = 0, ret = 0, failed = 0; int bufsize; static int oldbufsize = 0; if (writecnt > 65536 || readcnt > 65536) return SPI_INVALID_LENGTH; /* buf is not used for the response from the chip. */ bufsize = max(writecnt + 9, 260 + 9); /* Never shrink. realloc() calls are expensive. */ if (bufsize > oldbufsize) { buf = realloc(buf, bufsize); if (!buf) { msg_perr("Out of memory!\n"); exit(1); } oldbufsize = bufsize; } /* * Minimize USB transfers by packing as many commands as possible * together. If we're not expecting to read, we can assert CS#, write, * and deassert CS# all in one shot. If reading, we do three separate * operations. */ msg_pspew("Assert CS#\n"); buf[i++] = SET_BITS_LOW; buf[i++] = 0 & ~CS_BIT; /* assertive */ buf[i++] = 0x0b; if (writecnt) { buf[i++] = 0x11; buf[i++] = (writecnt - 1) & 0xff; buf[i++] = ((writecnt - 1) >> 8) & 0xff; memcpy(buf + i, writearr, writecnt); i += writecnt; } /* * Optionally terminate this batch of commands with a * read command, then do the fetch of the results. */ if (readcnt) { buf[i++] = 0x20; buf[i++] = (readcnt - 1) & 0xff; buf[i++] = ((readcnt - 1) >> 8) & 0xff; ret = send_buf(ftdic, buf, i); failed = ret; /* We can't abort here, we still have to deassert CS#. */ if (ret) msg_perr("send_buf failed before read: %i\n", ret); i = 0; if (ret == 0) { /* * FIXME: This is unreliable. There's no guarantee that * we read the response directly after sending the read * command. We may be scheduled out etc. */ ret = get_buf(ftdic, readarr, readcnt); failed |= ret; /* We can't abort here either. */ if (ret) msg_perr("get_buf failed: %i\n", ret); } } msg_pspew("De-assert CS#\n"); buf[i++] = SET_BITS_LOW; buf[i++] = CS_BIT; buf[i++] = 0x0b; ret = send_buf(ftdic, buf, i); failed |= ret; if (ret) msg_perr("send_buf failed at end: %i\n", ret); return failed ? -1 : 0; } int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) { /* Maximum read length is 64k bytes. */ return spi_read_chunked(flash, buf, start, len, 64 * 1024); } int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf) { int total_size = 1024 * flash->total_size; int i; spi_disable_blockprotect(); /* Erase first. */ msg_pinfo("Erasing flash before programming... "); if (erase_flash(flash)) { msg_perr("ERASE FAILED!\n"); return -1; } msg_pinfo("done.\n"); msg_pdbg("total_size is %d\n", total_size); for (i = 0; i < total_size; i += 256) { int l, r; if (i + 256 <= total_size) l = 256; else l = total_size - i; if ((r = spi_nbyte_program(i, &buf[i], l))) { msg_perr("%s: write fail %d\n", __func__, r); return 1; } while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) /* loop */; } return 0; } #endif