/* * This file is part of the flashrom project. * * Copyright (C) 2000 Silicon Integrated System Corporation * Copyright (C) 2004 Tyan Corp * Copyright (C) 2005-2008 coresystems GmbH * Copyright (C) 2008,2009 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include "flash.h" #include "flashchips.h" const char *flashrom_version = FLASHROM_VERSION; char *chip_to_probe = NULL; int verbose = 0; #if INTERNAL_SUPPORT == 1 enum programmer programmer = PROGRAMMER_INTERNAL; #elif DUMMY_SUPPORT == 1 enum programmer programmer = PROGRAMMER_DUMMY; #else /* Activating the #error explodes on make dep. */ //#error Neither internal nor dummy selected #endif char *programmer_param = NULL; /** * flashrom defaults to Parallel/LPC/FWH flash devices. If a known host * controller is found, the init routine sets the buses_supported bitfield to * contain the supported buses for that controller. */ enum chipbustype buses_supported = CHIP_BUSTYPE_NONSPI; /** * Programmers supporting multiple buses can have differing size limits on * each bus. Store the limits for each bus in a common struct. */ struct decode_sizes max_rom_decode = { .parallel = 0xffffffff, .lpc = 0xffffffff, .fwh = 0xffffffff, .spi = 0xffffffff }; const struct programmer_entry programmer_table[] = { #if INTERNAL_SUPPORT == 1 { .name = "internal", .init = internal_init, .shutdown = internal_shutdown, .map_flash_region = physmap, .unmap_flash_region = physunmap, .chip_readb = internal_chip_readb, .chip_readw = internal_chip_readw, .chip_readl = internal_chip_readl, .chip_readn = internal_chip_readn, .chip_writeb = internal_chip_writeb, .chip_writew = internal_chip_writew, .chip_writel = internal_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if DUMMY_SUPPORT == 1 { .name = "dummy", .init = dummy_init, .shutdown = dummy_shutdown, .map_flash_region = dummy_map, .unmap_flash_region = dummy_unmap, .chip_readb = dummy_chip_readb, .chip_readw = dummy_chip_readw, .chip_readl = dummy_chip_readl, .chip_readn = dummy_chip_readn, .chip_writeb = dummy_chip_writeb, .chip_writew = dummy_chip_writew, .chip_writel = dummy_chip_writel, .chip_writen = dummy_chip_writen, .delay = internal_delay, }, #endif #if NIC3COM_SUPPORT == 1 { .name = "nic3com", .init = nic3com_init, .shutdown = nic3com_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = nic3com_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = nic3com_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if GFXNVIDIA_SUPPORT == 1 { .name = "gfxnvidia", .init = gfxnvidia_init, .shutdown = gfxnvidia_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = gfxnvidia_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = gfxnvidia_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if DRKAISER_SUPPORT == 1 { .name = "drkaiser", .init = drkaiser_init, .shutdown = drkaiser_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = drkaiser_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = drkaiser_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if SATASII_SUPPORT == 1 { .name = "satasii", .init = satasii_init, .shutdown = satasii_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = satasii_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = satasii_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if INTERNAL_SUPPORT == 1 { .name = "it87spi", .init = it87spi_init, .shutdown = noop_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = noop_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = noop_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if FT2232_SPI_SUPPORT == 1 { .name = "ft2232spi", .init = ft2232_spi_init, .shutdown = noop_shutdown, /* Missing shutdown */ .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = noop_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = noop_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif #if SERPROG_SUPPORT == 1 { .name = "serprog", .init = serprog_init, .shutdown = serprog_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = serprog_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = serprog_chip_readn, .chip_writeb = serprog_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = serprog_delay, }, #endif #if BUSPIRATE_SPI_SUPPORT == 1 { .name = "buspiratespi", .init = buspirate_spi_init, .shutdown = buspirate_spi_shutdown, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .chip_readb = noop_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = noop_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, .delay = internal_delay, }, #endif {}, /* This entry corresponds to PROGRAMMER_INVALID. */ }; int programmer_init(void) { return programmer_table[programmer].init(); } int programmer_shutdown(void) { return programmer_table[programmer].shutdown(); } void *programmer_map_flash_region(const char *descr, unsigned long phys_addr, size_t len) { return programmer_table[programmer].map_flash_region(descr, phys_addr, len); } void programmer_unmap_flash_region(void *virt_addr, size_t len) { programmer_table[programmer].unmap_flash_region(virt_addr, len); } void chip_writeb(uint8_t val, chipaddr addr) { programmer_table[programmer].chip_writeb(val, addr); } void chip_writew(uint16_t val, chipaddr addr) { programmer_table[programmer].chip_writew(val, addr); } void chip_writel(uint32_t val, chipaddr addr) { programmer_table[programmer].chip_writel(val, addr); } void chip_writen(uint8_t *buf, chipaddr addr, size_t len) { programmer_table[programmer].chip_writen(buf, addr, len); } uint8_t chip_readb(const chipaddr addr) { return programmer_table[programmer].chip_readb(addr); } uint16_t chip_readw(const chipaddr addr) { return programmer_table[programmer].chip_readw(addr); } uint32_t chip_readl(const chipaddr addr) { return programmer_table[programmer].chip_readl(addr); } void chip_readn(uint8_t *buf, chipaddr addr, size_t len) { programmer_table[programmer].chip_readn(buf, addr, len); } void programmer_delay(int usecs) { programmer_table[programmer].delay(usecs); } void map_flash_registers(struct flashchip *flash) { size_t size = flash->total_size * 1024; /* Flash registers live 4 MByte below the flash. */ /* FIXME: This is incorrect for nonstandard flashbase. */ flash->virtual_registers = (chipaddr)programmer_map_flash_region("flash chip registers", (0xFFFFFFFF - 0x400000 - size + 1), size); } int read_memmapped(struct flashchip *flash, uint8_t *buf, int start, int len) { chip_readn(buf, flash->virtual_memory + start, len); return 0; } unsigned long flashbase = 0; int min(int a, int b) { return (a < b) ? a : b; } int max(int a, int b) { return (a > b) ? a : b; } int bitcount(unsigned long a) { int i = 0; for (; a != 0; a >>= 1) if (a & 1) i++; return i; } char *strcat_realloc(char *dest, const char *src) { dest = realloc(dest, strlen(dest) + strlen(src) + 1); if (!dest) return NULL; strcat(dest, src); return dest; } /* This is a somewhat hacked function similar in some ways to strtok(). * It will look for needle in haystack, return a copy of needle and remove * everything from the first occurrence of needle to the next delimiter * from haystack. */ char *extract_param(char **haystack, char *needle, char *delim) { char *param_pos, *rest, *tmp; char *dev = NULL; int devlen; param_pos = strstr(*haystack, needle); do { if (!param_pos) return NULL; /* Beginning of the string? */ if (param_pos == *haystack) break; /* After a delimiter? */ if (strchr(delim, *(param_pos - 1))) break; /* Continue searching. */ param_pos++; param_pos = strstr(param_pos, needle); } while (1); if (param_pos) { param_pos += strlen(needle); devlen = strcspn(param_pos, delim); if (devlen) { dev = malloc(devlen + 1); if (!dev) { fprintf(stderr, "Out of memory!\n"); exit(1); } strncpy(dev, param_pos, devlen); dev[devlen] = '\0'; } rest = param_pos + devlen; rest += strspn(rest, delim); param_pos -= strlen(needle); memmove(param_pos, rest, strlen(rest) + 1); tmp = realloc(*haystack, strlen(*haystack) + 1); if (!tmp) { fprintf(stderr, "Out of memory!\n"); exit(1); } *haystack = tmp; } return dev; } /* start is an offset to the base address of the flash chip */ int check_erased_range(struct flashchip *flash, int start, int len) { int ret; uint8_t *cmpbuf = malloc(len); if (!cmpbuf) { fprintf(stderr, "Could not allocate memory!\n"); exit(1); } memset(cmpbuf, 0xff, len); ret = verify_range(flash, cmpbuf, start, len, "ERASE"); free(cmpbuf); return ret; } /** * @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the flash content at location start * @start offset to the base address of the flash chip * @len length of the verified area * @message string to print in the "FAILED" message * @return 0 for success, -1 for failure */ int verify_range(struct flashchip *flash, uint8_t *cmpbuf, int start, int len, char *message) { int i, j, starthere, lenhere, ret = 0; int page_size = flash->page_size; uint8_t *readbuf = malloc(page_size); int failcount = 0; if (!len) goto out_free; if (!flash->read) { fprintf(stderr, "ERROR: flashrom has no read function for this flash chip.\n"); return 1; } if (!readbuf) { fprintf(stderr, "Could not allocate memory!\n"); exit(1); } if (start + len > flash->total_size * 1024) { fprintf(stderr, "Error: %s called with start 0x%x + len 0x%x >" " total_size 0x%x\n", __func__, start, len, flash->total_size * 1024); ret = -1; goto out_free; } if (!message) message = "VERIFY"; /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each page with at least one affected * byte. The lowest page number is (start / page_size) since that * division rounds down. The highest page number we want is the page * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest page number is * (start + len - 1) / page_size. Since we want to include that last * page as well, the loop condition uses <=. */ for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { /* Byte position of the first byte in the range in this page. */ starthere = max(start, i * page_size); /* Length of bytes in the range in this page. */ lenhere = min(start + len, (i + 1) * page_size) - starthere; flash->read(flash, readbuf, starthere, lenhere); for (j = 0; j < lenhere; j++) { if (cmpbuf[starthere - start + j] != readbuf[j]) { /* Only print the first failure. */ if (!failcount++) fprintf(stderr, "%s FAILED at 0x%08x! " "Expected=0x%02x, Read=0x%02x,", message, starthere + j, cmpbuf[starthere - start + j], readbuf[j]); } } } if (failcount) { fprintf(stderr, " failed byte count from 0x%08x-0x%08x: 0x%x\n", start, start + len - 1, failcount); ret = -1; } out_free: free(readbuf); return ret; } /* This function generates various test patterns useful for testing controller * and chip communication as well as chip behaviour. * * If a byte can be written multiple times, each time keeping 0-bits at 0 * and changing 1-bits to 0 if the new value for that bit is 0, the effect * is essentially an AND operation. That's also the reason why this function * provides the result of AND between various patterns. * * Below is a list of patterns (and their block length). * Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes) * Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes) * Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes) * Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes) * Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes) * Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes) * Pattern 6 is 00 (1 Byte) * Pattern 7 is ff (1 Byte) * Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256 * byte block. * * Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B) * Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B) * Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter) * Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards) * Pattern 12 is 00 (1 Byte) * Pattern 13 is ff (1 Byte) * Patterns 8-13 have no block number. * * Patterns 0-3 are created to detect and efficiently diagnose communication * slips like missed bits or bytes and their repetitive nature gives good visual * cues to the person inspecting the results. In addition, the following holds: * AND Pattern 0/1 == Pattern 4 * AND Pattern 2/3 == Pattern 5 * AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6 * A weakness of pattern 0-5 is the inability to detect swaps/copies between * any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc. * They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes. * 0x5 and 0xa were picked because they are 0101 and 1010 binary. * Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes. * Besides that, they provide for bit testing of the last two bytes of every * 256 byte block which contains the block number for patterns 0-6. * Patterns 10-11 are special purpose for detecting subblock aliasing with * block sizes >256 bytes (some Dataflash chips etc.) * AND Pattern 8/9 == Pattern 12 * AND Pattern 10/11 == Pattern 12 * Pattern 13 is the completely erased state. * None of the patterns can detect aliasing at boundaries which are a multiple * of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI). */ int generate_testpattern(uint8_t *buf, uint32_t size, int variant) { int i; if (!buf) { fprintf(stderr, "Invalid buffer!\n"); return 1; } switch (variant) { case 0: for (i = 0; i < size; i++) buf[i] = (i & 0xf) << 4 | 0x5; break; case 1: for (i = 0; i < size; i++) buf[i] = (i & 0xf) << 4 | 0xa; break; case 2: for (i = 0; i < size; i++) buf[i] = 0x50 | (i & 0xf); break; case 3: for (i = 0; i < size; i++) buf[i] = 0xa0 | (i & 0xf); break; case 4: for (i = 0; i < size; i++) buf[i] = (i & 0xf) << 4; break; case 5: for (i = 0; i < size; i++) buf[i] = i & 0xf; break; case 6: memset(buf, 0x00, size); break; case 7: memset(buf, 0xff, size); break; case 8: for (i = 0; i < size; i++) buf[i] = i & 0xff; break; case 9: for (i = 0; i < size; i++) buf[i] = ~(i & 0xff); break; case 10: for (i = 0; i < size % 2; i++) { buf[i * 2] = (i >> 8) & 0xff; buf[i * 2 + 1] = i & 0xff; } if (size & 0x1) buf[i * 2] = (i >> 8) & 0xff; break; case 11: for (i = 0; i < size % 2; i++) { buf[i * 2] = ~((i >> 8) & 0xff); buf[i * 2 + 1] = ~(i & 0xff); } if (size & 0x1) buf[i * 2] = ~((i >> 8) & 0xff); break; case 12: memset(buf, 0x00, size); break; case 13: memset(buf, 0xff, size); break; } if ((variant >= 0) && (variant <= 7)) { /* Write block number in the last two bytes of each 256-byte * block, big endian for easier reading of the hexdump. * Note that this wraps around for chips larger than 2^24 bytes * (16 MB). */ for (i = 0; i < size / 256; i++) { buf[i * 256 + 254] = (i >> 8) & 0xff; buf[i * 256 + 255] = i & 0xff; } } return 0; } int check_max_decode(enum chipbustype buses, uint32_t size) { int limitexceeded = 0; if ((buses & CHIP_BUSTYPE_PARALLEL) && (max_rom_decode.parallel < size)) { limitexceeded++; printf_debug("Chip size %u kB is bigger than supported " "size %u kB of chipset/board/programmer " "for %s interface, " "probe/read/erase/write may fail. ", size / 1024, max_rom_decode.parallel / 1024, "Parallel"); } if ((buses & CHIP_BUSTYPE_LPC) && (max_rom_decode.lpc < size)) { limitexceeded++; printf_debug("Chip size %u kB is bigger than supported " "size %u kB of chipset/board/programmer " "for %s interface, " "probe/read/erase/write may fail. ", size / 1024, max_rom_decode.lpc / 1024, "LPC"); } if ((buses & CHIP_BUSTYPE_FWH) && (max_rom_decode.fwh < size)) { limitexceeded++; printf_debug("Chip size %u kB is bigger than supported " "size %u kB of chipset/board/programmer " "for %s interface, " "probe/read/erase/write may fail. ", size / 1024, max_rom_decode.fwh / 1024, "FWH"); } if ((buses & CHIP_BUSTYPE_SPI) && (max_rom_decode.spi < size)) { limitexceeded++; printf_debug("Chip size %u kB is bigger than supported " "size %u kB of chipset/board/programmer " "for %s interface, " "probe/read/erase/write may fail. ", size / 1024, max_rom_decode.spi / 1024, "SPI"); } if (!limitexceeded) return 0; /* Sometimes chip and programmer have more than one bus in common, * and the limit is not exceeded on all buses. Tell the user. */ if (bitcount(buses) > limitexceeded) printf_debug("There is at least one common chip/programmer " "interface which can support a chip of this size. " "You can try --force at your own risk.\n"); return 1; } struct flashchip *probe_flash(struct flashchip *first_flash, int force) { struct flashchip *flash; unsigned long base = 0; uint32_t size; enum chipbustype buses_common; char *tmp; for (flash = first_flash; flash && flash->name; flash++) { if (chip_to_probe && strcmp(flash->name, chip_to_probe) != 0) continue; printf_debug("Probing for %s %s, %d KB: ", flash->vendor, flash->name, flash->total_size); if (!flash->probe && !force) { printf_debug("failed! flashrom has no probe function for this flash chip.\n"); continue; } buses_common = buses_supported & flash->bustype; if (!buses_common) { tmp = flashbuses_to_text(buses_supported); printf_debug("skipped. Host bus type %s ", tmp); free(tmp); tmp = flashbuses_to_text(flash->bustype); printf_debug("and chip bus type %s are incompatible.\n", tmp); free(tmp); continue; } size = flash->total_size * 1024; check_max_decode(buses_common, size); base = flashbase ? flashbase : (0xffffffff - size + 1); flash->virtual_memory = (chipaddr)programmer_map_flash_region("flash chip", base, size); if (force) break; if (flash->probe(flash) != 1) goto notfound; if (first_flash == flashchips || flash->model_id != GENERIC_DEVICE_ID) break; notfound: programmer_unmap_flash_region((void *)flash->virtual_memory, size); } if (!flash || !flash->name) return NULL; printf("Found chip \"%s %s\" (%d KB, %s) at physical address 0x%lx.\n", flash->vendor, flash->name, flash->total_size, flashbuses_to_text(flash->bustype), base); return flash; } int verify_flash(struct flashchip *flash, uint8_t *buf) { int ret; int total_size = flash->total_size * 1024; printf("Verifying flash... "); ret = verify_range(flash, buf, 0, total_size, NULL); if (!ret) printf("VERIFIED. \n"); return ret; } int read_flash(struct flashchip *flash, char *filename) { unsigned long numbytes; FILE *image; unsigned long size = flash->total_size * 1024; unsigned char *buf = calloc(size, sizeof(char)); if (!filename) { printf("Error: No filename specified.\n"); return 1; } if ((image = fopen(filename, "w")) == NULL) { perror(filename); exit(1); } printf("Reading flash... "); if (!flash->read) { printf("FAILED!\n"); fprintf(stderr, "ERROR: flashrom has no read function for this flash chip.\n"); return 1; } else flash->read(flash, buf, 0, size); numbytes = fwrite(buf, 1, size, image); fclose(image); free(buf); printf("%s.\n", numbytes == size ? "done" : "FAILED"); if (numbytes != size) return 1; return 0; } int erase_flash(struct flashchip *flash) { int i, j, k, ret = 0, found = 0; unsigned int start, len; printf("Erasing flash chip... "); for (k = 0; k < NUM_ERASEFUNCTIONS; k++) { unsigned int done = 0; struct block_eraser eraser = flash->block_erasers[k]; printf_debug("Looking at blockwise erase function %i... ", k); if (!eraser.block_erase && !eraser.eraseblocks[0].count) { printf_debug("not defined. " "Looking for another erase function.\n"); continue; } if (!eraser.block_erase && eraser.eraseblocks[0].count) { printf_debug("eraseblock layout is known, but no " "matching block erase function found. " "Looking for another erase function.\n"); continue; } if (eraser.block_erase && !eraser.eraseblocks[0].count) { printf_debug("block erase function found, but " "eraseblock layout is unknown. " "Looking for another erase function.\n"); continue; } found = 1; printf_debug("trying... "); for (i = 0; i < NUM_ERASEREGIONS; i++) { /* Blocks with zero size are bugs in flashchips.c. * FIXME: This check should be performed on startup. */ if (eraser.eraseblocks[i].count && !eraser.eraseblocks[i].size) { fprintf(stderr, "ERROR: Erase region with size " "0 for this chip. Please report a bug " "at flashrom@flashrom.org\n"); ret = 1; break; } /* count==0 for all automatically initialized array * members so the loop below won't be executed for them. */ for (j = 0; j < eraser.eraseblocks[i].count; j++) { start = done + eraser.eraseblocks[i].size * j; len = eraser.eraseblocks[i].size; printf_debug("0x%06x-0x%06x, ", start, start + len - 1); ret = eraser.block_erase(flash, start, len); if (ret) break; } if (ret) break; done += eraser.eraseblocks[i].count * eraser.eraseblocks[i].size; } printf_debug("\n"); if (done != flash->total_size * 1024) fprintf(stderr, "ERROR: Erase region walking erased " "0x%06x bytes total, expected 0x%06x bytes.", done, flash->total_size * 1024); /* If everything is OK, don't try another erase function. */ if (!ret) break; } /* If no block erase function was found or block erase failed, retry. */ if ((!found || ret) && (flash->erase)) { found = 1; printf_debug("Trying whole-chip erase function... "); ret = flash->erase(flash); } if (!found) { fprintf(stderr, "ERROR: flashrom has no erase function for this flash chip.\n"); return 1; } if (ret) { fprintf(stderr, "FAILED!\n"); } else { printf("SUCCESS.\n"); } return ret; } void emergency_help_message(void) { fprintf(stderr, "Your flash chip is in an unknown state.\n" "Get help on IRC at irc.freenode.net (channel #flashrom) or\n" "mail flashrom@flashrom.org!\n--------------------" "-----------------------------------------------------------\n" "DO NOT REBOOT OR POWEROFF!\n"); } /* The way to go if you want a delimited list of programmers*/ void list_programmers(char *delim) { enum programmer p; for (p = 0; p < PROGRAMMER_INVALID; p++) { printf("%s", programmer_table[p].name); if (p < PROGRAMMER_INVALID - 1) printf("%s", delim); } printf("\n"); } void cli_usage(const char *name) { const char *pname; int pnamelen; int remaining = 0; enum programmer p; printf("cli_usage: %s [-VfLzhR] [-E|-r file|-w file|-v file] [-c chipname]\n" " [-m [vendor:]part] [-l file] [-i image] [-p programmer]\n\n", name); printf("Please note that the command line interface for flashrom will " "change before\nflashrom 1.0. Do not use flashrom in scripts " "or other automated tools without\nchecking that your flashrom" " version won't interpret options in a different way.\n\n"); printf (" -r | --read: read flash and save into file\n" " -w | --write: write file into flash\n" " -v | --verify: verify flash against file\n" " -n | --noverify: don't verify flash against file\n" " -E | --erase: erase flash device\n" " -V | --verbose: more verbose output\n" " -c | --chip : probe only for specified flash chip\n" #if INTERNAL_SUPPORT == 1 " -m | --mainboard <[vendor:]part>: override mainboard settings\n" #endif " -f | --force: force write without checking image\n" " -l | --layout : read ROM layout from file\n" " -i | --image : only flash image name from flash layout\n" " -L | --list-supported: print supported devices\n" #if PRINT_WIKI_SUPPORT == 1 " -z | --list-supported-wiki: print supported devices in wiki syntax\n" #endif " -p | --programmer : specify the programmer device"); for (p = 0; p < PROGRAMMER_INVALID; p++) { pname = programmer_table[p].name; pnamelen = strlen(pname); if (remaining - pnamelen - 2 < 0) { printf("\n "); remaining = 43; } else { printf(" "); remaining--; } if (p == 0) { printf("("); remaining--; } printf("%s", pname); remaining -= pnamelen; if (p < PROGRAMMER_INVALID - 1) { printf(","); remaining--; } else { printf(")\n"); } } printf( " -h | --help: print this help text\n" " -R | --version: print the version (release)\n" "\nYou can specify one of -E, -r, -w, -v or no operation. If no operation is\n" "specified, then all that happens is that flash info is dumped.\n\n"); exit(1); } void print_version(void) { printf("flashrom v%s\n", flashrom_version); } int selfcheck(void) { /* Safety check. */ if (ARRAY_SIZE(programmer_table) - 1 != PROGRAMMER_INVALID) { fprintf(stderr, "Programmer table miscompilation!\n"); return 1; } if (spi_programmer_count - 1 != SPI_CONTROLLER_INVALID) { fprintf(stderr, "SPI programmer table miscompilation!\n"); return 1; } #if BITBANG_SPI_SUPPORT == 1 if (bitbang_spi_master_count - 1 != BITBANG_SPI_INVALID) { fprintf(stderr, "Bitbanging SPI master table miscompilation!\n"); return 1; } #endif return 0; } void check_chip_supported(struct flashchip *flash) { if (TEST_OK_MASK != (flash->tested & TEST_OK_MASK)) { printf("===\n"); if (flash->tested & TEST_BAD_MASK) { printf("This flash part has status NOT WORKING for operations:"); if (flash->tested & TEST_BAD_PROBE) printf(" PROBE"); if (flash->tested & TEST_BAD_READ) printf(" READ"); if (flash->tested & TEST_BAD_ERASE) printf(" ERASE"); if (flash->tested & TEST_BAD_WRITE) printf(" WRITE"); printf("\n"); } if ((!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE)) || (!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ)) || (!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE)) || (!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE))) { printf("This flash part has status UNTESTED for operations:"); if (!(flash->tested & TEST_BAD_PROBE) && !(flash->tested & TEST_OK_PROBE)) printf(" PROBE"); if (!(flash->tested & TEST_BAD_READ) && !(flash->tested & TEST_OK_READ)) printf(" READ"); if (!(flash->tested & TEST_BAD_ERASE) && !(flash->tested & TEST_OK_ERASE)) printf(" ERASE"); if (!(flash->tested & TEST_BAD_WRITE) && !(flash->tested & TEST_OK_WRITE)) printf(" WRITE"); printf("\n"); } printf("Please email a report to flashrom@flashrom.org if any " "of the above operations\nwork correctly for you with " "this flash part. Please include the flashrom\noutput " "with the additional -V option for all operations you " "tested (-V, -rV,\n-wV, -EV), and mention which " "mainboard or programmer you tested. Thanks for your " "help!\n===\n"); } } int main(int argc, char *argv[]) { unsigned long size; /* Probe for up to three flash chips. */ struct flashchip *flash, *flashes[3]; const char *name; int namelen; int opt; int option_index = 0; int force = 0; int read_it = 0, write_it = 0, erase_it = 0, verify_it = 0; int dont_verify_it = 0, list_supported = 0; #if PRINT_WIKI_SUPPORT == 1 int list_supported_wiki = 0; #endif int operation_specified = 0; int i; #if PRINT_WIKI_SUPPORT == 1 const char *optstring = "rRwvnVEfc:m:l:i:p:Lzh"; #else const char *optstring = "rRwvnVEfc:m:l:i:p:Lh"; #endif static struct option long_options[] = { {"read", 0, 0, 'r'}, {"write", 0, 0, 'w'}, {"erase", 0, 0, 'E'}, {"verify", 0, 0, 'v'}, {"noverify", 0, 0, 'n'}, {"chip", 1, 0, 'c'}, {"mainboard", 1, 0, 'm'}, {"verbose", 0, 0, 'V'}, {"force", 0, 0, 'f'}, {"layout", 1, 0, 'l'}, {"image", 1, 0, 'i'}, {"list-supported", 0, 0, 'L'}, #if PRINT_WIKI_SUPPORT == 1 {"list-supported-wiki", 0, 0, 'z'}, #endif {"programmer", 1, 0, 'p'}, {"help", 0, 0, 'h'}, {"version", 0, 0, 'R'}, {0, 0, 0, 0} }; char *filename = NULL; char *tempstr = NULL; print_version(); if (argc > 1) { /* Yes, print them. */ int i; printf_debug("The arguments are:\n"); for (i = 1; i < argc; ++i) printf_debug("%s\n", argv[i]); } if (selfcheck()) exit(1); setbuf(stdout, NULL); while ((opt = getopt_long(argc, argv, optstring, long_options, &option_index)) != EOF) { switch (opt) { case 'r': if (++operation_specified > 1) { fprintf(stderr, "More than one operation " "specified. Aborting.\n"); exit(1); } read_it = 1; break; case 'w': if (++operation_specified > 1) { fprintf(stderr, "More than one operation " "specified. Aborting.\n"); exit(1); } write_it = 1; break; case 'v': //FIXME: gracefully handle superfluous -v if (++operation_specified > 1) { fprintf(stderr, "More than one operation " "specified. Aborting.\n"); exit(1); } if (dont_verify_it) { fprintf(stderr, "--verify and --noverify are" "mutually exclusive. Aborting.\n"); exit(1); } verify_it = 1; break; case 'n': if (verify_it) { fprintf(stderr, "--verify and --noverify are" "mutually exclusive. Aborting.\n"); exit(1); } dont_verify_it = 1; break; case 'c': chip_to_probe = strdup(optarg); break; case 'V': verbose = 1; break; case 'E': if (++operation_specified > 1) { fprintf(stderr, "More than one operation " "specified. Aborting.\n"); exit(1); } erase_it = 1; break; #if INTERNAL_SUPPORT == 1 case 'm': tempstr = strdup(optarg); lb_vendor_dev_from_string(tempstr); break; #endif case 'f': force = 1; break; case 'l': tempstr = strdup(optarg); if (read_romlayout(tempstr)) exit(1); break; case 'i': tempstr = strdup(optarg); find_romentry(tempstr); break; case 'L': list_supported = 1; break; #if PRINT_WIKI_SUPPORT == 1 case 'z': list_supported_wiki = 1; break; #endif case 'p': for (programmer = 0; programmer < PROGRAMMER_INVALID; programmer++) { name = programmer_table[programmer].name; namelen = strlen(name); if (strncmp(optarg, name, namelen) == 0) { switch (optarg[namelen]) { case ':': programmer_param = strdup(optarg + namelen + 1); break; case '\0': break; default: /* The continue refers to the * for loop. It is here to be * able to differentiate between * foo and foobar. */ continue; } break; } } if (programmer == PROGRAMMER_INVALID) { printf("Error: Unknown programmer %s.\n", optarg); exit(1); } break; case 'R': /* print_version() is always called during startup. */ exit(0); break; case 'h': default: cli_usage(argv[0]); break; } } if (list_supported) { print_supported(); exit(0); } #if PRINT_WIKI_SUPPORT == 1 if (list_supported_wiki) { print_supported_wiki(); exit(0); } #endif if (read_it && write_it) { printf("Error: -r and -w are mutually exclusive.\n"); cli_usage(argv[0]); } if (optind < argc) filename = argv[optind++]; if (optind < argc) { printf("Error: Extra parameter found.\n"); cli_usage(argv[0]); } if (programmer_init()) { fprintf(stderr, "Error: Programmer initialization failed.\n"); exit(1); } // FIXME: Delay calibration should happen in programmer code. myusec_calibrate_delay(); for (i = 0; i < ARRAY_SIZE(flashes); i++) { flashes[i] = probe_flash(i ? flashes[i - 1] + 1 : flashchips, 0); if (!flashes[i]) for (i++; i < ARRAY_SIZE(flashes); i++) flashes[i] = NULL; } if (flashes[1]) { printf("Multiple flash chips were detected:"); for (i = 0; i < ARRAY_SIZE(flashes) && flashes[i]; i++) printf(" %s", flashes[i]->name); printf("\nPlease specify which chip to use with the -c option.\n"); programmer_shutdown(); exit(1); } else if (!flashes[0]) { printf("No EEPROM/flash device found.\n"); if (!force || !chip_to_probe) { printf("If you know which flash chip you have, and if this version of flashrom\n"); printf("supports a similar flash chip, you can try to force read your chip. Run:\n"); printf("flashrom -f -r -c similar_supported_flash_chip filename\n"); printf("\n"); printf("Note: flashrom can never write when the flash chip isn't found automatically.\n"); } if (force && read_it && chip_to_probe) { printf("Force read (-f -r -c) requested, forcing chip probe success:\n"); flashes[0] = probe_flash(flashchips, 1); if (!flashes[0]) { printf("flashrom does not support a flash chip named '%s'.\n", chip_to_probe); printf("Run flashrom -L to view the hardware supported in this flashrom version.\n"); exit(1); } printf("Please note that forced reads most likely contain garbage.\n"); return read_flash(flashes[0], filename); } // FIXME: flash writes stay enabled! programmer_shutdown(); exit(1); } flash = flashes[0]; check_chip_supported(flash); size = flash->total_size * 1024; if (check_max_decode((buses_supported & flash->bustype), size) && (!force)) { fprintf(stderr, "Chip is too big for this programmer " "(-V gives details). Use --force to override.\n"); programmer_shutdown(); return 1; } if (!(read_it | write_it | verify_it | erase_it)) { printf("No operations were specified.\n"); // FIXME: flash writes stay enabled! programmer_shutdown(); exit(1); } if (!filename && !erase_it) { printf("Error: No filename specified.\n"); // FIXME: flash writes stay enabled! programmer_shutdown(); exit(1); } /* Always verify write operations unless -n is used. */ if (write_it && !dont_verify_it) verify_it = 1; return doit(flash, force, filename, read_it, write_it, erase_it, verify_it); } /* This function signature is horrible. We need to design a better interface, * but right now it allows us to split off the CLI code. */ int doit(struct flashchip *flash, int force, char *filename, int read_it, int write_it, int erase_it, int verify_it) { uint8_t *buf; unsigned long numbytes; FILE *image; int ret = 0; unsigned long size; size = flash->total_size * 1024; buf = (uint8_t *) calloc(size, sizeof(char)); if (erase_it) { if (flash->tested & TEST_BAD_ERASE) { fprintf(stderr, "Erase is not working on this chip. "); if (!force) { fprintf(stderr, "Aborting.\n"); programmer_shutdown(); return 1; } else { fprintf(stderr, "Continuing anyway.\n"); } } if (erase_flash(flash)) { emergency_help_message(); programmer_shutdown(); return 1; } } else if (read_it) { if (read_flash(flash, filename)) { programmer_shutdown(); return 1; } } else { struct stat image_stat; if (flash->tested & TEST_BAD_ERASE) { fprintf(stderr, "Erase is not working on this chip " "and erase is needed for write. "); if (!force) { fprintf(stderr, "Aborting.\n"); programmer_shutdown(); return 1; } else { fprintf(stderr, "Continuing anyway.\n"); } } if (flash->tested & TEST_BAD_WRITE) { fprintf(stderr, "Write is not working on this chip. "); if (!force) { fprintf(stderr, "Aborting.\n"); programmer_shutdown(); return 1; } else { fprintf(stderr, "Continuing anyway.\n"); } } if ((image = fopen(filename, "r")) == NULL) { perror(filename); programmer_shutdown(); exit(1); } if (fstat(fileno(image), &image_stat) != 0) { perror(filename); programmer_shutdown(); exit(1); } if (image_stat.st_size != flash->total_size * 1024) { fprintf(stderr, "Error: Image size doesn't match\n"); programmer_shutdown(); exit(1); } numbytes = fread(buf, 1, size, image); #if INTERNAL_SUPPORT == 1 show_id(buf, size, force); #endif fclose(image); if (numbytes != size) { fprintf(stderr, "Error: Failed to read file. Got %ld bytes, wanted %ld!\n", numbytes, size); programmer_shutdown(); return 1; } } // This should be moved into each flash part's code to do it // cleanly. This does the job. handle_romentries(buf, flash); // //////////////////////////////////////////////////////////// if (write_it) { printf("Writing flash chip... "); if (!flash->write) { fprintf(stderr, "Error: flashrom has no write function for this flash chip.\n"); programmer_shutdown(); return 1; } ret = flash->write(flash, buf); if (ret) { fprintf(stderr, "FAILED!\n"); emergency_help_message(); programmer_shutdown(); return 1; } else { printf("COMPLETE.\n"); } } if (verify_it) { /* Work around chips which need some time to calm down. */ if (write_it) programmer_delay(1000*1000); ret = verify_flash(flash, buf); /* If we tried to write, and verification now fails, we * might have an emergency situation. */ if (ret && write_it) emergency_help_message(); } programmer_shutdown(); return ret; }