/* * This file is part of the flashrom project. * * Copyright (C) 2009,2010 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include "flash.h" #include "chipdrivers.h" #include "programmer.h" /* Remove the #define below if you don't want SPI flash chip emulation. */ #define EMULATE_SPI_CHIP 1 #if EMULATE_SPI_CHIP #define EMULATE_CHIP 1 #include "spi.h" #endif #if EMULATE_CHIP #include #include #endif #if EMULATE_CHIP static uint8_t *flashchip_contents = NULL; enum emu_chip { EMULATE_NONE, EMULATE_ST_M25P10_RES, EMULATE_SST_SST25VF040_REMS, EMULATE_SST_SST25VF032B, EMULATE_MACRONIX_MX25L6436, }; static enum emu_chip emu_chip = EMULATE_NONE; static char *emu_persistent_image = NULL; static unsigned int emu_chip_size = 0; #if EMULATE_SPI_CHIP static unsigned int emu_max_byteprogram_size = 0; static unsigned int emu_max_aai_size = 0; static unsigned int emu_jedec_se_size = 0; static unsigned int emu_jedec_be_52_size = 0; static unsigned int emu_jedec_be_d8_size = 0; static unsigned int emu_jedec_ce_60_size = 0; static unsigned int emu_jedec_ce_c7_size = 0; unsigned char spi_blacklist[256]; unsigned char spi_ignorelist[256]; int spi_blacklist_size = 0; int spi_ignorelist_size = 0; static uint8_t emu_status = 0; /* A legit complete SFDP table based on the MX25L6436E (rev. 1.8) datasheet. */ static const uint8_t const sfdp_table[] = { 0x53, 0x46, 0x44, 0x50, // @0x00: SFDP signature 0x00, 0x01, 0x01, 0xFF, // @0x04: revision 1.0, 2 headers 0x00, 0x00, 0x01, 0x09, // @0x08: JEDEC SFDP header rev. 1.0, 9 DW long 0x1C, 0x00, 0x00, 0xFF, // @0x0C: PTP0 = 0x1C (instead of 0x30) 0xC2, 0x00, 0x01, 0x04, // @0x10: Macronix header rev. 1.0, 4 DW long 0x48, 0x00, 0x00, 0xFF, // @0x14: PTP1 = 0x48 (instead of 0x60) 0xFF, 0xFF, 0xFF, 0xFF, // @0x18: hole. 0xE5, 0x20, 0xC9, 0xFF, // @0x1C: SFDP parameter table start 0xFF, 0xFF, 0xFF, 0x03, // @0x20 0x00, 0xFF, 0x08, 0x6B, // @0x24 0x08, 0x3B, 0x00, 0xFF, // @0x28 0xEE, 0xFF, 0xFF, 0xFF, // @0x2C 0xFF, 0xFF, 0x00, 0x00, // @0x30 0xFF, 0xFF, 0x00, 0xFF, // @0x34 0x0C, 0x20, 0x0F, 0x52, // @0x38 0x10, 0xD8, 0x00, 0xFF, // @0x3C: SFDP parameter table end 0xFF, 0xFF, 0xFF, 0xFF, // @0x40: hole. 0xFF, 0xFF, 0xFF, 0xFF, // @0x44: hole. 0x00, 0x36, 0x00, 0x27, // @0x48: Macronix parameter table start 0xF4, 0x4F, 0xFF, 0xFF, // @0x4C 0xD9, 0xC8, 0xFF, 0xFF, // @0x50 0xFF, 0xFF, 0xFF, 0xFF, // @0x54: Macronix parameter table end }; #endif #endif static unsigned int spi_write_256_chunksize = 256; static int dummy_spi_send_command(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr); static int dummy_spi_write_256(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len); static void dummy_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr); static void dummy_chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr); static void dummy_chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr); static void dummy_chip_writen(const struct flashctx *flash, uint8_t *buf, chipaddr addr, size_t len); static uint8_t dummy_chip_readb(const struct flashctx *flash, const chipaddr addr); static uint16_t dummy_chip_readw(const struct flashctx *flash, const chipaddr addr); static uint32_t dummy_chip_readl(const struct flashctx *flash, const chipaddr addr); static void dummy_chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len); static const struct spi_programmer spi_programmer_dummyflasher = { .type = SPI_CONTROLLER_DUMMY, .max_data_read = MAX_DATA_READ_UNLIMITED, .max_data_write = MAX_DATA_UNSPECIFIED, .command = dummy_spi_send_command, .multicommand = default_spi_send_multicommand, .read = default_spi_read, .write_256 = dummy_spi_write_256, .write_aai = default_spi_write_aai, }; static const struct par_programmer par_programmer_dummy = { .chip_readb = dummy_chip_readb, .chip_readw = dummy_chip_readw, .chip_readl = dummy_chip_readl, .chip_readn = dummy_chip_readn, .chip_writeb = dummy_chip_writeb, .chip_writew = dummy_chip_writew, .chip_writel = dummy_chip_writel, .chip_writen = dummy_chip_writen, }; enum chipbustype dummy_buses_supported = BUS_NONE; static int dummy_shutdown(void *data) { msg_pspew("%s\n", __func__); #if EMULATE_CHIP if (emu_chip != EMULATE_NONE) { if (emu_persistent_image) { msg_pdbg("Writing %s\n", emu_persistent_image); write_buf_to_file(flashchip_contents, emu_chip_size, emu_persistent_image); free(emu_persistent_image); emu_persistent_image = NULL; } free(flashchip_contents); } #endif return 0; } int dummy_init(void) { char *bustext = NULL; char *tmp = NULL; int i; #if EMULATE_SPI_CHIP char *status = NULL; #endif #if EMULATE_CHIP struct stat image_stat; #endif msg_pspew("%s\n", __func__); bustext = extract_programmer_param("bus"); msg_pdbg("Requested buses are: %s\n", bustext ? bustext : "default"); if (!bustext) bustext = strdup("parallel+lpc+fwh+spi"); /* Convert the parameters to lowercase. */ tolower_string(bustext); dummy_buses_supported = BUS_NONE; if (strstr(bustext, "parallel")) { dummy_buses_supported |= BUS_PARALLEL; msg_pdbg("Enabling support for %s flash.\n", "parallel"); } if (strstr(bustext, "lpc")) { dummy_buses_supported |= BUS_LPC; msg_pdbg("Enabling support for %s flash.\n", "LPC"); } if (strstr(bustext, "fwh")) { dummy_buses_supported |= BUS_FWH; msg_pdbg("Enabling support for %s flash.\n", "FWH"); } if (strstr(bustext, "spi")) { dummy_buses_supported |= BUS_SPI; msg_pdbg("Enabling support for %s flash.\n", "SPI"); } if (dummy_buses_supported == BUS_NONE) msg_pdbg("Support for all flash bus types disabled.\n"); free(bustext); tmp = extract_programmer_param("spi_write_256_chunksize"); if (tmp) { spi_write_256_chunksize = atoi(tmp); free(tmp); if (spi_write_256_chunksize < 1) { msg_perr("invalid spi_write_256_chunksize\n"); return 1; } } tmp = extract_programmer_param("spi_blacklist"); if (tmp) { i = strlen(tmp); if (!strncmp(tmp, "0x", 2)) { i -= 2; memmove(tmp, tmp + 2, i + 1); } if ((i > 512) || (i % 2)) { msg_perr("Invalid SPI command blacklist length\n"); free(tmp); return 1; } spi_blacklist_size = i / 2; for (i = 0; i < spi_blacklist_size * 2; i++) { if (!isxdigit((unsigned char)tmp[i])) { msg_perr("Invalid char \"%c\" in SPI command " "blacklist\n", tmp[i]); free(tmp); return 1; } } for (i = 0; i < spi_blacklist_size; i++) { unsigned int tmp2; /* SCNx8 is apparently not supported by MSVC (and thus * MinGW), so work around it with an extra variable */ sscanf(tmp + i * 2, "%2x", &tmp2); spi_blacklist[i] = (uint8_t)tmp2; } msg_pdbg("SPI blacklist is "); for (i = 0; i < spi_blacklist_size; i++) msg_pdbg("%02x ", spi_blacklist[i]); msg_pdbg(", size %i\n", spi_blacklist_size); } free(tmp); tmp = extract_programmer_param("spi_ignorelist"); if (tmp) { i = strlen(tmp); if (!strncmp(tmp, "0x", 2)) { i -= 2; memmove(tmp, tmp + 2, i + 1); } if ((i > 512) || (i % 2)) { msg_perr("Invalid SPI command ignorelist length\n"); free(tmp); return 1; } spi_ignorelist_size = i / 2; for (i = 0; i < spi_ignorelist_size * 2; i++) { if (!isxdigit((unsigned char)tmp[i])) { msg_perr("Invalid char \"%c\" in SPI command " "ignorelist\n", tmp[i]); free(tmp); return 1; } } for (i = 0; i < spi_ignorelist_size; i++) { unsigned int tmp2; /* SCNx8 is apparently not supported by MSVC (and thus * MinGW), so work around it with an extra variable */ sscanf(tmp + i * 2, "%2x", &tmp2); spi_ignorelist[i] = (uint8_t)tmp2; } msg_pdbg("SPI ignorelist is "); for (i = 0; i < spi_ignorelist_size; i++) msg_pdbg("%02x ", spi_ignorelist[i]); msg_pdbg(", size %i\n", spi_ignorelist_size); } free(tmp); #if EMULATE_CHIP tmp = extract_programmer_param("emulate"); if (!tmp) { msg_pdbg("Not emulating any flash chip.\n"); /* Nothing else to do. */ goto dummy_init_out; } #if EMULATE_SPI_CHIP if (!strcmp(tmp, "M25P10.RES")) { emu_chip = EMULATE_ST_M25P10_RES; emu_chip_size = 128 * 1024; emu_max_byteprogram_size = 128; emu_max_aai_size = 0; emu_jedec_se_size = 0; emu_jedec_be_52_size = 0; emu_jedec_be_d8_size = 32 * 1024; emu_jedec_ce_60_size = 0; emu_jedec_ce_c7_size = emu_chip_size; msg_pdbg("Emulating ST M25P10.RES SPI flash chip (RES, page " "write)\n"); } if (!strcmp(tmp, "SST25VF040.REMS")) { emu_chip = EMULATE_SST_SST25VF040_REMS; emu_chip_size = 512 * 1024; emu_max_byteprogram_size = 1; emu_max_aai_size = 0; emu_jedec_se_size = 4 * 1024; emu_jedec_be_52_size = 32 * 1024; emu_jedec_be_d8_size = 0; emu_jedec_ce_60_size = emu_chip_size; emu_jedec_ce_c7_size = 0; msg_pdbg("Emulating SST SST25VF040.REMS SPI flash chip (REMS, " "byte write)\n"); } if (!strcmp(tmp, "SST25VF032B")) { emu_chip = EMULATE_SST_SST25VF032B; emu_chip_size = 4 * 1024 * 1024; emu_max_byteprogram_size = 1; emu_max_aai_size = 2; emu_jedec_se_size = 4 * 1024; emu_jedec_be_52_size = 32 * 1024; emu_jedec_be_d8_size = 64 * 1024; emu_jedec_ce_60_size = emu_chip_size; emu_jedec_ce_c7_size = emu_chip_size; msg_pdbg("Emulating SST SST25VF032B SPI flash chip (RDID, AAI " "write)\n"); } if (!strcmp(tmp, "MX25L6436")) { emu_chip = EMULATE_MACRONIX_MX25L6436; emu_chip_size = 8 * 1024 * 1024; emu_max_byteprogram_size = 256; emu_max_aai_size = 0; emu_jedec_se_size = 4 * 1024; emu_jedec_be_52_size = 32 * 1024; emu_jedec_be_d8_size = 64 * 1024; emu_jedec_ce_60_size = emu_chip_size; emu_jedec_ce_c7_size = emu_chip_size; msg_pdbg("Emulating Macronix MX25L6436 SPI flash chip (RDID, " "SFDP)\n"); } #endif if (emu_chip == EMULATE_NONE) { msg_perr("Invalid chip specified for emulation: %s\n", tmp); free(tmp); return 1; } free(tmp); flashchip_contents = malloc(emu_chip_size); if (!flashchip_contents) { msg_perr("Out of memory!\n"); return 1; } #ifdef EMULATE_SPI_CHIP status = extract_programmer_param("spi_status"); if (status) { char *endptr; errno = 0; emu_status = strtoul(status, &endptr, 0); free(status); if (errno != 0 || status == endptr) { msg_perr("Error: initial status register specified, " "but the value could not be converted.\n"); return 1; } msg_pdbg("Initial status register is set to 0x%02x.\n", emu_status); } #endif msg_pdbg("Filling fake flash chip with 0xff, size %i\n", emu_chip_size); memset(flashchip_contents, 0xff, emu_chip_size); emu_persistent_image = extract_programmer_param("image"); if (!emu_persistent_image) { /* Nothing else to do. */ goto dummy_init_out; } if (!stat(emu_persistent_image, &image_stat)) { msg_pdbg("Found persistent image %s, size %li ", emu_persistent_image, (long)image_stat.st_size); if (image_stat.st_size == emu_chip_size) { msg_pdbg("matches.\n"); msg_pdbg("Reading %s\n", emu_persistent_image); read_buf_from_file(flashchip_contents, emu_chip_size, emu_persistent_image); } else { msg_pdbg("doesn't match.\n"); } } #endif dummy_init_out: if (register_shutdown(dummy_shutdown, NULL)) { free(flashchip_contents); return 1; } if (dummy_buses_supported & (BUS_PARALLEL | BUS_LPC | BUS_FWH)) register_par_programmer(&par_programmer_dummy, dummy_buses_supported & (BUS_PARALLEL | BUS_LPC | BUS_FWH)); if (dummy_buses_supported & BUS_SPI) register_spi_programmer(&spi_programmer_dummyflasher); return 0; } void *dummy_map(const char *descr, unsigned long phys_addr, size_t len) { msg_pspew("%s: Mapping %s, 0x%lx bytes at 0x%08lx\n", __func__, descr, (unsigned long)len, phys_addr); return (void *)phys_addr; } void dummy_unmap(void *virt_addr, size_t len) { msg_pspew("%s: Unmapping 0x%lx bytes at %p\n", __func__, (unsigned long)len, virt_addr); } static void dummy_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr) { msg_pspew("%s: addr=0x%lx, val=0x%02x\n", __func__, addr, val); } static void dummy_chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr) { msg_pspew("%s: addr=0x%lx, val=0x%04x\n", __func__, addr, val); } static void dummy_chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr) { msg_pspew("%s: addr=0x%lx, val=0x%08x\n", __func__, addr, val); } static void dummy_chip_writen(const struct flashctx *flash, uint8_t *buf, chipaddr addr, size_t len) { size_t i; msg_pspew("%s: addr=0x%lx, len=0x%08lx, writing data (hex):", __func__, addr, (unsigned long)len); for (i = 0; i < len; i++) { if ((i % 16) == 0) msg_pspew("\n"); msg_pspew("%02x ", buf[i]); } } static uint8_t dummy_chip_readb(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%lx, returning 0xff\n", __func__, addr); return 0xff; } static uint16_t dummy_chip_readw(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%lx, returning 0xffff\n", __func__, addr); return 0xffff; } static uint32_t dummy_chip_readl(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%lx, returning 0xffffffff\n", __func__, addr); return 0xffffffff; } static void dummy_chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len) { msg_pspew("%s: addr=0x%lx, len=0x%lx, returning array of 0xff\n", __func__, addr, (unsigned long)len); memset(buf, 0xff, len); return; } #if EMULATE_SPI_CHIP static int emulate_spi_chip_response(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { unsigned int offs, i, toread; static int unsigned aai_offs; const unsigned char sst25vf040_rems_response[2] = {0xbf, 0x44}; const unsigned char sst25vf032b_rems_response[2] = {0xbf, 0x4a}; const unsigned char mx25l6436_rems_response[2] = {0xc2, 0x16}; if (writecnt == 0) { msg_perr("No command sent to the chip!\n"); return 1; } /* spi_blacklist has precedence over spi_ignorelist. */ for (i = 0; i < spi_blacklist_size; i++) { if (writearr[0] == spi_blacklist[i]) { msg_pdbg("Refusing blacklisted SPI command 0x%02x\n", spi_blacklist[i]); return SPI_INVALID_OPCODE; } } for (i = 0; i < spi_ignorelist_size; i++) { if (writearr[0] == spi_ignorelist[i]) { msg_cdbg("Ignoring ignorelisted SPI command 0x%02x\n", spi_ignorelist[i]); /* Return success because the command does not fail, * it is simply ignored. */ return 0; } } if (emu_max_aai_size && (emu_status & SPI_SR_AAI)) { if (writearr[0] != JEDEC_AAI_WORD_PROGRAM && writearr[0] != JEDEC_WRDI && writearr[0] != JEDEC_RDSR) { msg_perr("Forbidden opcode (0x%02x) attempted during " "AAI sequence!\n", writearr[0]); return 0; } } switch (writearr[0]) { case JEDEC_RES: if (writecnt < JEDEC_RES_OUTSIZE) break; /* offs calculation is only needed for SST chips which treat RES like REMS. */ offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; offs += writecnt - JEDEC_REMS_OUTSIZE; switch (emu_chip) { case EMULATE_ST_M25P10_RES: if (readcnt > 0) memset(readarr, 0x10, readcnt); break; case EMULATE_SST_SST25VF040_REMS: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf040_rems_response[(offs + i) % 2]; break; case EMULATE_SST_SST25VF032B: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf032b_rems_response[(offs + i) % 2]; break; case EMULATE_MACRONIX_MX25L6436: if (readcnt > 0) memset(readarr, 0x16, readcnt); break; default: /* ignore */ break; } break; case JEDEC_REMS: /* REMS response has wraparound and uses an address parameter. */ if (writecnt < JEDEC_REMS_OUTSIZE) break; offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; offs += writecnt - JEDEC_REMS_OUTSIZE; switch (emu_chip) { case EMULATE_SST_SST25VF040_REMS: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf040_rems_response[(offs + i) % 2]; break; case EMULATE_SST_SST25VF032B: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf032b_rems_response[(offs + i) % 2]; break; case EMULATE_MACRONIX_MX25L6436: for (i = 0; i < readcnt; i++) readarr[i] = mx25l6436_rems_response[(offs + i) % 2]; break; default: /* ignore */ break; } break; case JEDEC_RDID: switch (emu_chip) { case EMULATE_SST_SST25VF032B: if (readcnt > 0) readarr[0] = 0xbf; if (readcnt > 1) readarr[1] = 0x25; if (readcnt > 2) readarr[2] = 0x4a; break; case EMULATE_MACRONIX_MX25L6436: if (readcnt > 0) readarr[0] = 0xc2; if (readcnt > 1) readarr[1] = 0x20; if (readcnt > 2) readarr[2] = 0x17; break; default: /* ignore */ break; } break; case JEDEC_RDSR: memset(readarr, emu_status, readcnt); break; /* FIXME: this should be chip-specific. */ case JEDEC_EWSR: case JEDEC_WREN: emu_status |= SPI_SR_WEL; break; case JEDEC_WRSR: if (!(emu_status & SPI_SR_WEL)) { msg_perr("WRSR attempted, but WEL is 0!\n"); break; } /* FIXME: add some reasonable simulation of the busy flag */ emu_status = writearr[1] & ~SPI_SR_WIP; msg_pdbg2("WRSR wrote 0x%02x.\n", emu_status); break; case JEDEC_READ: offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ offs %= emu_chip_size; if (readcnt > 0) memcpy(readarr, flashchip_contents + offs, readcnt); break; case JEDEC_BYTE_PROGRAM: offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ offs %= emu_chip_size; if (writecnt < 5) { msg_perr("BYTE PROGRAM size too short!\n"); return 1; } if (writecnt - 4 > emu_max_byteprogram_size) { msg_perr("Max BYTE PROGRAM size exceeded!\n"); return 1; } memcpy(flashchip_contents + offs, writearr + 4, writecnt - 4); break; case JEDEC_AAI_WORD_PROGRAM: if (!emu_max_aai_size) break; if (!(emu_status & SPI_SR_AAI)) { if (writecnt < JEDEC_AAI_WORD_PROGRAM_OUTSIZE) { msg_perr("Initial AAI WORD PROGRAM size too " "short!\n"); return 1; } if (writecnt > JEDEC_AAI_WORD_PROGRAM_OUTSIZE) { msg_perr("Initial AAI WORD PROGRAM size too " "long!\n"); return 1; } emu_status |= SPI_SR_AAI; aai_offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ aai_offs %= emu_chip_size; memcpy(flashchip_contents + aai_offs, writearr + 4, 2); aai_offs += 2; } else { if (writecnt < JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) { msg_perr("Continuation AAI WORD PROGRAM size " "too short!\n"); return 1; } if (writecnt > JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) { msg_perr("Continuation AAI WORD PROGRAM size " "too long!\n"); return 1; } memcpy(flashchip_contents + aai_offs, writearr + 1, 2); aai_offs += 2; } break; case JEDEC_WRDI: if (emu_max_aai_size) emu_status &= ~SPI_SR_AAI; break; case JEDEC_SE: if (!emu_jedec_se_size) break; if (writecnt != JEDEC_SE_OUTSIZE) { msg_perr("SECTOR ERASE 0x20 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_SE_INSIZE) { msg_perr("SECTOR ERASE 0x20 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (emu_jedec_se_size - 1)) msg_pdbg("Unaligned SECTOR ERASE 0x20: 0x%x\n", offs); offs &= ~(emu_jedec_se_size - 1); memset(flashchip_contents + offs, 0xff, emu_jedec_se_size); break; case JEDEC_BE_52: if (!emu_jedec_be_52_size) break; if (writecnt != JEDEC_BE_52_OUTSIZE) { msg_perr("BLOCK ERASE 0x52 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_BE_52_INSIZE) { msg_perr("BLOCK ERASE 0x52 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (emu_jedec_be_52_size - 1)) msg_pdbg("Unaligned BLOCK ERASE 0x52: 0x%x\n", offs); offs &= ~(emu_jedec_be_52_size - 1); memset(flashchip_contents + offs, 0xff, emu_jedec_be_52_size); break; case JEDEC_BE_D8: if (!emu_jedec_be_d8_size) break; if (writecnt != JEDEC_BE_D8_OUTSIZE) { msg_perr("BLOCK ERASE 0xd8 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_BE_D8_INSIZE) { msg_perr("BLOCK ERASE 0xd8 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (emu_jedec_be_d8_size - 1)) msg_pdbg("Unaligned BLOCK ERASE 0xd8: 0x%x\n", offs); offs &= ~(emu_jedec_be_d8_size - 1); memset(flashchip_contents + offs, 0xff, emu_jedec_be_d8_size); break; case JEDEC_CE_60: if (!emu_jedec_ce_60_size) break; if (writecnt != JEDEC_CE_60_OUTSIZE) { msg_perr("CHIP ERASE 0x60 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_CE_60_INSIZE) { msg_perr("CHIP ERASE 0x60 insize invalid!\n"); return 1; } /* JEDEC_CE_60_OUTSIZE is 1 (no address) -> no offset. */ /* emu_jedec_ce_60_size is emu_chip_size. */ memset(flashchip_contents, 0xff, emu_jedec_ce_60_size); break; case JEDEC_CE_C7: if (!emu_jedec_ce_c7_size) break; if (writecnt != JEDEC_CE_C7_OUTSIZE) { msg_perr("CHIP ERASE 0xc7 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_CE_C7_INSIZE) { msg_perr("CHIP ERASE 0xc7 insize invalid!\n"); return 1; } /* JEDEC_CE_C7_OUTSIZE is 1 (no address) -> no offset. */ /* emu_jedec_ce_c7_size is emu_chip_size. */ memset(flashchip_contents, 0xff, emu_jedec_ce_c7_size); break; case JEDEC_SFDP: if (emu_chip != EMULATE_MACRONIX_MX25L6436) break; if (writecnt < 4) break; offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* SFDP expects one dummy byte after the address. */ if (writecnt == 4) { /* The dummy byte was not written, make sure it is read instead. * Shifting and shortening the read array does achieve this goal. */ readarr++; readcnt--; } else { /* The response is shifted if more than 5 bytes are written, because SFDP data is * already shifted out by the chip while those superfluous bytes are written. */ offs += writecnt - 5; } /* The SFDP spec implies that the start address of an SFDP read may be truncated to fit in the * SFDP table address space, i.e. the start address may be wrapped around at SFDP table size. * This is a reasonable implementation choice in hardware because it saves a few gates. */ if (offs >= sizeof(sfdp_table)) { msg_pdbg("Wrapping the start address around the SFDP table boundary (using 0x%x " "instead of 0x%x).\n", (unsigned int)(offs % sizeof(sfdp_table)), offs); offs %= sizeof(sfdp_table); } toread = min(sizeof(sfdp_table) - offs, readcnt); memcpy(readarr, sfdp_table + offs, toread); if (toread < readcnt) msg_pdbg("Crossing the SFDP table boundary in a single " "continuous chunk produces undefined results " "after that point.\n"); break; default: /* No special response. */ break; } if (writearr[0] != JEDEC_WREN && writearr[0] != JEDEC_EWSR) emu_status &= ~SPI_SR_WEL; return 0; } #endif static int dummy_spi_send_command(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { int i; msg_pspew("%s:", __func__); msg_pspew(" writing %u bytes:", writecnt); for (i = 0; i < writecnt; i++) msg_pspew(" 0x%02x", writearr[i]); /* Response for unknown commands and missing chip is 0xff. */ memset(readarr, 0xff, readcnt); #if EMULATE_SPI_CHIP switch (emu_chip) { case EMULATE_ST_M25P10_RES: case EMULATE_SST_SST25VF040_REMS: case EMULATE_SST_SST25VF032B: case EMULATE_MACRONIX_MX25L6436: if (emulate_spi_chip_response(writecnt, readcnt, writearr, readarr)) { msg_pdbg("Invalid command sent to flash chip!\n"); return 1; } break; default: break; } #endif msg_pspew(" reading %u bytes:", readcnt); for (i = 0; i < readcnt; i++) msg_pspew(" 0x%02x", readarr[i]); msg_pspew("\n"); return 0; } static int dummy_spi_write_256(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { return spi_write_chunked(flash, buf, start, len, spi_write_256_chunksize); }