/* * This file is part of the flashrom project. * * Copyright (C) 2010 Carl-Daniel Hailfinger * Copyright (C) 2015 Simon Glass * Copyright (C) 2015 Stefan Tauner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "platform.h" #include #include #include #include #include #if IS_WINDOWS #include #else #include #endif #include "flash.h" #include "chipdrivers.h" #include "programmer.h" #include "spi.h" #define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z) #define DEFAULT_TIMEOUT 3000 #define REQTYPE_OTHER_OUT (USB_ENDPOINT_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER) /* 0x43 */ #define REQTYPE_OTHER_IN (USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER) /* 0xC3 */ #define REQTYPE_EP_OUT (USB_ENDPOINT_OUT | USB_TYPE_VENDOR | USB_RECIP_ENDPOINT) /* 0x42 */ #define REQTYPE_EP_IN (USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_ENDPOINT) /* 0xC2 */ static usb_dev_handle *dediprog_handle; static int dediprog_endpoint; enum dediprog_leds { LED_INVALID = -1, LED_NONE = 0, LED_PASS = 1 << 0, LED_BUSY = 1 << 1, LED_ERROR = 1 << 2, LED_ALL = 7, }; /* IO bits for CMD_SET_IO_LED message */ enum dediprog_ios { IO1 = 1 << 0, IO2 = 1 << 1, IO3 = 1 << 2, IO4 = 1 << 3, }; enum dediprog_cmds { CMD_TRANSCEIVE = 0x01, CMD_POLL_STATUS_REG = 0x02, CMD_SET_VPP = 0x03, CMD_SET_TARGET = 0x04, CMD_READ_EEPROM = 0x05, CMD_WRITE_EEPROM = 0x06, CMD_SET_IO_LED = 0x07, CMD_READ_PROG_INFO = 0x08, CMD_SET_VCC = 0x09, CMD_SET_STANDALONE = 0x0A, CMD_GET_BUTTON = 0x11, CMD_GET_UID = 0x12, CMD_SET_CS = 0x14, CMD_IO_MODE = 0x15, CMD_FW_UPDATE = 0x1A, CMD_FPGA_UPDATE = 0x1B, CMD_READ_FPGA_VERSION = 0x1C, CMD_SET_HOLD = 0x1D, CMD_READ = 0x20, CMD_WRITE = 0x30, CMD_WRITE_AT45DB = 0x31, CMD_NAND_WRITE = 0x32, CMD_NAND_READ = 0x33, CMD_SET_SPI_CLK = 0x61, CMD_CHECK_SOCKET = 0x62, CMD_DOWNLOAD_PRJ = 0x63, CMD_READ_PRJ_NAME = 0x64, // New protocol/firmware only CMD_CHECK_SDCARD = 0x65, CMD_READ_PRJ = 0x66, }; enum dediprog_target { FLASH_TYPE_APPLICATION_FLASH_1 = 0, FLASH_TYPE_FLASH_CARD, FLASH_TYPE_APPLICATION_FLASH_2, FLASH_TYPE_SOCKET, }; enum dediprog_readmode { READ_MODE_STD = 1, READ_MODE_FAST = 2, READ_MODE_ATMEL45 = 3, READ_MODE_4B_ADDR_FAST = 4, READ_MODE_4B_ADDR_FAST_0x0C = 5, /* New protocol only */ }; enum dediprog_writemode { WRITE_MODE_PAGE_PGM = 1, WRITE_MODE_PAGE_WRITE = 2, WRITE_MODE_1B_AAI = 3, WRITE_MODE_2B_AAI = 4, WRITE_MODE_128B_PAGE = 5, WRITE_MODE_PAGE_AT26DF041 = 6, WRITE_MODE_SILICON_BLUE_FPGA = 7, WRITE_MODE_64B_PAGE_NUMONYX_PCM = 8, /* unit of 512 bytes */ WRITE_MODE_4B_ADDR_256B_PAGE_PGM = 9, WRITE_MODE_32B_PAGE_PGM_MXIC_512K = 10, /* unit of 512 bytes */ WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12 = 11, WRITE_MODE_4B_ADDR_256B_PAGE_PGM_FLAGS = 12, }; static int dediprog_firmwareversion = FIRMWARE_VERSION(0, 0, 0); /* Returns true if firmware (and thus hardware) supports the "new" protocol */ static bool is_new_prot(void) { /* if (SF100) */ return dediprog_firmwareversion >= FIRMWARE_VERSION(5, 5, 0); /* else if (SF600) return dediprog_firmwareversion >= FIRMWARE_VERSION(6, 9, 0); */ } static int dediprog_read(enum dediprog_cmds cmd, unsigned int value, unsigned int idx, uint8_t *bytes, size_t size) { return usb_control_msg(dediprog_handle, REQTYPE_EP_IN, cmd, value, idx, (char *)bytes, size, DEFAULT_TIMEOUT); } static int dediprog_write(enum dediprog_cmds cmd, unsigned int value, unsigned int idx, const uint8_t *bytes, size_t size) { return usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, cmd, value, idx, (char *)bytes, size, DEFAULT_TIMEOUT); } /* Might be useful for other USB devices as well. static for now. */ /* device parameter allows user to specify one device of multiple installed */ static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid, unsigned int device) { struct usb_bus *bus; struct usb_device *dev; for (bus = usb_get_busses(); bus; bus = bus->next) for (dev = bus->devices; dev; dev = dev->next) if ((dev->descriptor.idVendor == vid) && (dev->descriptor.idProduct == pid)) { if (device == 0) return dev; device--; } return NULL; } /* This function sets the GPIOs connected to the LEDs as well as IO1-IO4. */ static int dediprog_set_leds(int leds) { if (leds < LED_NONE || leds > LED_ALL) leds = LED_ALL; /* Older Dediprogs with 2.x.x and 3.x.x firmware only had two LEDs, assigned to different bits. So map * them around if we have an old device. On those devices the LEDs map as follows: * bit 2 == 0: green light is on. * bit 0 == 0: red light is on. * * Additionally, the command structure has changed with the "new" protocol. * * FIXME: take IO pins into account */ int target_leds, ret; if (is_new_prot()) { target_leds = (leds ^ 7) << 8; ret = dediprog_write(CMD_SET_IO_LED, target_leds, 0, NULL, 0); } else { if (dediprog_firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { target_leds = ((leds & LED_ERROR) >> 2) | ((leds & LED_PASS) << 2); } else { target_leds = leds; } target_leds ^= 7; ret = dediprog_write(CMD_SET_IO_LED, 0x9, target_leds, NULL, 0); } if (ret != 0x0) { msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, usb_strerror()); return 1; } return 0; } static int dediprog_set_spi_voltage(int millivolt) { int ret; uint16_t voltage_selector; switch (millivolt) { case 0: /* Admittedly this one is an assumption. */ voltage_selector = 0x0; break; case 1800: voltage_selector = 0x12; break; case 2500: voltage_selector = 0x11; break; case 3500: voltage_selector = 0x10; break; default: msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt); return 1; } msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000, millivolt % 1000); if (voltage_selector == 0) { /* Wait some time as the original driver does. */ programmer_delay(200 * 1000); } ret = dediprog_write(CMD_SET_VCC, voltage_selector, 0, NULL, 0); if (ret != 0x0) { msg_perr("Command Set SPI Voltage 0x%x failed!\n", voltage_selector); return 1; } if (voltage_selector != 0) { /* Wait some time as the original driver does. */ programmer_delay(200 * 1000); } return 0; } struct dediprog_spispeeds { const char *const name; const int speed; }; static const struct dediprog_spispeeds spispeeds[] = { { "24M", 0x0 }, { "12M", 0x2 }, { "8M", 0x1 }, { "3M", 0x3 }, { "2.18M", 0x4 }, { "1.5M", 0x5 }, { "750k", 0x6 }, { "375k", 0x7 }, { NULL, 0x0 }, }; static int dediprog_set_spi_speed(unsigned int spispeed_idx) { if (dediprog_firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { msg_pwarn("Skipping to set SPI speed because firmware is too old.\n"); return 0; } const struct dediprog_spispeeds *spispeed = &spispeeds[spispeed_idx]; msg_pdbg("SPI speed is %sHz\n", spispeed->name); int ret = dediprog_write(CMD_SET_SPI_CLK, spispeed->speed, 0, NULL, 0); if (ret != 0x0) { msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeed->speed); return 1; } return 0; } static void fill_rw_cmd_payload(uint8_t *data_packet, unsigned int count, uint8_t dedi_spi_cmd, unsigned int *value, unsigned int *idx, unsigned int start) { /* First 5 bytes are common in both generations. */ data_packet[0] = count & 0xff; data_packet[1] = (count >> 8) & 0xff; data_packet[2] = 0; /* RFU */ data_packet[3] = dedi_spi_cmd; /* Read/Write Mode (currently READ_MODE_STD, WRITE_MODE_PAGE_PGM or WRITE_MODE_2B_AAI) */ data_packet[4] = 0; /* "Opcode". Specs imply necessity only for READ_MODE_4B_ADDR_FAST and WRITE_MODE_4B_ADDR_256B_PAGE_PGM */ if (is_new_prot()) { *value = *idx = 0; data_packet[5] = 0; /* RFU */ data_packet[6] = (start >> 0) & 0xff; data_packet[7] = (start >> 8) & 0xff; data_packet[8] = (start >> 16) & 0xff; data_packet[9] = (start >> 24) & 0xff; } else { *value = start % 0x10000; *idx = start / 0x10000; } } /* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes. * @start start address * @len length * @return 0 on success, 1 on failure */ static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { /* chunksize must be 512, other sizes will NOT work at all. */ const unsigned int chunksize = 512; const unsigned int count = len / chunksize; if ((start % chunksize) || (len % chunksize)) { msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug at flashrom@flashrom.org\n", __func__, start, len); return 1; } if (len == 0) return 0; /* Command packet size of protocols: new 10 B, old 5 B. */ uint8_t data_packet[is_new_prot() ? 10 : 5]; unsigned int value, idx; fill_rw_cmd_payload(data_packet, count, READ_MODE_STD, &value, &idx, start); int ret = dediprog_write(CMD_READ, value, idx, data_packet, sizeof(data_packet)); if (ret != sizeof(data_packet)) { msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret, usb_strerror()); return 1; } unsigned int i; for (i = 0; i < count; i++) { ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint, (char *)buf + i * chunksize, chunksize, DEFAULT_TIMEOUT); if (ret != chunksize) { msg_perr("SPI bulk read %i failed, expected %i, got %i %s!\n", i, chunksize, ret, usb_strerror()); return 1; } } return 0; } static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { int ret; /* chunksize must be 512, other sizes will NOT work at all. */ const unsigned int chunksize = 0x200; unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0; unsigned int bulklen; dediprog_set_leds(LED_BUSY); if (residue) { msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", start, residue); ret = spi_read_chunked(flash, buf, start, residue, 16); if (ret) goto err; } /* Round down. */ bulklen = (len - residue) / chunksize * chunksize; ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue, bulklen); if (ret) goto err; len -= residue + bulklen; if (len != 0) { msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", start, len); ret = spi_read_chunked(flash, buf + residue + bulklen, start + residue + bulklen, len, 16); if (ret) goto err; } dediprog_set_leds(LED_PASS); return 0; err: dediprog_set_leds(LED_ERROR); return ret; } /* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes. * @chunksize length of data chunks, only 256 supported by now * @start start address * @len length * @dedi_spi_cmd dediprog specific write command for spi bus * @return 0 on success, 1 on failure */ static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize, unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) { /* USB transfer size must be 512, other sizes will NOT work at all. * chunksize is the real data size per USB bulk transfer. The remaining * space in a USB bulk transfer must be filled with 0xff padding. */ const unsigned int count = len / chunksize; /* * We should change this check to * chunksize > 512 * once we know how to handle different chunk sizes. */ if (chunksize != 256) { msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n" "Please report a bug at flashrom@flashrom.org\n", __func__, chunksize); return 1; } if ((start % chunksize) || (len % chunksize)) { msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug " "at flashrom@flashrom.org\n", __func__, start, len); return 1; } /* No idea if the hardware can handle empty writes, so chicken out. */ if (len == 0) return 0; /* Command packet size of protocols: new 10 B, old 5 B. */ uint8_t data_packet[is_new_prot() ? 10 : 5]; unsigned int value, idx; fill_rw_cmd_payload(data_packet, count, dedi_spi_cmd, &value, &idx, start); int ret = dediprog_write(CMD_WRITE, value, idx, data_packet, sizeof(data_packet)); if (ret != sizeof(data_packet)) { msg_perr("Command Write SPI Bulk failed, %i %s!\n", ret, usb_strerror()); return 1; } unsigned int i; for (i = 0; i < count; i++) { char usbbuf[512]; memcpy(usbbuf, buf + i * chunksize, chunksize); memset(usbbuf + chunksize, 0xff, sizeof(usbbuf) - chunksize); // fill up with 0xFF ret = usb_bulk_write(dediprog_handle, dediprog_endpoint, usbbuf, 512, DEFAULT_TIMEOUT); if (ret != 512) { msg_perr("SPI bulk write failed, expected %i, got %i %s!\n", 512, ret, usb_strerror()); return 1; } } return 0; } static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) { int ret; const unsigned int chunksize = flash->chip->page_size; unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0; unsigned int bulklen; dediprog_set_leds(LED_BUSY); if (chunksize != 256) { msg_pdbg("Page sizes other than 256 bytes are unsupported as " "we don't know how dediprog\nhandles them.\n"); /* Write everything like it was residue. */ residue = len; } if (residue) { msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", start, residue); /* No idea about the real limit. Maybe 12, maybe more. */ ret = spi_write_chunked(flash, buf, start, residue, 12); if (ret) { dediprog_set_leds(LED_ERROR); return ret; } } /* Round down. */ bulklen = (len - residue) / chunksize * chunksize; ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd); if (ret) { dediprog_set_leds(LED_ERROR); return ret; } len -= residue + bulklen; if (len) { msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", start, len); ret = spi_write_chunked(flash, buf + residue + bulklen, start + residue + bulklen, len, 12); if (ret) { dediprog_set_leds(LED_ERROR); return ret; } } dediprog_set_leds(LED_PASS); return 0; } static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_PAGE_PGM); } static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_2B_AAI); } static int dediprog_spi_send_command(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { int ret; msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt); if (writecnt > flash->mst->spi.max_data_write) { msg_perr("Invalid writecnt=%i, aborting.\n", writecnt); return 1; } if (readcnt > flash->mst->spi.max_data_read) { msg_perr("Invalid readcnt=%i, aborting.\n", readcnt); return 1; } unsigned int idx, value; /* New protocol has options and timeout combined as value while the old one used the value field for * timeout and the index field for options. */ if (is_new_prot()) { idx = 0; value = readcnt ? 0x1 : 0x0; // Indicate if we require a read } else { idx = readcnt ? 0x1 : 0x0; // Indicate if we require a read value = 0; } ret = dediprog_write(CMD_TRANSCEIVE, value, idx, writearr, writecnt); if (ret != writecnt) { msg_perr("Send SPI failed, expected %i, got %i %s!\n", writecnt, ret, usb_strerror()); return 1; } if (readcnt == 0) // If we don't require a response, we are done here return 0; const uint8_t read_timeout = 10 + readcnt/512; if (is_new_prot()) { idx = 0; value = min(read_timeout, 0xFF) | (0 << 8) ; // Timeout in lower byte, option in upper byte } else { idx = (0 & 0xFF); // Lower byte is option (0x01 = require SR, 0x02 keep CS low) value = min(read_timeout, 0xFF); // Possibly two bytes but we play safe here } ret = dediprog_read(CMD_TRANSCEIVE, value, idx, readarr, readcnt); if (ret != readcnt) { msg_perr("Receive SPI failed, expected %i, got %i %s!\n", readcnt, ret, usb_strerror()); return 1; } return 0; } static int dediprog_check_devicestring(void) { int ret; int fw[3]; char buf[0x11]; /* Command Receive Device String. */ ret = dediprog_read(CMD_READ_PROG_INFO, 0, 0, (uint8_t *)buf, 0x10); if (ret != 0x10) { msg_perr("Incomplete/failed Command Receive Device String!\n"); return 1; } buf[0x10] = '\0'; msg_pdbg("Found a %s\n", buf); if (memcmp(buf, "SF100", 0x5) != 0) { msg_perr("Device not a SF100!\n"); return 1; } if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) { msg_perr("Unexpected firmware version string '%s'\n", buf); return 1; } /* Only these major versions were tested. */ if (fw[0] < 2 || fw[0] > 6) { msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0], fw[1], fw[2]); return 1; } dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]); return 0; } static int dediprog_device_init(void) { int ret; char buf[0x1]; memset(buf, 0, sizeof(buf)); ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x0B, 0x0, 0x0, buf, 0x1, DEFAULT_TIMEOUT); if (ret < 0) { msg_perr("Command A failed (%s)!\n", usb_strerror()); return 1; } if ((ret != 0x1) || (buf[0] != 0x6f)) { msg_perr("Unexpected response to init!\n"); return 1; } return 0; } #if 0 /* Something. * Present in eng_detect_blink.log with firmware 3.1.8 * Always preceded by Command Receive Device String */ static int dediprog_command_b(void) { int ret; char buf[0x3]; ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef00, buf, 0x3, DEFAULT_TIMEOUT); if (ret < 0) { msg_perr("Command B failed (%s)!\n", usb_strerror()); return 1; } if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) || (buf[2] != 0xff)) { msg_perr("Unexpected response to Command B!\n"); return 1; } return 0; } #endif static int set_target_flash(enum dediprog_target target) { int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_OUT, CMD_SET_TARGET, target, 0, NULL, 0, DEFAULT_TIMEOUT); if (ret != 0) { msg_perr("set_target_flash failed (%s)!\n", usb_strerror()); return 1; } return 0; } #if 0 /* Returns true if the button is currently pressed. */ static bool dediprog_get_button(void) { char buf[1]; int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_GET_BUTTON, 0, 0, buf, 0x1, DEFAULT_TIMEOUT); if (ret != 0) { msg_perr("Could not get button state (%s)!\n", usb_strerror()); return 1; } return buf[0] != 1; } #endif static int parse_voltage(char *voltage) { char *tmp = NULL; int i; int millivolt = 0, fraction = 0; if (!voltage || !strlen(voltage)) { msg_perr("Empty voltage= specified.\n"); return -1; } millivolt = (int)strtol(voltage, &tmp, 0); voltage = tmp; /* Handle "," and "." as decimal point. Everything after it is assumed * to be in decimal notation. */ if ((*voltage == '.') || (*voltage == ',')) { voltage++; for (i = 0; i < 3; i++) { fraction *= 10; /* Don't advance if the current character is invalid, * but continue multiplying. */ if ((*voltage < '0') || (*voltage > '9')) continue; fraction += *voltage - '0'; voltage++; } /* Throw away remaining digits. */ voltage += strspn(voltage, "0123456789"); } /* The remaining string must be empty or "mV" or "V". */ tolower_string(voltage); /* No unit or "V". */ if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) { millivolt *= 1000; millivolt += fraction; } else if (!strncmp(voltage, "mv", 2) || !strncmp(voltage, "milliv", 6)) { /* No adjustment. fraction is discarded. */ } else { /* Garbage at the end of the string. */ msg_perr("Garbage voltage= specified.\n"); return -1; } return millivolt; } static const struct spi_master spi_master_dediprog = { .type = SPI_CONTROLLER_DEDIPROG, .max_data_read = 16, /* 18 seems to work fine as well, but 19 times out sometimes with FW 5.15. */ .max_data_write = 16, .command = dediprog_spi_send_command, .multicommand = default_spi_send_multicommand, .read = dediprog_spi_read, .write_256 = dediprog_spi_write_256, .write_aai = dediprog_spi_write_aai, }; static int dediprog_shutdown(void *data) { dediprog_firmwareversion = FIRMWARE_VERSION(0, 0, 0); /* URB 28. Command Set SPI Voltage to 0. */ if (dediprog_set_spi_voltage(0x0)) return 1; if (usb_release_interface(dediprog_handle, 0)) { msg_perr("Could not release USB interface!\n"); return 1; } if (usb_close(dediprog_handle)) { msg_perr("Could not close USB device!\n"); return 1; } return 0; } int dediprog_init(void) { struct usb_device *dev; char *voltage, *device, *spispeed, *target_str; int spispeed_idx = 1; int millivolt = 3500; long usedevice = 0; long target = 1; int i, ret; spispeed = extract_programmer_param("spispeed"); if (spispeed) { for (i = 0; spispeeds[i].name; ++i) { if (!strcasecmp(spispeeds[i].name, spispeed)) { spispeed_idx = i; break; } } if (!spispeeds[i].name) { msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed); free(spispeed); return 1; } free(spispeed); } voltage = extract_programmer_param("voltage"); if (voltage) { millivolt = parse_voltage(voltage); free(voltage); if (millivolt < 0) return 1; msg_pinfo("Setting voltage to %i mV\n", millivolt); } device = extract_programmer_param("device"); if (device) { char *dev_suffix; errno = 0; usedevice = strtol(device, &dev_suffix, 10); if (errno != 0 || device == dev_suffix) { msg_perr("Error: Could not convert 'device'.\n"); free(device); return 1; } if (usedevice < 0 || usedevice > UINT_MAX) { msg_perr("Error: Value for 'device' is out of range.\n"); free(device); return 1; } if (strlen(dev_suffix) > 0) { msg_perr("Error: Garbage following 'device' value.\n"); free(device); return 1; } msg_pinfo("Using device %li.\n", usedevice); } free(device); target_str = extract_programmer_param("target"); if (target_str) { char *target_suffix; errno = 0; target = strtol(target_str, &target_suffix, 10); if (errno != 0 || target_str == target_suffix) { msg_perr("Error: Could not convert 'target'.\n"); free(target_str); return 1; } if (target < 1 || target > 2) { msg_perr("Error: Value for 'target' is out of range.\n"); free(target_str); return 1; } if (strlen(target_suffix) > 0) { msg_perr("Error: Garbage following 'target' value.\n"); free(target_str); return 1; } msg_pinfo("Using target %li.\n", target); } free(target_str); /* Here comes the USB stuff. */ usb_init(); usb_find_busses(); usb_find_devices(); dev = get_device_by_vid_pid(0x0483, 0xdada, (unsigned int) usedevice); if (!dev) { msg_perr("Could not find a Dediprog SF100 on USB!\n"); return 1; } msg_pdbg("Found USB device (%04x:%04x).\n", dev->descriptor.idVendor, dev->descriptor.idProduct); dediprog_handle = usb_open(dev); if (!dediprog_handle) { msg_perr("Could not open USB device: %s\n", usb_strerror()); return 1; } ret = usb_set_configuration(dediprog_handle, 1); if (ret < 0) { msg_perr("Could not set USB device configuration: %i %s\n", ret, usb_strerror()); if (usb_close(dediprog_handle)) msg_perr("Could not close USB device!\n"); return 1; } ret = usb_claim_interface(dediprog_handle, 0); if (ret < 0) { msg_perr("Could not claim USB device interface %i: %i %s\n", 0, ret, usb_strerror()); if (usb_close(dediprog_handle)) msg_perr("Could not close USB device!\n"); return 1; } dediprog_endpoint = 2; if (register_shutdown(dediprog_shutdown, NULL)) return 1; /* Perform basic setup. */ if (dediprog_device_init()) return 1; if (dediprog_check_devicestring()) return 1; /* Set all possible LEDs as soon as possible to indicate activity. * Because knowing the firmware version is required to set the LEDs correctly we need to this after * dediprog_check_devicestring() has queried the device and set dediprog_firmwareversion. */ dediprog_set_leds(LED_ALL); /* Select target/socket, frequency and VCC. */ if (set_target_flash(FLASH_TYPE_APPLICATION_FLASH_1) || dediprog_set_spi_speed(spispeed_idx) || dediprog_set_spi_voltage(millivolt)) { dediprog_set_leds(LED_ERROR); return 1; } if (register_spi_master(&spi_master_dediprog) || dediprog_set_leds(LED_NONE)) return 1; return 0; }