#ifndef COREBOOT_TABLES_H #define COREBOOT_TABLES_H #include /* The coreboot table information is for conveying information * from the firmware to the loaded OS image. Primarily this * is expected to be information that cannot be discovered by * other means, such as quering the hardware directly. * * All of the information should be Position Independent Data. * That is it should be safe to relocated any of the information * without it's meaning/correctnes changing. For table that * can reasonably be used on multiple architectures the data * size should be fixed. This should ease the transition between * 32 bit and 64 bit architectures etc. * * The completeness test for the information in this table is: * - Can all of the hardware be detected? * - Are the per motherboard constants available? * - Is there enough to allow a kernel to run that was written before * a particular motherboard is constructed? (Assuming the kernel * has drivers for all of the hardware but it does not have * assumptions on how the hardware is connected together). * * With this test it should be straight forward to determine if a * table entry is required or not. This should remove much of the * long term compatibility burden as table entries which are * irrelevant or have been replaced by better alternatives may be * dropped. Of course it is polite and expidite to include extra * table entries and be backwards compatible, but it is not required. */ /* Since coreboot is usually compiled 32bit, gcc will align 64bit * types to 32bit boundaries. If the coreboot table is dumped on a * 64bit system, a uint64_t would be aligned to 64bit boundaries, * breaking the table format. * * lb_uint64 will keep 64bit coreboot table values aligned to 32bit * to ensure compatibility. They can be accessed with the two functions * below: unpack_lb64() and pack_lb64() * * See also: util/lbtdump/lbtdump.c */ struct lb_uint64 { uint32_t lo; uint32_t hi; }; static inline uint64_t unpack_lb64(struct lb_uint64 value) { uint64_t result; result = value.hi; result = (result << 32) + value.lo; return result; } static inline struct lb_uint64 pack_lb64(uint64_t value) { struct lb_uint64 result; result.lo = (value >> 0) & 0xffffffff; result.hi = (value >> 32) & 0xffffffff; return result; } struct lb_header { uint8_t signature[4]; /* LBIO */ uint32_t header_bytes; uint32_t header_checksum; uint32_t table_bytes; uint32_t table_checksum; uint32_t table_entries; }; /* Every entry in the boot enviroment list will correspond to a boot * info record. Encoding both type and size. The type is obviously * so you can tell what it is. The size allows you to skip that * boot enviroment record if you don't know what it easy. This allows * forward compatibility with records not yet defined. */ struct lb_record { uint32_t tag; /* tag ID */ uint32_t size; /* size of record (in bytes) */ }; #define LB_TAG_UNUSED 0x0000 #define LB_TAG_MEMORY 0x0001 struct lb_memory_range { struct lb_uint64 start; struct lb_uint64 size; uint32_t type; #define LB_MEM_RAM 1 /* Memory anyone can use */ #define LB_MEM_RESERVED 2 /* Don't use this memory region */ #define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */ }; struct lb_memory { uint32_t tag; uint32_t size; struct lb_memory_range map[0]; }; #define LB_TAG_HWRPB 0x0002 struct lb_hwrpb { uint32_t tag; uint32_t size; uint64_t hwrpb; }; #define LB_TAG_MAINBOARD 0x0003 struct lb_mainboard { uint32_t tag; uint32_t size; uint8_t vendor_idx; uint8_t part_number_idx; uint8_t strings[0]; }; #define LB_TAG_VERSION 0x0004 #define LB_TAG_EXTRA_VERSION 0x0005 #define LB_TAG_BUILD 0x0006 #define LB_TAG_COMPILE_TIME 0x0007 #define LB_TAG_COMPILE_BY 0x0008 #define LB_TAG_COMPILE_HOST 0x0009 #define LB_TAG_COMPILE_DOMAIN 0x000a #define LB_TAG_COMPILER 0x000b #define LB_TAG_LINKER 0x000c #define LB_TAG_ASSEMBLER 0x000d struct lb_string { uint32_t tag; uint32_t size; uint8_t string[0]; }; /* The following structures are for the cmos definitions table */ #define LB_TAG_CMOS_OPTION_TABLE 200 /* cmos header record */ struct cmos_option_table { uint32_t tag; /* CMOS definitions table type */ uint32_t size; /* size of the entire table */ uint32_t header_length; /* length of header */ }; /* cmos entry record This record is variable length. The name field may be shorter than CMOS_MAX_NAME_LENGTH. The entry may start anywhere in the byte, but can not span bytes unless it starts at the beginning of the byte and the length is fills complete bytes. */ #define LB_TAG_OPTION 201 struct cmos_entries { uint32_t tag; /* entry type */ uint32_t size; /* length of this record */ uint32_t bit; /* starting bit from start of image */ uint32_t length; /* length of field in bits */ uint32_t config; /* e=enumeration, h=hex, r=reserved */ uint32_t config_id; /* a number linking to an enumeration record */ #define CMOS_MAX_NAME_LENGTH 32 uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name of entry in ascii, variable length int aligned */ }; /* cmos enumerations record This record is variable length. The text field may be shorter than CMOS_MAX_TEXT_LENGTH. */ #define LB_TAG_OPTION_ENUM 202 struct cmos_enums { uint32_t tag; /* enumeration type */ uint32_t size; /* length of this record */ uint32_t config_id; /* a number identifying the config id */ uint32_t value; /* the value associated with the text */ #define CMOS_MAX_TEXT_LENGTH 32 uint8_t text[CMOS_MAX_TEXT_LENGTH]; /* enum description in ascii, variable length int aligned */ }; /* cmos defaults record This record contains default settings for the cmos ram. */ #define LB_TAG_OPTION_DEFAULTS 203 struct cmos_defaults { uint32_t tag; /* default type */ uint32_t size; /* length of this record */ uint32_t name_length; /* length of the following name field */ uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name identifying the default */ #define CMOS_IMAGE_BUFFER_SIZE 128 uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE]; /* default settings */ }; #define LB_TAG_OPTION_CHECKSUM 204 struct cmos_checksum { uint32_t tag; uint32_t size; /* In practice everything is byte aligned, but things are measured * in bits to be consistent. */ uint32_t range_start; /* First bit that is checksummed (byte aligned) */ uint32_t range_end; /* Last bit that is checksummed (byte aligned) */ uint32_t location; /* First bit of the checksum (byte aligned) */ uint32_t type; /* Checksum algorithm that is used */ #define CHECKSUM_NONE 0 #define CHECKSUM_PCBIOS 1 }; #endif /* COREBOOT_TABLES_H */