/* * This file is part of the flashrom project. * * Copyright (C) 2015 Joseph C. Lehner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if defined(__i386__) || defined(__x86_64__) #include #include #include "flash.h" #include "programmer.h" #include "hwaccess.h" #define MAX_ROM_DECODE (32 * 1024) #define ADDR_MASK (MAX_ROM_DECODE - 1) /* * In the absence of any public docs on the PDC2026x family, this programmer was created through a mix of * reverse-engineering and trial and error. * * The only device tested is an Ultra100 controller, but the logic for programming the other 2026x controllers * is the same, so it should, in theory, work for those as well. * * While the tested Ultra100 controller used a 128 kB MX29F001T chip, A16 and A15 showed continuity to ground, * thus limiting the the programmer on this card to 32 kB. Without other controllers to test this programmer on, * this is currently a hard limit. Note that ROM files for these controllers are 16 kB only. * * Since flashrom does not support accessing flash chips larger than the size limit of the programmer (the * tested Ultra100 uses a 128 kB MX29F001T chip), the chip size is hackishly adjusted in atapromise_limit_chip. */ static uint32_t io_base_addr = 0; static uint32_t rom_base_addr = 0; static uint8_t *atapromise_bar = NULL; static size_t rom_size = 0; const struct dev_entry ata_promise[] = { {0x105a, 0x4d38, NT, "Promise", "PDC20262 (FastTrak66/Ultra66)"}, {0x105a, 0x0d30, NT, "Promise", "PDC20265 (FastTrak100 Lite/Ultra100)"}, {0x105a, 0x4d30, OK, "Promise", "PDC20267 (FastTrak100/Ultra100)"}, {0}, }; static void atapromise_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr); static uint8_t atapromise_chip_readb(const struct flashctx *flash, const chipaddr addr); static const struct par_master par_master_atapromise = { .chip_readb = atapromise_chip_readb, .chip_readw = fallback_chip_readw, .chip_readl = fallback_chip_readl, .chip_readn = fallback_chip_readn, .chip_writeb = atapromise_chip_writeb, .chip_writew = fallback_chip_writew, .chip_writel = fallback_chip_writel, .chip_writen = fallback_chip_writen, }; void *atapromise_map(const char *descr, uintptr_t phys_addr, size_t len) { /* In case fallback_map ever returns something other than NULL. */ return NULL; } static void atapromise_limit_chip(struct flashchip *chip) { static uint32_t last_model_id = 0; unsigned int i, size; if (chip->model_id == last_model_id) return; size = chip->total_size * 1024; if (size > rom_size) { /* Undefine all block_erasers that don't operate on the whole chip, * and adjust the eraseblock size of the one that does. */ for (i = 0; i < NUM_ERASEFUNCTIONS; ++i) { if (chip->block_erasers[i].eraseblocks[0].size != size) { chip->block_erasers[i].eraseblocks[0].count = 0; chip->block_erasers[i].block_erase = NULL; } else { chip->block_erasers[i].eraseblocks[0].size = rom_size; break; } } if (i != NUM_ERASEFUNCTIONS) { chip->total_size = rom_size / 1024; if (chip->page_size > rom_size) chip->page_size = rom_size; } else { msg_pdbg("Failed to adjust size of chip \"%s\" (%d kB).\n", chip->name, chip->total_size); } } last_model_id = chip->model_id; } int atapromise_init(void) { struct pci_dev *dev = NULL; if (rget_io_perms()) return 1; dev = pcidev_init(ata_promise, PCI_BASE_ADDRESS_4); if (!dev) return 1; io_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_4) & 0xfffe; if (!io_base_addr) { return 1; } /* Not exactly sure what this does, because flashing seems to work * well without it. However, PTIFLASH does it, so we do it too. */ OUTB(1, io_base_addr + 0x10); rom_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_5); if (!rom_base_addr) { msg_pdbg("Failed to read BAR5\n"); return 1; } rom_size = dev->rom_size > MAX_ROM_DECODE ? MAX_ROM_DECODE : dev->rom_size; atapromise_bar = (uint8_t*)rphysmap("Promise", rom_base_addr, rom_size); if (atapromise_bar == ERROR_PTR) { return 1; } max_rom_decode.parallel = rom_size; register_par_master(&par_master_atapromise, BUS_PARALLEL); msg_pwarn("Do not use this device as a generic programmer. It will leave anything outside\n" "the first %zu kB of the flash chip in an undefined state. It works fine for the\n" "purpose of updating the firmware of this device (padding may neccessary).\n", rom_size / 1024); return 0; } static void atapromise_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr) { uint32_t data; atapromise_limit_chip(flash->chip); data = (rom_base_addr + (addr & ADDR_MASK)) << 8 | val; OUTL(data, io_base_addr + 0x14); } static uint8_t atapromise_chip_readb(const struct flashctx *flash, const chipaddr addr) { atapromise_limit_chip(flash->chip); return pci_mmio_readb(atapromise_bar + (addr & ADDR_MASK)); } #else #error PCI port I/O access is not supported on this architecture yet. #endif