/* * Support for Atmel AT45DB series DataFlash chips. * This file is part of the flashrom project. * * Copyright (C) 2012 Aidan Thornton * Copyright (C) 2013 Stefan Tauner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "flash.h" #include "chipdrivers.h" #include "programmer.h" #include "spi.h" /* Status register bits */ #define AT45DB_READY (1<<7) #define AT45DB_CMP (1<<6) #define AT45DB_PROT (1<<1) #define AT45DB_POWEROF2 (1<<0) /* Opcodes */ #define AT45DB_STATUS 0xD7 /* NB: this is a block erase command on most other chips(!). */ #define AT45DB_DISABLE_PROTECT 0x3D, 0x2A, 0x7F, 0x9A #define AT45DB_READ_ARRAY 0xE8 #define AT45DB_READ_PROTECT 0x32 #define AT45DB_READ_LOCKDOWN 0x35 #define AT45DB_PAGE_ERASE 0x81 #define AT45DB_BLOCK_ERASE 0x50 #define AT45DB_SECTOR_ERASE 0x7C #define AT45DB_CHIP_ERASE 0xC7 #define AT45DB_CHIP_ERASE_ADDR 0x94809A /* Magic address. See usage. */ #define AT45DB_BUFFER1_WRITE 0x84 #define AT45DB_BUFFER1_PAGE_PROGRAM 0x88 /* Buffer 2 is unused yet. #define AT45DB_BUFFER2_WRITE 0x87 #define AT45DB_BUFFER2_PAGE_PROGRAM 0x89 */ static uint8_t at45db_read_status_register(struct flashctx *flash, uint8_t *status) { static const uint8_t cmd[] = { AT45DB_STATUS }; int ret = spi_send_command(flash, sizeof(cmd), 1, cmd, status); if (ret != 0) msg_cerr("Reading the status register failed!\n"); else msg_cspew("Status register: 0x%02x.\n", *status); return ret; } int spi_disable_blockprotect_at45db(struct flashctx *flash) { static const uint8_t cmd[4] = { AT45DB_DISABLE_PROTECT }; /* NB: 4 bytes magic number */ int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); if (ret != 0) { msg_cerr("Sending disable lockdown failed!\n"); return ret; } uint8_t status; ret = at45db_read_status_register(flash, &status); if (ret != 0 || ((status & AT45DB_PROT) != 0)) { msg_cerr("Disabling lockdown failed!\n"); return 1; } return 0; } static unsigned int at45db_get_sector_count(struct flashctx *flash) { unsigned int i, j; unsigned int cnt = 0; for (i = 0; i < NUM_ERASEFUNCTIONS; i++) { if (flash->chip->block_erasers[i].block_erase == &spi_erase_at45db_sector) { for (j = 0; j < NUM_ERASEREGIONS; j++) { cnt += flash->chip->block_erasers[i].eraseblocks[j].count; } } } msg_cspew("%s: number of sectors=%u\n", __func__, cnt); return cnt; } /* Reads and prettyprints protection/lockdown registers. * Some elegance of the printouts had to be cut down a bit to share this code. */ static uint8_t at45db_prettyprint_protection_register(struct flashctx *flash, uint8_t opcode, const char *regname) { const uint8_t cmd[] = { opcode, 0, 0, 0 }; /* The first two sectors share the first result byte. */ uint8_t buf[at45db_get_sector_count(flash) - 1]; int ret = spi_send_command(flash, sizeof(cmd), sizeof(buf), cmd, buf); if (ret != 0) { msg_cerr("Reading the %s register failed!\n", regname); return ret; } unsigned int i; for (i = 0; i < sizeof(buf); i++) { if (buf[i] != 0x00) break; if (i == sizeof(buf) - 1) { msg_cdbg("No Sector is %sed.\n", regname); return 0; } } /* TODO: print which addresses are mapped to (un)locked sectors. */ msg_cdbg("Sector 0a is %s%sed.\n", ((buf[0] & 0xC0) == 0x00) ? "un" : "", regname); msg_cdbg("Sector 0b is %s%sed.\n", ((buf[0] & 0x30) == 0x00) ? "un" : "", regname); for (i = 1; i < sizeof(buf); i++) msg_cdbg("Sector %2u is %s%sed.\n", i, (buf[i] == 0x00) ? "un" : "", regname); return 0; } /* bit 7: busy flag * bit 6: memory/buffer compare result * bit 5-2: density (encoding see below) * bit 1: protection enabled (soft or hard) * bit 0: "power of 2" page size indicator (e.g. 1 means 256B; 0 means 264B) * * 5-2 encoding: bit 2 is always 1, bits 3-5 encode the density as "2^(bits - 1)" in Mb e.g.: * AT45DB161D 1011 16Mb */ int spi_prettyprint_status_register_at45db(struct flashctx *flash) { uint8_t status; if (at45db_read_status_register(flash, &status) != 0) { return 1; } /* AT45DB321C does not support lockdown or a page size of a power of 2... */ const bool isAT45DB321C = (strcmp(flash->chip->name, "AT45DB321C") == 0); msg_cdbg("Chip status register is 0x%02x\n", status); msg_cdbg("Chip status register: Bit 7 / Ready is %sset\n", (status & AT45DB_READY) ? "" : "not "); msg_cdbg("Chip status register: Bit 6 / Compare match is %sset\n", (status & AT45DB_CMP) ? "" : "not "); spi_prettyprint_status_register_bit(status, 5); spi_prettyprint_status_register_bit(status, 4); spi_prettyprint_status_register_bit(status, 3); spi_prettyprint_status_register_bit(status, 2); const uint8_t dens = (status >> 3) & 0x7; /* Bit 2 is always 1, we use the other bits only */ msg_cdbg("Chip status register: Density is %u Mb\n", 1 << (dens - 1)); msg_cdbg("Chip status register: Bit 1 / Protection is %sset\n", (status & AT45DB_PROT) ? "" : "not "); if (isAT45DB321C) spi_prettyprint_status_register_bit(status, 0); else msg_cdbg("Chip status register: Bit 0 / \"Power of 2\" is %sset\n", (status & AT45DB_POWEROF2) ? "" : "not "); if (status & AT45DB_PROT) at45db_prettyprint_protection_register(flash, AT45DB_READ_PROTECT, "protect"); if (!isAT45DB321C) at45db_prettyprint_protection_register(flash, AT45DB_READ_LOCKDOWN, "lock"); return 0; } /* Probe function for AT45DB* chips that support multiple page sizes. */ int probe_spi_at45db(struct flashctx *flash) { uint8_t status; struct flashchip *chip = flash->chip; if (!probe_spi_rdid(flash)) return 0; /* Some AT45DB* chips support two different page sizes each (e.g. 264 and 256 B). In order to tell which * page size this chip has we need to read the status register. */ if (at45db_read_status_register(flash, &status) != 0) return 0; /* We assume sane power-of-2 page sizes and adjust the chip attributes in case this is not the case. */ if ((status & AT45DB_POWEROF2) == 0) { chip->total_size = (chip->total_size / 32) * 33; chip->page_size = (chip->page_size / 32) * 33; unsigned int i, j; for (i = 0; i < NUM_ERASEFUNCTIONS; i++) { struct block_eraser *eraser = &chip->block_erasers[i]; for (j = 0; j < NUM_ERASEREGIONS; j++) { eraser->eraseblocks[j].size = (eraser->eraseblocks[j].size / 32) * 33; } } } switch (chip->page_size) { case 256: chip->gran = write_gran_256bytes; break; case 264: chip->gran = write_gran_264bytes; break; case 512: chip->gran = write_gran_512bytes; break; case 528: chip->gran = write_gran_528bytes; break; case 1024: chip->gran = write_gran_1024bytes; break; case 1056: chip->gran = write_gran_1056bytes; break; default: msg_cerr("%s: unknown page size %d.\n", __func__, chip->page_size); return 0; } msg_cdbg2("%s: total size %i kB, page size %i B\n", __func__, chip->total_size * 1024, chip->page_size); return 1; } /* Returns the minimum number of bits needed to represent the given address. * FIXME: use mind-blowing implementation. * FIXME: move to utility module. */ static uint32_t address_to_bits(uint32_t addr) { unsigned int lzb = 0; while (((1 << (31 - lzb)) & ~addr) != 0) lzb++; return 32 - lzb; } /* In case of non-power-of-two page sizes we need to convert the address flashrom uses to the address the * DataFlash chips use. The latter uses a segmented address space where the page address is encoded in the * more significant bits and the offset within the page is encoded in the less significant bits. The exact * partition depends on the page size. */ static unsigned int at45db_convert_addr(unsigned int addr, unsigned int page_size) { unsigned int page_bits = address_to_bits(page_size - 1); unsigned int at45db_addr = ((addr / page_size) << page_bits) | (addr % page_size); msg_cspew("%s: addr=0x%x, page_size=%u, page_bits=%u -> at45db_addr=0x%x\n", __func__, addr, page_size, page_bits, at45db_addr); return at45db_addr; } int spi_read_at45db(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; if ((addr + len) > total_size) { msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n", __func__, addr, len, total_size); return 1; } /* We have to split this up into chunks to fit within the programmer's read size limit, but those * chunks can cross page boundaries. */ const unsigned int max_data_read = flash->pgm->spi.max_data_read; const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size; while (addr < len) { unsigned int chunk = min(max_chunk, len); int ret = spi_nbyte_read(flash, at45db_convert_addr(addr, page_size), buf + addr, chunk); if (ret) { msg_cerr("%s: error sending read command!\n", __func__); return ret; } addr += chunk; } return 0; } /* Legacy continuous read, used where spi_read_at45db() is not available. * The first 4 (dummy) bytes read need to be discarded. */ int spi_read_at45db_e8(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; if ((addr + len) > total_size) { msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n", __func__, addr, len, total_size); return 1; } /* We have to split this up into chunks to fit within the programmer's read size limit, but those * chunks can cross page boundaries. */ const unsigned int max_data_read = flash->pgm->spi.max_data_read; const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size; while (addr < len) { const unsigned int addr_at45 = at45db_convert_addr(addr, page_size); const unsigned char cmd[] = { AT45DB_READ_ARRAY, (addr_at45 >> 16) & 0xff, (addr_at45 >> 8) & 0xff, (addr_at45 >> 0) & 0xff }; /* We need to leave place for 4 dummy bytes and handle them explicitly. */ unsigned int chunk = min(max_chunk, len + 4); uint8_t tmp[chunk]; int ret = spi_send_command(flash, sizeof(cmd), chunk, cmd, tmp); if (ret) { msg_cerr("%s: error sending read command!\n", __func__); return ret; } /* Copy result without dummy bytes into buf and advance address counter respectively. */ memcpy(buf + addr, tmp + 4, chunk - 4); addr += chunk - 4; } return 0; } /* Returns 0 when ready, 1 on errors and timeouts. */ static int at45db_wait_ready (struct flashctx *flash, unsigned int us, unsigned int retries) { while (true) { uint8_t status; int ret = at45db_read_status_register(flash, &status); if ((status & AT45DB_READY) == AT45DB_READY) return 0; if (ret != 0 || retries-- == 0) return 1; programmer_delay(us); } } static int at45db_erase(struct flashctx *flash, uint8_t opcode, unsigned int at45db_addr, unsigned int stepsize, unsigned int retries) { const uint8_t cmd[] = { opcode, (at45db_addr >> 16) & 0xff, (at45db_addr >> 8) & 0xff, (at45db_addr >> 0) & 0xff }; /* Send erase command. */ int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); if (ret != 0) { msg_cerr("%s: error sending erase command!\n", __func__); return ret; } /* Wait for completion. */ ret = at45db_wait_ready(flash, stepsize, retries); if (ret != 0) msg_cerr("%s: chip did not became ready again after sending the erase command!\n", __func__); return ret; } int spi_erase_at45db_page(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen); return 1; } if ((addr + blocklen) > total_size) { msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n", __func__, addr, blocklen, total_size); return 1; } /* Needs typically about 35 ms for completion, so let's wait 100 ms in 500 us steps. */ return at45db_erase(flash, AT45DB_PAGE_ERASE, at45db_convert_addr(addr, page_size), 500, 200); } int spi_erase_at45db_block(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check blocks not pages msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen); return 1; } if ((addr + blocklen) > total_size) { msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n", __func__, addr, blocklen, total_size); return 1; } /* Needs typically between 20 and 100 ms for completion, so let's wait 300 ms in 1 ms steps. */ return at45db_erase(flash, AT45DB_BLOCK_ERASE, at45db_convert_addr(addr, page_size), 1000, 300); } int spi_erase_at45db_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check sectors not pages msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen); return 1; } if ((addr + blocklen) > total_size) { msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n", __func__, addr, blocklen, total_size); return 1; } /* Needs typically about 5 s for completion, so let's wait 20 seconds in 200 ms steps. */ return at45db_erase(flash, AT45DB_SECTOR_ERASE, at45db_convert_addr(addr, page_size), 200000, 100); } int spi_erase_at45db_chip(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { const unsigned int total_size = flash->chip->total_size * 1024; if ((addr + blocklen) > total_size) { msg_cerr("%s: tried to erase beyond flash boundary: addr=%u, blocklen=%u, size=%u\n", __func__, addr, blocklen, total_size); return 1; } /* Needs typically from about 5 to over 60 s for completion, so let's wait 100 s in 500 ms steps. * NB: the address is not a real address but a magic number. This hack allows to share code. */ return at45db_erase(flash, AT45DB_CHIP_ERASE, AT45DB_CHIP_ERASE_ADDR, 500000, 200); } /* This one is really special and works only for AT45CS1282. It uses two different opcodes depending on the * address and has an asymmetric layout. */ int spi_erase_at45cs_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size * 1024; const struct block_eraser be = flash->chip->block_erasers[0]; const unsigned int sec_0a_top = be.eraseblocks[0].size; const unsigned int sec_0b_top = be.eraseblocks[0].size + be.eraseblocks[1].size; if ((addr + blocklen) > total_size) { msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n", __func__, addr, blocklen, total_size); return 1; } bool partial_range = false; uint8_t opcode = 0x7C; /* Used for all but sector 0a. */ if (addr < sec_0a_top) { opcode = 0x50; /* One single sector of 8 pages at address 0. */ if (addr != 0 || blocklen != (8 * page_size)) partial_range = true; } else if (addr < sec_0b_top) { /* One single sector of 248 pages adjacent to the first. */ if (addr != sec_0a_top || blocklen != (248 * page_size)) partial_range = true; } else { /* The rest is filled by 63 aligned sectors of 256 pages. */ if ((addr % (256 * page_size)) != 0 || (blocklen % (256 * page_size)) != 0) partial_range = true; } if (partial_range) { msg_cerr("%s: cannot erase partial sectors: addr=%u, blocklen=%u\n", __func__, addr, blocklen); return 1; } /* Needs up to 4 s for completion, so let's wait 20 seconds in 200 ms steps. */ return at45db_erase(flash, opcode, at45db_convert_addr(addr, page_size), 200000, 100); } static int at45db_fill_buffer1(struct flashctx *flash, uint8_t *bytes, unsigned int off, unsigned int len) { const unsigned int page_size = flash->chip->page_size; if ((off + len) > page_size) { msg_cerr("Tried to write %u bytes at offset %u into a buffer of only %u B.\n", len, off, page_size); return 1; } /* Create a suitable buffer to store opcode, address and data chunks for buffer1. */ const unsigned int max_data_write = flash->pgm->spi.max_data_write; const unsigned int max_chunk = (max_data_write > 0 && max_data_write <= page_size) ? max_data_write : page_size; uint8_t buf[4 + max_chunk]; buf[0] = AT45DB_BUFFER1_WRITE; while (off < page_size) { unsigned int cur_chunk = min(max_chunk, page_size - off); buf[1] = (off >> 16) & 0xff; buf[2] = (off >> 8) & 0xff; buf[3] = (off >> 0) & 0xff; memcpy(&buf[4], bytes + off, cur_chunk); int ret = spi_send_command(flash, 4 + cur_chunk, 0, buf, NULL); if (ret != 0) { msg_cerr("%s: error sending buffer write!\n", __func__); return ret; } off += cur_chunk; } return 0; } static int at45db_commit_buffer1(struct flashctx *flash, unsigned int at45db_addr) { const uint8_t cmd[] = { AT45DB_BUFFER1_PAGE_PROGRAM, (at45db_addr >> 16) & 0xff, (at45db_addr >> 8) & 0xff, (at45db_addr >> 0) & 0xff }; /* Send buffer to device. */ int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); if (ret != 0) { msg_cerr("%s: error sending buffer to main memory command!\n", __func__); return ret; } /* Wait for completion (typically a few ms). */ ret = at45db_wait_ready(flash, 250, 200); // 50 ms if (ret != 0) { msg_cerr("%s: chip did not became ready again!\n", __func__); return ret; } return 0; } static int at45db_program_page(struct flashctx *flash, uint8_t *buf, unsigned int at45db_addr) { int ret = at45db_fill_buffer1(flash, buf, 0, flash->chip->page_size); if (ret != 0) { msg_cerr("%s: filling the buffer failed!\n", __func__); return ret; } ret = at45db_commit_buffer1(flash, at45db_addr); if (ret != 0) { msg_cerr("%s: committing page failed!\n", __func__); return ret; } return 0; } int spi_write_at45db(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { const unsigned int page_size = flash->chip->page_size; const unsigned int total_size = flash->chip->total_size; if ((start % page_size) != 0 || (len % page_size) != 0) { msg_cerr("%s: cannot write partial pages: start=%u, len=%u\n", __func__, start, len); return 1; } if ((start + len) > (total_size * 1024)) { msg_cerr("%s: tried to write beyond flash boundary: start=%u, len=%u, size=%u\n", __func__, start, len, total_size); return 1; } unsigned int i; for (i = 0; i < len; i += page_size) { if (at45db_program_page(flash, buf + i, at45db_convert_addr(start + i, page_size)) != 0) { msg_cerr("Writing page %u failed!\n", i); return 1; } } return 0; }