summaryrefslogtreecommitdiffstats
path: root/usr.sbin/xntpd/xntpd/refclock_chu.c
blob: 05379b6331f2de161099a58f5a5e05673642c24c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
/*
 * refclock_chu - clock driver for the CHU time code
 */
#if defined(REFCLOCK) && (defined(CHU) || defined(CHUCLK) || defined(CHUPPS))

#include <stdio.h>
#include <ctype.h>
#include <sys/time.h>

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_unixtime.h"

#if defined(HAVE_BSD_TTYS)
#include <sgtty.h>
#endif /* HAVE_BSD_TTYS */

#if defined(HAVE_SYSV_TTYS)
#include <termio.h>
#endif /* HAVE_SYSV_TTYS */

#if defined(STREAM)
#include <termios.h>
#include <stropts.h>
#endif /* STREAM */

#if defined (CHUPPS)
#include <sys/ppsclock.h>
#endif /* CHUPPS */

#include <sys/chudefs.h>

#include "ntp_stdlib.h"

/*
 * The CHU time signal includes a time code which is modulated at the
 * standard Bell 103 frequencies (i.e. mark=2225Hz, space=2025Hz).
 * and formatted into 8 bit characters with one start bit and two
 * stop bits. The time code is composed of 10 8-bit characters.
 * The second 5 bytes of the timecode are a redundancy check, and
 * are a copy of the first 5 bytes.
 *
 * It is assumed that you have built or modified a Bell 103 standard
 * modem, attached the input to the output of a radio and cabled the
 * output to a serial port on your computer, i.e. what you are receiving
 * is essentially the output of your radio.  It is also assumed you have
 * installed a special CHU line discipline to condition the output from
 * the terminal driver and take accurate time stamps.
 *
 * There are two types of timecodes. One is sent in the 32nd
 * through 39th second of the minute.
 *
 *     6dddhhmmss6dddhhmmss
 *
 * where ddd is the day of the year, hh is the hour (in UTC), mm is
 * the minute and ss the second.  The 6 is a constant.  Note that
 * the code is sent twice.
 *
 * The second sort of timecode is sent only during the 31st second
 * past the minute.
 *
 *     xdyyyyttabXDYYYYTTAB
 *
 * In this case, the second part of the code is the one's complement
 * of the code. This differentiates it from the other timecode
 * format.
 *
 * d is the absolute value of DUT (in tenths of a second). yyyy
 * is the year. tt is the difference between UTC and TAI. a is
 * a canadian daylight time flag and b is a serial number.
 * x is a bitwise field. The least significant bit of x is
 * one if DUT is negative. The 2nd bit is set if a leap second
 * will be added at the next opportunity. The 3rd bit is set if
 * a leap second will be deleted at the next opportunity.
 * The 4th bit is an even parity bit for the other three bits
 * in this nibble.
 *
 * The start bit in each character has a precise relationship to
 * the on-time second.  Most often UART's synchronize themselves to the
 * start bit and will post an interrupt at the center of the first stop
 * bit.  Thus each character's interrupt should occur at a fixed offset
 * from the on-time second.  This means that a timestamp taken at the
 * arrival of each character in the code will provide an independent
 * estimate of the offset.  Since there are 10 characters in the time
 * code and the code is sent 9 times per minute, this means you potentially
 * get 90 offset samples per minute.  Much of the code in here is dedicated
 * to producing a single offset estimate from these samples.
 *
 * A note about the line discipline.  It is possible to receive the
 * CHU time code in raw mode, but this has disadvantages.  In particular,
 * this puts a lot of code between the interrupt and the time you freeze
 * a time stamp, decreasing precision.  It is also expensive in terms of
 * context switches, and made even more expensive by the way I do I/O.
 * Worse, since you are listening directly to the output of your radio,
 * CHU is noisy and will make you spend a lot of time receiving noise.
 *
 * The line discipline fixes a lot of this.  It knows that the CHU time
 * code consists of 10 bytes which arrive with an intercharacter
 * spacing of about 37 ms, and that the data is BCD, and filters on this
 * basis.  It delivers block of ten characters plus their associated time
 * stamps all at once.  The time stamps are hence about as accurate as
 * a Unix machine can get them, and much of the noise disappears in the
 * kernel with no context switching cost.
 *
 * The kernel module also will insure that the packets that are
 * delivered have the correct redundancy bytes, and will return
 * a flag in chutype to differentiate one sort of packet from
 * the other.
 */

/*
 * Definitions
 */
#define	MAXUNITS	4	/* maximum number of CHU units permitted */
#define	CHUDEV	"/dev/chu%d"	/* device we open.  %d is unit number */
#define SPEED232 B300		/* uart speed (300 baud) */
#define	NCHUCODES	8	/* expect 8 CHU codes per minute */
#define CHULDISC	10	/* XXX temp CHU line discipline */

/*
 * To compute a quality for the estimate (a pseudo dispersion) we add a
 * fixed 10 ms for each missing code in the minute and add to this
 * the sum of the differences between the remaining offsets and the
 * estimated sample offset.
 */
#define	CHUDELAYPENALTY	0x0000028f

/*
 * Other constant stuff
 */
#define	CHUPRECISION	(-9)	/* what the heck */
#define	CHUREFID	"CHU\0"
#define	CHUDESCRIPTION	"Direct synchronized to CHU timecode"
#define	CHUHSREFID	0x7f7f070a /* 127.127.7.10 refid for hi strata */

/*
 * Default fudge factors
 */
#define	DEFPROPDELAY	0x00624dd3	/* 0.0015 seconds, 1.5 ms */
#define	DEFFILTFUDGE	0x000d1b71	/* 0.0002 seconds, 200 us */

/*
 * Hacks to avoid excercising the multiplier.  I have no pride.
 */
#define	MULBY10(x)	(((x)<<3) + ((x)<<1))
#define	MULBY60(x)	(((x)<<6) - ((x)<<2))	/* watch overflow */
#define	MULBY24(x)	(((x)<<4) + ((x)<<3))

/*
 * Constants for use when multiplying by 0.1.  ZEROPTONE is 0.1
 * as an l_fp fraction, NZPOBITS is the number of significant bits
 * in ZEROPTONE.
 */
#define	ZEROPTONE	0x1999999a
#define	NZPOBITS	29

static char hexstring[]="0123456789abcdef";

/*
 * CHU unit control structure.
 */
struct chuunit {
	struct peer *peer;		/* associated peer structure */
	struct event chutimer;		/* timeout timer structure */
	struct refclockio chuio;	/* given to the I/O handler */
	l_fp offsets[NCHUCODES];	/* offsets computed from each code */
	l_fp rectimes[NCHUCODES];	/* times we received this stuff */
	U_LONG reftimes[NCHUCODES];	/* time of last code received */
	u_char lastcode[NCHUCHARS*4];	/* last code we received */
        u_char asciicode[NCHUCHARS*4+1]; /* last code translated to ascii */
	u_char expect;			/* the next offset expected */
	u_char unit;			/* unit number for this guy */
	u_short haveoffset;		/* flag word indicating valid offsets */
	u_short flags;			/* operational flags */
	u_char status;			/* clock status */
	u_char lastevent;		/* last clock event */
	u_char unused[2];
	U_LONG lastupdate;		/* last time data received */
	U_LONG responses;		/* number of responses */
	U_LONG badformat;		/* number of bad format responses */
	U_LONG baddata;			/* number of invalid time codes */
	U_LONG timestarted;		/* time we started this */
	u_char leap;			/* leap status */
};

#define	CHUTIMERSET	0x1		/* timer is set to fire */


/*
 * The CHU table.  This gives the expected time of arrival of each
 * character after the on-time second and is computed as follows:
 * The CHU time code is sent at 300 bps.  Your average UART will
 * synchronize at the edge of the start bit and will consider the
 * character complete at the middle of the first stop bit, i.e.
 * 0.031667 ms later (some UARTS may complete the character at the
 * end of the stop bit instead of the middle, but you can fudge this).
 * Thus the expected time of each interrupt is the start bit time plus
 * 0.031667 seconds.  These times are in chutable[].  To this we add
 * such things as propagation delay and delay fudge factor.
 */
#define	CHARDELAY	0x081b4e82

static U_LONG chutable[NCHUCHARS] = {
	0x22222222 + CHARDELAY,		/* 0.1333333333 */
	0x2b851eb8 + CHARDELAY,		/* 0.170 (exactly) */
	0x34e81b4e + CHARDELAY,		/* 0.2066666667 */
	0x3f92c5f9 + CHARDELAY,		/* 0.2483333333 */
	0x47ae147b + CHARDELAY,		/* 0.280 (exactly) */
	0x51111111 + CHARDELAY,		/* 0.3166666667 */
	0x5a740da7 + CHARDELAY,		/* 0.3533333333 */
	0x63d70a3d + CHARDELAY,		/* 0.390 (exactly) */
	0x6d3a06d4 + CHARDELAY,		/* 0.4266666667 */
	0x769d0370 + CHARDELAY,		/* 0.4633333333 */
};

/*
 * Data space for the unit structures.  Note that we allocate these on
 * the fly, but never give them back.
 */
static struct chuunit *chuunits[MAXUNITS];
static u_char unitinuse[MAXUNITS];

/*
 * Keep the fudge factors separately so they can be set even
 * when no clock is configured.
 */
static l_fp propagation_delay[MAXUNITS];
static l_fp fudgefactor[MAXUNITS];
static l_fp offset_fudge[MAXUNITS];
static u_char stratumtouse[MAXUNITS];
static u_char sloppyclockflag[MAXUNITS];

/*
 * We keep track of the start of the year, watching for changes.
 * We also keep track of whether the year is a leap year or not.
 * All because stupid CHU doesn't include the year in the time code.
 */
static U_LONG yearstart;

/*
 * Imported from the timer module
 */
extern U_LONG current_time;
extern struct event timerqueue[];

/*
 * Imported from ntp_loopfilter module
 */
extern int fdpps;		/* pps file descriptor */

/*
 * Imported from ntpd module
 */
extern int debug;		/* global debug flag */

/*
 * Event reporting.  This optimizes things a little.
 */
#define	chu_event(chu, evcode) \
	do { \
		if ((chu)->status != (u_char)(evcode)) \
			chu_report_event((chu), (evcode)); \
	} while (0)

static	void	chu_init	P((void));
static	int	chu_start	P((u_int, struct peer *));
static	void	chu_shutdown	P((int));
static	void	chu_report_event	P((struct chuunit *, int));
static	void	chu_receive	P((struct recvbuf *));
static	void	chu_process	P((struct chuunit *));
static	void	chu_poll	P((int, struct peer *));
static	void	chu_control	P((u_int, struct refclockstat *, struct refclockstat *));
static	void	chu_timeout	P((struct peer *));

/*
 * Transfer vector
 */
struct	refclock refclock_chu = {
	chu_start, chu_shutdown, chu_poll,
	chu_control, chu_init, noentry, NOFLAGS
};

/*
 * chu_init - initialize internal chu driver data
 */
static void
chu_init()
{
	register int i;
	/*
	 * Just zero the data arrays
	 */
	bzero((char *)chuunits, sizeof chuunits);
	bzero((char *)unitinuse, sizeof unitinuse);

	/*
	 * Initialize fudge factors to default.
	 */
	for (i = 0; i < MAXUNITS; i++) {
		propagation_delay[i].l_ui = 0;
		propagation_delay[i].l_uf = DEFPROPDELAY;
		fudgefactor[i].l_ui = 0;
		fudgefactor[i].l_uf = DEFFILTFUDGE;
		offset_fudge[i] = propagation_delay[i];
		L_ADD(&offset_fudge[i], &fudgefactor[i]);
		stratumtouse[i] = 0;
		sloppyclockflag[i] = 0;
	}
}


/*
 * chu_start - open the CHU device and initialize data for processing
 */
static int
chu_start(unit, peer)
	u_int unit;
	struct peer *peer;
{
	register struct chuunit *chu;
	register int i;
	int fd232;
	char chudev[20];
	l_fp ts;

	/*
	 * Check configuration info
	 */
	if (unit >= MAXUNITS) {
		syslog(LOG_ERR, "chu_start: unit %d invalid", unit);
		return 0;
	}
	if (unitinuse[unit]) {
		syslog(LOG_ERR, "chu_start: unit %d in use", unit);
		return 0;
	}

	/*
	 * Open serial port
	 */
	(void) sprintf(chudev, CHUDEV, unit);
	fd232 = open(chudev, O_RDONLY, 0777);
	if (fd232 == -1) {
		syslog(LOG_ERR, "chu_start: open of %s: %m", chudev);
		return 0;
	}

#if defined(HAVE_SYSV_TTYS)
	/*
	 * System V serial line parameters (termio interface)
	 */
	CHU SUPPORT NOT AVAILABLE IN TERMIO INTERFACE
#endif /* HAVE_SYSV_TTYS */
#if defined(STREAM)
	/*
	 * POSIX/STREAMS serial line parameters (termios interface)
	 *
	 * The CHUCLK support uses a 300-baud modem and level converter
	 * (gadget box). It requires the chu_clk streams module and
	 * SunOS 4.1.1 or later.
	 *
	 * The CHUPPS option provides timestamping at the driver level.
	 * It uses a 1-pps signal and level converter (gadget box) and
	 * requires the ppsclock streams module and SunOS 4.1.1 or
	 * later.
	 */
    {	struct termios ttyb, *ttyp;

	ttyp = &ttyb;
	if (tcgetattr(fd232, ttyp) < 0) {
                syslog(LOG_ERR,
		    "chu_start: tcgetattr(%s): %m", chudev);
                goto screwed;
        }
        ttyp->c_iflag = IGNBRK|IGNPAR;
        ttyp->c_oflag = 0;
        ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
        ttyp->c_lflag = 0;
	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
	ttyp->c_cc[VMIN] = 1;
	ttyp->c_cc[VTIME] = 0;
        if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
                syslog(LOG_ERR,
		    "chu_start: tcsetattr(%s): %m", chudev);
                goto screwed;
        }
        if (tcflush(fd232, TCIOFLUSH) < 0) {
                syslog(LOG_ERR,
		    "chu_start: tcflush(%s): %m", chudev);
                goto screwed;
        }
	while (ioctl(fd232, I_POP, 0 ) >= 0) ;
	if (ioctl(fd232, I_PUSH, "chu" ) < 0) {
		syslog(LOG_ERR,
		    "chu_start: ioctl(%s, I_PUSH, chu): %m", chudev);
		goto screwed;
	}
#if defined(CHUPPS)
	if (ioctl(fd232, I_PUSH, "ppsclock") < 0)
		syslog(LOG_ERR,
		    "chu_start: ioctl(%s, I_PUSH, ppsclock): %m", chudev);
	else
		fdpps = fd232;
#endif /* CHUPPS */
    }
#endif /* STREAM */
#if defined(HAVE_BSD_TTYS)
	/*
	 * 4.3bsd serial line parameters (sgttyb interface)
	 *
	 * The CHUCLK support uses a 300-baud modem and level converter
	 * (gadget box). It requires the chu_clk streams module and
	 * 4.3bsd or later.
	 */
    {	struct sgttyb ttyb;
	int ldisc = CHULDISC;

	if (ioctl(fd232, TIOCGETP, &ttyb) < 0) {
		syslog(LOG_ERR,
		    "chu_start: ioctl(%s, TIOCGETP): %m", chudev);
		goto screwed;
	}
	ttyb.sg_ispeed = ttyb.sg_ospeed = SPEED232;
	ttyb.sg_erase = ttyb.sg_kill = '\r';
	ttyb.sg_flags = RAW;
	if (ioctl(fd232, TIOCSETP, &ttyb) < 0) {
		syslog(LOG_ERR,
		    "chu_start: ioctl(%s, TIOCSETP): %m", chudev);
		goto screwed;
	}
	if (ioctl(fd232, TIOCSETD, &ldisc) < 0) {
		syslog(LOG_ERR,
		    "chu_start: ioctl(%s, TIOCSETD): %m",chudev);
		goto screwed;
	}
    }
#endif /* HAVE_BSD_TTYS */

	/*
	 * Allocate unit structure
	 */
	if (chuunits[unit] != 0) {
		chu = chuunits[unit];	/* The one we want is okay */
	} else {
		for (i = 0; i < MAXUNITS; i++) {
			if (!unitinuse[i] && chuunits[i] != 0)
				break;
		}
		if (i < MAXUNITS) {
			/*
			 * Reclaim this one
			 */
			chu = chuunits[i];
			chuunits[i] = 0;
		} else {
			chu = (struct chuunit *)emalloc(sizeof(struct chuunit));
		}
	}
	bzero((char *)chu, sizeof(struct chuunit));
	chuunits[unit] = chu;

	/*
	 * Set up the structure
	 */
	chu->peer = peer;
	chu->unit = (u_char)unit;
	chu->timestarted = current_time;

	chu->chutimer.peer = (struct peer *)chu;
	chu->chutimer.event_handler = chu_timeout;

	chu->chuio.clock_recv = chu_receive;
	chu->chuio.srcclock = (caddr_t)chu;
	chu->chuio.datalen = sizeof(struct chucode);
	chu->chuio.fd = fd232;

	/*
	 * Initialize the year from the system time in case this is the
	 * first open.
	 */
	get_systime(&ts);
	yearstart = calyearstart(ts.l_ui);
	if (!io_addclock(&chu->chuio)) {
		goto screwed;
	}

	/*
	 * All done.  Initialize a few random peer variables, then
	 * return success.
	 */
	peer->precision = CHUPRECISION;
	peer->rootdelay = 0;
	peer->rootdispersion = 0;
	peer->stratum = stratumtouse[unit];
	if (stratumtouse[unit] <= 1)
		bcopy(CHUREFID, (char *)&peer->refid, 4);
	else
		peer->refid = htonl(CHUHSREFID);
	unitinuse[unit] = 1;
	return 1;

	/*
	 * Something broke; abandon ship.
	 */
screwed:
	(void) close(fd232);
	return (0);
}


/*
 * chu_shutdown - shut down a CHU clock
 */
static void
chu_shutdown(unit)
	int unit;
{
	register struct chuunit *chu;

	if (unit >= MAXUNITS) {
		syslog(LOG_ERR, "chu_shutdown: unit %d invalid", unit);
		return;
	}
	if (!unitinuse[unit]) {
		syslog(LOG_ERR, "chu_shutdown: unit %d not in use", unit);
		return;
	}

	/*
	 * Tell the I/O module to turn us off, and dequeue timer
	 * if any.  We're history.
	 */
	chu = chuunits[unit];
	if (chu->flags & CHUTIMERSET)
		TIMER_DEQUEUE(&chu->chutimer);
	io_closeclock(&chu->chuio);
	unitinuse[unit] = 0;
}

/*
 * chu_report_event - record an event and report it
 */
static void
chu_report_event(chu, code)
	struct chuunit *chu;
	int code;
{
	/*
	 * Trap support isn't up to handling this, so just
	 * record it.
	 */
	if (chu->status != (u_char)code) {
		chu->status = (u_char)code;
		if (code != CEVNT_NOMINAL)
			chu->lastevent = (u_char)code;
	}
}


/*
 * chu_receive - receive data from a CHU clock, do format checks and compute
 *		 an estimate from the sample data
 */
static void
chu_receive(rbufp)
	struct recvbuf *rbufp;
{
	register int i;
	register U_LONG date_ui;
	register U_LONG tmp;
	register u_char *code;
	register struct chuunit *chu;
	register struct chucode *chuc;
	int isneg;
	U_LONG reftime;
	l_fp off[NCHUCHARS];
	int day, hour, minute, second;

	/*
	 * Do a length check on the data.  Should be what we asked for.
	 */
	if (rbufp->recv_length != sizeof(struct chucode)) {
		syslog(LOG_ERR, "chu_receive: received %d bytes, expected %d",
		    rbufp->recv_length, sizeof(struct chucode));
		return;
	}

	/*
	 * Get the clock this applies to and a pointer to the data
	 */
	chu = (struct chuunit *)rbufp->recv_srcclock;
	chuc = (struct chucode *)&rbufp->recv_space;
	chu->responses++;
	chu->lastupdate = current_time;

	/*
	 * At this point we're assured that both halves of the
	 * data match because of what the kernel has done.
	 * But there's more than one data format. We need to
	 * check chutype to see what to do now. If it's a
	 * year packet, then we fiddle with it specially.
	 */

	if (chuc->chutype == CHU_YEAR)
	{
		u_char leapbits,parity;

		/*
	 	 * Break out the code into the BCD nibbles.
		 * Put it in the half of lastcode.
		 */
		code = chu->lastcode;
		code += 2*NCHUCHARS;
		for (i = 0; i < NCHUCHARS; i++) {
			*code++ = chuc->codechars[i] & 0xf;
			*code++ = (chuc->codechars[i] >> 4) & 0xf;
		}

		leapbits = chuc->codechars[0]&0xf;

		/*
		 * Now make sure that the leap nibble
		 * is even parity.
		 */

		parity = (leapbits ^ (leapbits >> 2))&0x3;
		parity = (parity ^ (parity>>1))&0x1;
		if (parity)
		{
			chu->badformat++;
			chu_event(chu, CEVNT_BADREPLY);
			return;
		}

		/*
		 * This just happens to work. :-)
		 */

		chu->leap = (leapbits >> 1) & 0x3;

		return;
	}

	if (chuc->chutype != CHU_TIME)
	{
		chu->badformat++;
		chu_event(chu, CEVNT_BADREPLY);
		return;
	}

	/*
	 * Break out the code into the BCD nibbles.  Only need to fiddle
	 * with the first half since both are identical.  Note the first
	 * BCD character is the low order nibble, the second the high order.
	 */
	code = chu->lastcode;
	for (i = 0; i < NCHUCHARS; i++) {
		*code++ = chuc->codechars[i] & 0xf;
		*code++ = (chuc->codechars[i] >> 4) & 0xf;
	}

	/*
	 * Format check.  Make sure the two halves match.
	 * There's really no need for this, but it can't hurt.
	 */
	for (i = 0; i < NCHUCHARS/2; i++)
		if (chuc->codechars[i] != chuc->codechars[i+(NCHUCHARS/2)]) {
			chu->badformat++;
			chu_event(chu, CEVNT_BADREPLY);
			return;
		}

	/*
	 * If the first nibble isn't a 6, we're up the creek
	 */
	code = chu->lastcode;
	if (*code++ != 6) {
		chu->badformat++;
		chu_event(chu, CEVNT_BADREPLY);
		return;
	}

	/*
	 * Collect the day, the hour, the minute and the second.
	 */
	day = *code++;
	day = MULBY10(day) + *code++;
	day = MULBY10(day) + *code++;
	hour = *code++;
	hour = MULBY10(hour) + *code++;
	minute = *code++;
	minute = MULBY10(minute) + *code++;
	second = *code++;
	second = MULBY10(second) + *code++;

	/*
	 * Sanity check the day and time.  Note that this
	 * only occurs on the 32st through the 39th second
	 * of the minute.
	 */
	if (day < 1 || day > 366
	    || hour > 23 || minute > 59
	    || second < 32 || second > 39) {
		chu->baddata++;
		if (day < 1 || day > 366) {
			chu_event(chu, CEVNT_BADDATE);
		} else {
			chu_event(chu, CEVNT_BADTIME);
		}
		return;
	}

	/*
	 * Compute the NTP date from the input data and the
	 * receive timestamp.  If this doesn't work, mark the
	 * date as bad and forget it.
	 */
	if (!clocktime(day, hour, minute, second, 0,
	    rbufp->recv_time.l_ui, &yearstart, &reftime)) {
		chu_event(chu, CEVNT_BADDATE);
		return;
	}
	date_ui = reftime;;

	/*
	 * We've now got the integral seconds part of the time code (we hope).
	 * The fractional part comes from the table.  We next compute
	 * the offsets for each character.
	 */
	for (i = 0; i < NCHUCHARS; i++) {
		register U_LONG tmp2;

		off[i].l_ui = date_ui;
		off[i].l_uf = chutable[i];
		tmp = chuc->codetimes[i].tv_sec + JAN_1970;
		TVUTOTSF(chuc->codetimes[i].tv_usec, tmp2);
		M_SUB(off[i].l_ui, off[i].l_uf, tmp, tmp2);
	}

	if (!sloppyclockflag[chu->unit]) {
		u_short ord[NCHUCHARS];
		/*
		 * In here we assume the clock has adequate bits
		 * to take timestamps with reasonable accuracy.
		 * Note that the time stamps may contain errors
		 * for a couple of reasons.  Timing is actually
		 * referenced to the start bit in each character
		 * in the time code.  If this is obscured by static
		 * you can still get a valid character but have the
		 * timestamp offset by +-1.5 ms.  Also, we may suffer
		 * from interrupt delays if the interrupt is being
		 * held off when the character arrives.  Note the
		 * latter error is always in the form of a delay.
		 *
		 * After fiddling I arrived at the following scheme.
		 * We sort the times into order by offset.  We then
		 * drop the most positive 2 offset values (which may
		 * correspond to a character arriving early due to
		 * static) and the most negative 4 (which may correspond
		 * to delayed characters, either from static or from
		 * interrupt latency).  We then take the mean of the
		 * remaining 4 offsets as our estimate.
		 */
		
		/*
		 * Set up the order array.
		 */
		for (i = 0; i < NCHUCHARS; i++)
			ord[i] = (u_short)i;
		
		/*
		 * Sort them into order.  Reuse variables with abandon.
		 */
		for (tmp = 0; tmp < (NCHUCHARS-1); tmp++) {
			for (i = (int)tmp+1; i < NCHUCHARS; i++) {
				if (!L_ISGEQ(&off[ord[i]], &off[ord[tmp]])) {
					date_ui = (U_LONG)ord[i];
					ord[i] = ord[tmp];
					ord[tmp] = (u_short)date_ui;
				}
			}
		}

		/*
		 * Done the sort.  We drop 0, 1, 2 and 3 at the negative
		 * end, and 8 and 9 at the positive.  Take the sum of
		 * 4, 5, 6 and 7.
		 */
		date_ui = off[ord[4]].l_ui;
		tmp = off[ord[4]].l_uf;
		for (i = 5; i <= 7; i++)
			M_ADD(date_ui, tmp, off[ord[i]].l_ui, off[ord[i]].l_uf);
		
		/*
		 * Round properly, then right shift two bits for the
		 * divide by four.
		 */
		if (tmp & 0x2)
			M_ADDUF(date_ui, tmp, 0x4);
		M_RSHIFT(date_ui, tmp);
		M_RSHIFT(date_ui, tmp);
	} else {
		/*
		 * Here is a *big* problem.  On a machine where the
		 * low order bit in the clock is on the order of half
		 * a millisecond or more we don't really have enough
		 * precision to make intelligent choices about which
		 * samples might be in error and which aren't.  More
		 * than this, in the case of error free data we can
		 * pick up a few bits of precision by taking the mean
		 * of the whole bunch.  This is what we do.  The problem
		 * comes when it comes time to divide the 64 bit sum of
		 * the 10 samples by 10, a procedure which really sucks.
		 * Oh, well, grin and bear it.  Compute the sum first.
		 */
		date_ui = 0;
		tmp = 0;
		for (i = 0; i < NCHUCHARS; i++)
			M_ADD(date_ui, tmp, off[i].l_ui, off[i].l_uf);
		if (M_ISNEG(date_ui, tmp))
			isneg = 1;
		else
			isneg = 0;

		/*
		 * Here is a multiply-by-0.1 optimization that should apply
		 * just about everywhere.  If the magnitude of the sum
		 * is less than 9 we don't have to worry about overflow
		 * out of a 64 bit product, even after rounding.
		 */
		if (date_ui < 9 || date_ui > 0xfffffff7) {
			register U_LONG prod_ui;
			register U_LONG prod_uf;
	
			prod_ui = prod_uf = 0;
			/*
			 * This code knows the low order bit in 0.1 is zero
			 */
			for (i = 1; i < NZPOBITS; i++) {
				M_LSHIFT(date_ui, tmp);
				if (ZEROPTONE & (1<<i))
					M_ADD(prod_ui, prod_uf, date_ui, tmp);
			}

			/*
			 * Done, round it correctly.  Prod_ui contains the
			 * fraction.
			 */
			if (prod_uf & 0x80000000)
				prod_ui++;
			if (isneg)
				date_ui = 0xffffffff;
			else
				date_ui = 0;
			tmp = prod_ui;
			/*
			 * date_ui is integral part, tmp is fraction.
			 */
		} else {
			register U_LONG prod_ovr;
			register U_LONG prod_ui;
			register U_LONG prod_uf;
			register U_LONG highbits;

			prod_ovr = prod_ui = prod_uf = 0;
			if (isneg)
				highbits = 0xffffffff;	/* sign extend */
			else
				highbits = 0;
			/*
			 * This code knows the low order bit in 0.1 is zero
			 */
			for (i = 1; i < NZPOBITS; i++) {
				M_LSHIFT3(highbits, date_ui, tmp);
				if (ZEROPTONE & (1<<i))
					M_ADD3(prod_ovr, prod_uf, prod_ui,
					    highbits, date_ui, tmp);
			}

			if (prod_uf & 0x80000000)
				M_ADDUF(prod_ovr, prod_ui, (U_LONG)1);
			date_ui = prod_ovr;
			tmp = prod_ui;
		}
	}
	
	/*
	 * At this point we have the mean offset, with the integral
	 * part in date_ui and the fractional part in tmp.  Store
	 * it in the structure.
	 */
	i = second - 32;	/* gives a value 0 through 8 */
	if (i < (int)chu->expect) {
		/*
		 * This shouldn't actually happen, but might if a single
		 * bit error occurred in the code which fooled us.
		 * Throw away all previous data.
		 */
		chu->expect = 0;
		chu->haveoffset = 0;
		if (chu->flags & CHUTIMERSET) {
			TIMER_DEQUEUE(&chu->chutimer);
			chu->flags &= ~CHUTIMERSET;
		}
	}

	/*
	 * Add in fudge factor.
	 */
	M_ADD(date_ui, tmp, offset_fudge[chu->unit].l_ui,
	    offset_fudge[chu->unit].l_uf);

	chu->offsets[i].l_ui = date_ui;
	chu->offsets[i].l_uf = tmp;
	chu->rectimes[i] = rbufp->recv_time;
	chu->reftimes[i] = reftime;

	chu->expect = i + 1;
	chu->haveoffset |= (1<<i);

	if (chu->expect >= NCHUCODES) {
		/*
		 * Got a full second's worth.  Dequeue timer and
		 * process this.
		 */
		if (chu->flags & CHUTIMERSET) {
			TIMER_DEQUEUE(&chu->chutimer);
			chu->flags &= ~CHUTIMERSET;
		}
		chu_process(chu);
	} else if (!(chu->flags & CHUTIMERSET)) {
		/*
		 * Try to take an interrupt sometime after the
		 * 42 second mark (leaves an extra 2 seconds for
		 * slop).  Round it up to an even multiple of
		 * 4 seconds.
		 */
		chu->chutimer.event_time =
		    current_time + (U_LONG)(10 - i) + (1<<EVENT_TIMEOUT);
		chu->chutimer.event_time &= ~((1<<EVENT_TIMEOUT) - 1);
		TIMER_INSERT(timerqueue, &chu->chutimer);
		chu->flags |= CHUTIMERSET;
	}
}


/*
 * chu_timeout - process a timeout event
 */
static void
chu_timeout(fakepeer)
	struct peer *fakepeer;
{
	/*
	 * If we got here it means we received some time codes
	 * but didn't get the one which should have arrived on
	 * the 39th second.  Process what we have.
	 */
	((struct chuunit *)fakepeer)->flags &= ~CHUTIMERSET;
	chu_process((struct chuunit *)fakepeer);
}


/*
 * chu_process - process the raw offset estimates we have and pass
 *		 the results on to the NTP clock filters.
 */
static void
chu_process(chu)
	register struct chuunit *chu;
{
	register int i;
	register s_fp bestoff;
	register s_fp tmpoff;
	u_fp dispersion;
	int imax;
	l_fp ts;

	/*
	 * The most positive offset.
	 */
	imax = NCHUCODES;
	for (i = 0; i < NCHUCODES; i++)
		if (chu->haveoffset & (1<<i))
			if (i < imax || L_ISGEQ(&chu->offsets[i],
			    &chu->offsets[imax]))
				imax = i;

	/*
	 * The most positive estimate is our best bet.  Go through
	 * the list again computing the dispersion.
	 */
	bestoff = LFPTOFP(&chu->offsets[imax]);
	dispersion = 0;
	for (i = 0; i < NCHUCODES; i++) {
		if (chu->haveoffset & (1<<i)) {
			tmpoff = LFPTOFP(&chu->offsets[i]);
			dispersion += (bestoff - tmpoff);
		} else {
			dispersion += CHUDELAYPENALTY;
		}
	}

	/*
	 * Make up a reference time stamp, then give it to the
	 * reference clock support code for further processing.
	 */
	ts.l_ui = chu->reftimes[imax];
	ts.l_uf = chutable[NCHUCHARS-1];

	for (i = 0; i < NCHUCHARS*4; i++) {
		chu->asciicode[i] = hexstring[chu->lastcode[i]];
	}
	chu->asciicode[i] = '\0';
	record_clock_stats(&(chu->peer->srcadr), chu->asciicode);
	refclock_receive(chu->peer, &chu->offsets[imax], 0,
	    dispersion, &ts, &chu->rectimes[imax], chu->leap);
	
	/*
	 * Zero out unit for next code series
	 */
	chu->haveoffset = 0;
	chu->expect = 0;
	chu_event(chu, CEVNT_NOMINAL);
}


/*
 * chu_poll - called by the transmit procedure
 */
static void
chu_poll(unit, peer)
	int unit;
	struct peer *peer;
{
	if (unit >= MAXUNITS) {
		syslog(LOG_ERR, "chu_poll: unit %d invalid", unit);
		return;
	}
	if (!unitinuse[unit]) {
		syslog(LOG_ERR, "chu_poll: unit %d not in use", unit);
		return;
	}

	if ((current_time - chuunits[unit]->lastupdate) > 150) {
		chu_event(chuunits[unit], CEVNT_PROP);
	}
}



/*
 * chu_control - set fudge factors, return statistics
 */
static void
chu_control(unit, in, out)
	u_int unit;
	struct refclockstat *in;
	struct refclockstat *out;
{
	register struct chuunit *chu;
	U_LONG npolls;

	if (unit >= MAXUNITS) {
		syslog(LOG_ERR, "chu_control: unit %d invalid", unit);
		return;
	}

	if (in != 0) {
		if (in->haveflags & CLK_HAVETIME1)
			propagation_delay[unit] = in->fudgetime1;
		if (in->haveflags & CLK_HAVETIME2)
			fudgefactor[unit] = in->fudgetime2;
		offset_fudge[unit] = propagation_delay[unit];
		L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
		if (in->haveflags & CLK_HAVEVAL1) {
			stratumtouse[unit] = (u_char)(in->fudgeval1 & 0xf);
			if (unitinuse[unit]) {
				struct peer *peer;

				/*
				 * Should actually reselect clock, but
				 * will wait for the next timecode
				 */
				peer = chuunits[unit]->peer;
				peer->stratum = stratumtouse[unit];
				if (stratumtouse[unit] <= 1)
					bcopy(CHUREFID, (char *)&peer->refid,4);
				else
					peer->refid = htonl(CHUHSREFID);
			}
		}
		if (in->haveflags & CLK_HAVEFLAG1) {
			sloppyclockflag[unit] = in->flags & CLK_FLAG1;
		}
	}

	if (out != 0) {
		out->type = REFCLK_CHU;
		out->flags = 0;
		out->haveflags
		    = CLK_HAVETIME1|CLK_HAVETIME2|CLK_HAVEVAL1|
		      CLK_HAVEVAL2|CLK_HAVEFLAG1;
		out->clockdesc = CHUDESCRIPTION;
		out->fudgetime1 = propagation_delay[unit];
		out->fudgetime2 = fudgefactor[unit];
		out->fudgeval1 = (long)stratumtouse[unit];
		out->flags = sloppyclockflag[unit];
		if (unitinuse[unit]) {
			chu = chuunits[unit];
			out->lencode = NCHUCHARS*4;
			out->fudgeval2 = chu->lastcode[2*NCHUCHARS+1];
			out->fudgeval2 *= (chu->lastcode[2*NCHUCHARS]&1)?-1:1;
			out->lastcode = chu->asciicode;
			out->timereset = current_time - chu->timestarted;
			npolls = out->timereset / 6;	/* **divide** */
			out->polls = npolls;
			out->noresponse = (npolls - chu->responses);
			out->badformat = chu->badformat;
			out->baddata = chu->baddata;
			out->lastevent = chu->lastevent;
			out->currentstatus = chu->status;
		} else {
			out->fudgeval2 = 0;
			out->lencode = 0;
			out->lastcode = "";
			out->polls = out->noresponse = 0;
			out->badformat = out->baddata = 0;
			out->timereset = 0;
			out->currentstatus = out->lastevent = CEVNT_NOMINAL;
		}
	}
}
#endif
OpenPOWER on IntegriCloud