1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/*
* This program simulates a first-order, type-II phase-lock loop using
* actual code segments from modified kernel distributions for SunOS,
* Ultrix and OSF/1 kernels. These segments do not use any licensed code.
*/
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <sys/time.h>
#include "timex.h"
/*
* Phase-lock loop definitions
*/
#define HZ 100 /* timer interrupt frequency (Hz) */
#define MAXPHASE 512000 /* max phase error (us) */
#define MAXFREQ 200 /* max frequency error (ppm) */
#define TAU 2 /* time constant (shift 0 - 6) */
#define POLL 16 /* interval between updates (s) */
#define MAXSEC 1200 /* max interval between updates (s) */
/*
* Function declarations
*/
void hardupdate();
void hardclock();
void second_overflow();
/*
* Kernel variables
*/
int tick; /* timer interrupt period (us) */
int fixtick; /* amortization constant (ppm) */
struct timeval timex; /* ripoff of kernel time variable */
/*
* Phase-lock loop variables
*/
int time_status = TIME_BAD; /* clock synchronization status */
long time_offset = 0; /* time adjustment (us) */
long time_constant = 0; /* pll time constant */
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
long time_precision = 1000000 / HZ; /* clock precision (us) */
long time_maxerror = MAXPHASE; /* maximum error (us) */
long time_esterror = MAXPHASE; /* estimated error (us) */
long time_phase = 0; /* phase offset (scaled us) */
long time_freq = 0; /* frequency offset (scaled ppm) */
long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
long time_reftime = 0; /* time at last adjustment (s) */
/*
* Simulation variables
*/
double timey = 0; /* simulation time (us) */
long timez = 0; /* current error (us) */
long poll_interval = 0; /* poll counter */
/*
* Simulation test program
*/
void main()
{
tick = 1000000 / HZ;
fixtick = 1000000 % HZ;
timex.tv_sec = 0;
timex.tv_usec = MAXPHASE;
time_freq = 0;
time_constant = TAU;
printf("tick %d us, fixtick %d us\n", tick, fixtick);
printf(" time offset freq _offset _freq _adj\n");
/*
* Grind the loop until ^C
*/
while (1) {
timey += (double)(1000000) / HZ;
if (timey >= 1000000)
timey -= 1000000;
hardclock();
if (timex.tv_usec >= 1000000) {
timex.tv_usec -= 1000000;
timex.tv_sec++;
second_overflow();
poll_interval++;
if (!(poll_interval % POLL)) {
timez = (long)timey - timex.tv_usec;
if (timez > 500000)
timez -= 1000000;
if (timez < -500000)
timez += 1000000;
hardupdate(timez);
printf("%10li%10li%10.2f %08lx %08lx %08lx\n",
timex.tv_sec, timez,
(double)time_freq / (1 << SHIFT_KF),
time_offset, time_freq, time_adj);
}
}
}
}
/*
* This routine simulates the ntp_adjtime() call
*
* For default SHIFT_UPDATE = 12, offset is limited to +-512 ms, the
* maximum interval between updates is 4096 s and the maximum frequency
* offset is +-31.25 ms/s.
*/
void hardupdate(offset)
long offset;
{
long ltemp, mtemp;
time_offset = offset << SHIFT_UPDATE;
mtemp = timex.tv_sec - time_reftime;
time_reftime = timex.tv_sec;
if (mtemp > MAXSEC)
mtemp = 0;
/* ugly multiply should be replaced */
if (offset < 0)
time_freq -= (-offset * mtemp) >>
(time_constant + time_constant);
else
time_freq += (offset * mtemp) >>
(time_constant + time_constant);
ltemp = time_tolerance << SHIFT_KF;
if (time_freq > ltemp)
time_freq = ltemp;
else if (time_freq < -ltemp)
time_freq = -ltemp;
if (time_status == TIME_BAD)
time_status = TIME_OK;
}
/*
* This routine simulates the timer interrupt
*/
void hardclock()
{
int ltemp, time_update;
time_update = tick; /* computed by adjtime() */
time_phase += time_adj;
if (time_phase < -FINEUSEC) {
ltemp = -time_phase >> SHIFT_SCALE;
time_phase += ltemp << SHIFT_SCALE;
time_update -= ltemp;
}
else if (time_phase > FINEUSEC) {
ltemp = time_phase >> SHIFT_SCALE;
time_phase -= ltemp << SHIFT_SCALE;
time_update += ltemp;
}
timex.tv_usec += time_update;
}
/*
* This routine simulates the overflow of the microsecond field
*
* With SHIFT_SCALE = 23, the maximum frequency adjustment is +-256 us
* per tick, or 25.6 ms/s at a clock frequency of 100 Hz. The time
* contribution is shifted right a minimum of two bits, while the frequency
* contribution is a right shift. Thus, overflow is prevented if the
* frequency contribution is limited to half the maximum or 15.625 ms/s.
*/
void second_overflow()
{
int ltemp;
time_maxerror += time_tolerance;
if (time_offset < 0) {
ltemp = -time_offset >>
(SHIFT_KG + time_constant);
time_offset += ltemp;
time_adj = -(ltemp <<
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE));
} else {
ltemp = time_offset >>
(SHIFT_KG + time_constant);
time_offset -= ltemp;
time_adj = ltemp <<
(SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
}
if (time_freq < 0)
time_adj -= -time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE);
else
time_adj += time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE);
time_adj += fixtick << (SHIFT_SCALE - SHIFT_HZ);
/* ugly divide should be replaced */
if (timex.tv_sec % 86400 == 0) {
switch (time_status) {
case TIME_INS:
timex.tv_sec--; /* !! */
time_status = TIME_OOP;
break;
case TIME_DEL:
timex.tv_sec++;
time_status = TIME_OK;
break;
case TIME_OOP:
time_status = TIME_OK;
break;
}
}
}
|