1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
/* systime.c,v 3.1 1993/07/06 01:08:46 jbj Exp
* systime -- routines to fiddle a UNIX clock.
*/
#include <sys/types.h>
#include <sys/time.h>
#if defined(SYS_HPUX) || defined(sgi) || defined(SYS_BSDI)
#include <sys/param.h>
#include <utmp.h>
#endif
#ifdef SYS_LINUX
#include <sys/timex.h>
#endif
#include "ntp_fp.h"
#include "ntp_syslog.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#if defined(STEP_SLEW)
#define SLEWALWAYS
#endif
extern int debug;
/*
* These routines (init_systime, get_systime, step_systime, adj_systime)
* implement an interface between the (more or less) system independent
* bits of NTP and the peculiarities of dealing with the Unix system
* clock. These routines will run with good precision fairly independently
* of your kernel's value of tickadj. I couldn't tell the difference
* between tickadj==40 and tickadj==5 on a microvax, though I prefer
* to set tickadj == 500/hz when in doubt. At your option you
* may compile this so that your system's clock is always slewed to the
* correct time even for large corrections. Of course, all of this takes
* a lot of code which wouldn't be needed with a reasonable tickadj and
* a willingness to let the clock be stepped occasionally. Oh well.
*/
/*
* Clock variables. We round calls to adjtime() to adj_precision
* microseconds, and limit the adjustment to tvu_maxslew microseconds
* (tsf_maxslew fractional sec) in one adjustment interval. As we are
* thus limited in the speed and precision with which we can adjust the
* clock, we compensate by keeping the known "error" in the system time
* in sys_clock_offset. This is added to timestamps returned by get_systime().
* We also remember the clock precision we computed from the kernel in
* case someone asks us.
*/
LONG adj_precision; /* adj precision in usec (tickadj) */
LONG tvu_maxslew; /* maximum adjust doable in 1<<CLOCK_ADJ sec (usec) */
U_LONG tsf_maxslew; /* same as above, as LONG format */
LONG sys_clock;
l_fp sys_clock_offset; /* correction for current system time */
/*
* get_systime - return the system time in timestamp format
* As a side effect, update sys_clock.
*/
void
get_systime(ts)
l_fp *ts;
{
struct timeval tv;
#if !defined(SLEWALWAYS)
/*
* Quickly get the time of day and convert it
*/
(void) GETTIMEOFDAY(&tv, (struct timezone *)0);
TVTOTS(&tv, ts);
ts->l_uf += TS_ROUNDBIT; /* guaranteed not to overflow */
#else
/*
* Get the time of day, convert to time stamp format
* and add in the current time offset. Then round
* appropriately.
*/
(void) GETTIMEOFDAY(&tv, (struct timezone *)0);
TVTOTS(&tv, ts);
L_ADD(ts, &sys_clock_offset);
if (ts->l_uf & TS_ROUNDBIT)
L_ADDUF(ts, (unsigned LONG) TS_ROUNDBIT);
#endif /* !defined(SLEWALWAYS) */
ts->l_ui += JAN_1970;
ts->l_uf &= TS_MASK;
sys_clock = ts->l_ui;
}
/*
* step_systime - do a step adjustment in the system time (at least from
* NTP's point of view.
*/
int
step_systime(ts)
l_fp *ts;
{
#ifdef SLEWALWAYS
#ifdef STEP_SLEW
register U_LONG tmp_ui;
register U_LONG tmp_uf;
int isneg;
int n;
/*
* Take the absolute value of the offset
*/
tmp_ui = ts->l_ui;
tmp_uf = ts->l_uf;
if (M_ISNEG(tmp_ui, tmp_uf)) {
M_NEG(tmp_ui, tmp_uf);
isneg = 1;
} else
isneg = 0;
if (tmp_ui >= 3) { /* Step it and slew we might win */
n = step_systime_real(ts);
if (!n) return n;
if (isneg)
ts->l_ui = ~0;
else
ts->l_ui = ~0;
}
#endif
/*
* Just add adjustment into the current offset. The update
* routine will take care of bringing the system clock into
* line.
*/
L_ADD(&sys_clock_offset, ts);
return 1;
#else /* SLEWALWAYS */
return step_systime_real(ts);
#endif /* SLEWALWAYS */
}
int max_no_complete = 20;
/*
* adj_systime - called once every 1<<CLOCK_ADJ seconds to make system time
* adjustments.
*/
int
adj_systime(ts)
l_fp *ts;
{
register unsigned LONG offset_i, offset_f;
register LONG temp;
register unsigned LONG residual;
register int isneg = 0;
struct timeval adjtv, oadjtv;
l_fp oadjts;
LONG adj = ts->l_f;
int rval;
adjtv.tv_sec = adjtv.tv_usec = 0;
/*
* Move the current offset into the registers
*/
offset_i = sys_clock_offset.l_ui;
offset_f = sys_clock_offset.l_uf;
/*
* Add the new adjustment into the system offset. Adjust the
* system clock to minimize this.
*/
M_ADDF(offset_i, offset_f, adj);
if (M_ISNEG(offset_i, offset_f)) {
isneg = 1;
M_NEG(offset_i, offset_f);
}
#ifdef DEBUG
if (debug > 4)
syslog(LOG_DEBUG, "adj_systime(%s): offset = %s%s\n",
mfptoa((adj<0?-1:0), adj, 9), isneg?"-":"",
umfptoa(offset_i, offset_f, 9));
#endif
adjtv.tv_sec = 0;
if (offset_i > 0 || offset_f >= tsf_maxslew) {
/*
* Slew is bigger than we can complete in
* the adjustment interval. Make a maximum
* sized slew and reduce sys_clock_offset by this
* much.
*/
M_SUBUF(offset_i, offset_f, tsf_maxslew);
if (!isneg) {
adjtv.tv_usec = tvu_maxslew;
} else {
adjtv.tv_usec = -tvu_maxslew;
M_NEG(offset_i, offset_f);
}
#ifdef DEBUG
if (debug > 4)
syslog(LOG_DEBUG,
"maximum slew: %s%s, remainder = %s\n",
isneg?"-":"", umfptoa(0, tsf_maxslew, 9),
mfptoa(offset_i, offset_f, 9));
#endif
} else {
/*
* We can do this slew in the time period. Do our
* best approximation (rounded), save residual for
* next adjustment.
*
* Note that offset_i is guaranteed to be 0 here.
*/
TSFTOTVU(offset_f, temp);
#ifndef ADJTIME_IS_ACCURATE
/*
* Round value to be an even multiple of adj_precision
*/
residual = temp % adj_precision;
temp -= residual;
if (residual << 1 >= adj_precision)
temp += adj_precision;
#endif /* ADJTIME_IS_ACCURATE */
TVUTOTSF(temp, residual);
M_SUBUF(offset_i, offset_f, residual);
if (isneg) {
adjtv.tv_usec = -temp;
M_NEG(offset_i, offset_f);
} else {
adjtv.tv_usec = temp;
}
#ifdef DEBUG
if (debug > 4)
syslog(LOG_DEBUG,
"slew adjtv = %s, adjts = %s, sys_clock_offset = %s\n",
tvtoa(&adjtv), umfptoa(0, residual, 9),
mfptoa(offset_i, offset_f, 9));
#endif
}
if (adjtime(&adjtv, &oadjtv) < 0) {
syslog(LOG_ERR, "Can't do time adjustment: %m");
rval = 0;
} else {
sys_clock_offset.l_ui = offset_i;
sys_clock_offset.l_uf = offset_f;
rval = 1;
#ifdef DEBUGRS6000
syslog(LOG_ERR, "adj_systime(%s): offset = %s%s\n",
mfptoa((adj<0?-1:0), adj, 9), isneg?"-":"",
umfptoa(offset_i, offset_f, 9));
syslog(LOG_ERR, "%d %d %d %d\n", (int) adjtv.tv_sec,
(int) adjtv.tv_usec, (int) oadjtv.tv_sec, (int)
oadjtv.tv_usec);
#endif /* DEBUGRS6000 */
if (oadjtv.tv_sec != 0 || oadjtv.tv_usec != 0) {
sTVTOTS(&oadjtv, &oadjts);
L_ADD(&sys_clock_offset, &oadjts);
if (max_no_complete > 0) {
syslog(LOG_WARNING,
"Previous time adjustment didn't complete");
#ifdef DEBUG
if (debug > 4)
syslog(LOG_DEBUG,
"Previous adjtime() incomplete, residual = %s\n",
tvtoa(&oadjtv));
#endif
if (--max_no_complete == 0)
syslog(LOG_WARNING,
"*** No more 'Prev time adj didn't complete'");
}
}
}
return(rval);
}
/*
* This is used by ntpdate even when xntpd does not use it! WLJ
*/
int
step_systime_real(ts)
l_fp *ts;
{
struct timeval timetv, adjtv;
int isneg = 0;
#if defined(SYS_HPUX)
struct utmp ut;
time_t oldtime;
#endif
/*
* We can afford to be sloppy here since if this is called
* the time is really screwed and everything is being reset.
*/
L_ADD(&sys_clock_offset, ts);
if (L_ISNEG(&sys_clock_offset)) {
isneg = 1;
L_NEG(&sys_clock_offset);
}
TSTOTV(&sys_clock_offset, &adjtv);
(void) GETTIMEOFDAY(&timetv, (struct timezone *)0);
#if defined(SYS_HPUX)
oldtime = timetv.tv_sec;
#endif
#ifdef DEBUG
if (debug > 3)
syslog(LOG_DEBUG, "step: %s, sys_clock_offset = %s, adjtv = %s, timetv = %s\n",
lfptoa(ts, 9), lfptoa(&sys_clock_offset, 9), tvtoa(&adjtv),
utvtoa(&timetv));
#endif
if (isneg) {
timetv.tv_sec -= adjtv.tv_sec;
timetv.tv_usec -= adjtv.tv_usec;
if (timetv.tv_usec < 0) {
timetv.tv_sec--;
timetv.tv_usec += 1000000;
}
} else {
timetv.tv_sec += adjtv.tv_sec;
timetv.tv_usec += adjtv.tv_usec;
if (timetv.tv_usec >= 1000000) {
timetv.tv_sec++;
timetv.tv_usec -= 1000000;
}
}
if (SETTIMEOFDAY(&timetv, (struct timezone *)0) != 0) {
syslog(LOG_ERR, "Can't set time of day: %m");
return 0;
}
#ifdef DEBUG
if (debug > 3)
syslog(LOG_DEBUG, "step: new timetv = %s\n", utvtoa(&timetv));
#endif
sys_clock_offset.l_ui = sys_clock_offset.l_uf = 0;
#if defined(SYS_HPUX)
#if (SYS_HPUX < 10)
/*
* CHECKME: is this correct when called by ntpdate?????
*/
_clear_adjtime();
#endif
/*
* Write old and new time entries in utmp and wtmp if step adjustment
* is greater than one second.
*/
if (oldtime != timetv.tv_sec) {
memset((char *)&ut, 0, sizeof(ut));
ut.ut_type = OLD_TIME;
ut.ut_time = oldtime;
(void)strcpy(ut.ut_line, OTIME_MSG);
pututline(&ut);
setutent();
ut.ut_type = NEW_TIME;
ut.ut_time = timetv.tv_sec;
(void)strcpy(ut.ut_line, NTIME_MSG);
pututline(&ut);
utmpname(WTMP_FILE);
ut.ut_type = OLD_TIME;
ut.ut_time = oldtime;
(void)strcpy(ut.ut_line, OTIME_MSG);
pututline(&ut);
ut.ut_type = NEW_TIME;
ut.ut_time = timetv.tv_sec;
(void)strcpy(ut.ut_line, NTIME_MSG);
pututline(&ut);
endutent();
}
#endif
return 1;
}
|