summaryrefslogtreecommitdiffstats
path: root/tools/llvm-mc/MC-X86Specific.cpp
blob: 45774cf48c8b17d0791089d1978e871a6d56dc51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//===- MC-X86Specific.cpp - X86-Specific code for MC ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements X86-specific parsing, encoding and decoding stuff for
// MC.
//
//===----------------------------------------------------------------------===//

#include "AsmParser.h"
#include "llvm/MC/MCInst.h"
using namespace llvm;

/// X86Operand - Instances of this class represent one X86 machine instruction.
struct AsmParser::X86Operand {
  enum {
    Register,
    Immediate,
    Memory
  } Kind;
  
  union {
    struct {
      unsigned RegNo;
    } Reg;

    struct {
      // FIXME: Should be a general expression.
      int64_t Val;
    } Imm;
    
    struct {
      unsigned SegReg;
      int64_t Disp;     // FIXME: Should be a general expression.
      unsigned BaseReg;
      unsigned Scale;
      unsigned ScaleReg;
    } Mem;
  };
  
  static X86Operand CreateReg(unsigned RegNo) {
    X86Operand Res;
    Res.Kind = Register;
    Res.Reg.RegNo = RegNo;
    return Res;
  }
  static X86Operand CreateImm(int64_t Val) {
    X86Operand Res;
    Res.Kind = Immediate;
    Res.Imm.Val = Val;
    return Res;
  }
  static X86Operand CreateMem(unsigned SegReg, int64_t Disp, unsigned BaseReg,
                              unsigned Scale, unsigned ScaleReg) {
    X86Operand Res;
    Res.Kind = Memory;
    Res.Mem.SegReg   = SegReg;
    Res.Mem.Disp     = Disp;
    Res.Mem.BaseReg  = BaseReg;
    Res.Mem.Scale    = Scale;
    Res.Mem.ScaleReg = ScaleReg;
    return Res;
  }
  
  void AddToMCInst(MCInst &I) {
    // FIXME: Add in x86 order here.
  }
};

bool AsmParser::ParseX86Operand(X86Operand &Op) {
  switch (Lexer.getKind()) {
  default:
    return ParseX86MemOperand(Op);
  case asmtok::Register:
    // FIXME: Decode reg #.
    // FIXME: if a segment register, this could either be just the seg reg, or
    // the start of a memory operand.
    Op = X86Operand::CreateReg(123);
    Lexer.Lex(); // Eat register.
    return false;
  case asmtok::Dollar: {
    // $42 -> immediate.
    Lexer.Lex();
    int64_t Val;
    if (ParseExpression(Val))
      return TokError("expected integer constant");
    Op = X86Operand::CreateReg(Val);
    return false;
  case asmtok::Star:
    Lexer.Lex(); // Eat the star.
    
    if (Lexer.is(asmtok::Register)) {
      Op = X86Operand::CreateReg(123);
      Lexer.Lex(); // Eat register.
    } else if (ParseX86MemOperand(Op))
      return true;

    // FIXME: Note that these are 'dereferenced' so that clients know the '*' is
    // there.
    return false;
  }
  }
}

/// ParseX86MemOperand: segment: disp(basereg, indexreg, scale)
bool AsmParser::ParseX86MemOperand(X86Operand &Op) {
  // FIXME: If SegReg ':'  (e.g. %gs:), eat and remember.
  unsigned SegReg = 0;
  
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
  // only way to do this without lookahead is to eat the ( and see what is after
  // it.
  int64_t Disp = 0;
  if (Lexer.isNot(asmtok::LParen)) {
    if (ParseExpression(Disp)) return true;
    
    // After parsing the base expression we could either have a parenthesized
    // memory address or not.  If not, return now.  If so, eat the (.
    if (Lexer.isNot(asmtok::LParen)) {
      Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
      return false;
    }
    
    // Eat the '('.
    Lexer.Lex();
  } else {
    // Okay, we have a '('.  We don't know if this is an expression or not, but
    // so we have to eat the ( to see beyond it.
    Lexer.Lex(); // Eat the '('.
    
    if (Lexer.is(asmtok::Register) || Lexer.is(asmtok::Comma)) {
      // Nothing to do here, fall into the code below with the '(' part of the
      // memory operand consumed.
    } else {
      // It must be an parenthesized expression, parse it now.
      if (ParseParenExpr(Disp) ||
          ParseBinOpRHS(1, Disp))
        return true;
      
      // After parsing the base expression we could either have a parenthesized
      // memory address or not.  If not, return now.  If so, eat the (.
      if (Lexer.isNot(asmtok::LParen)) {
        Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
        return false;
      }
      
      // Eat the '('.
      Lexer.Lex();
    }
  }
  
  // If we reached here, then we just ate the ( of the memory operand.  Process
  // the rest of the memory operand.
  unsigned BaseReg = 0, ScaleReg = 0, Scale = 0;
  
  if (Lexer.is(asmtok::Register)) {
    BaseReg = 123; // FIXME: decode reg #
    Lexer.Lex();  // eat the register.
  }
  
  if (Lexer.is(asmtok::Comma)) {
    Lexer.Lex(); // eat the comma.
    
    if (Lexer.is(asmtok::Register)) {
      ScaleReg = 123; // FIXME: decode reg #
      Lexer.Lex();  // eat the register.
      Scale = 1;      // If not specified, the scale defaults to 1.
    }
    
    if (Lexer.is(asmtok::Comma)) {
      Lexer.Lex(); // eat the comma.

      // If present, get and validate scale amount.
      if (Lexer.is(asmtok::IntVal)) {
        int64_t ScaleVal = Lexer.getCurIntVal();
        if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8)
          return TokError("scale factor in address must be 1, 2, 4 or 8");
        Lexer.Lex();  // eat the scale.
        Scale = (unsigned)ScaleVal;
      }
    }
  }
  
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
  if (Lexer.isNot(asmtok::RParen))
    return TokError("unexpected token in memory operand");
  Lexer.Lex(); // Eat the ')'.
  
  Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, Scale, ScaleReg);
  return false;
}

/// ParseX86InstOperands - Parse the operands of an X86 instruction and return
/// them as the operands of an MCInst.
bool AsmParser::ParseX86InstOperands(MCInst &Inst) {
  // If no operands are present, just return.
  if (Lexer.is(asmtok::EndOfStatement))
    return false;

  // Read the first operand.
  X86Operand Op;
  if (ParseX86Operand(Op))
    return true;
  Op.AddToMCInst(Inst);
  
  while (Lexer.is(asmtok::Comma)) {
    Lexer.Lex();  // Eat the comma.
    
    // Parse and remember the operand.
    Op = X86Operand();
    if (ParseX86Operand(Op))
      return true;
    Op.AddToMCInst(Inst);
  }
  return false;
}
OpenPOWER on IntegriCloud