summaryrefslogtreecommitdiffstats
path: root/sys/vm/vm_pageout.c
blob: c0611ba0570da593a4fa886fdb5a5a6cff7d3d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
/*-
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1994 John S. Dyson
 * All rights reserved.
 * Copyright (c) 1994 David Greenman
 * All rights reserved.
 * Copyright (c) 2005 Yahoo! Technologies Norway AS
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	The proverbial page-out daemon.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/sx.h>
#include <sys/sysctl.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>

#include <machine/mutex.h>

/*
 * System initialization
 */

/* the kernel process "vm_pageout"*/
static void vm_pageout(void);
static int vm_pageout_clean(vm_page_t);
static void vm_pageout_scan(int pass);

struct proc *pageproc;

static struct kproc_desc page_kp = {
	"pagedaemon",
	vm_pageout,
	&pageproc
};
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)

#if !defined(NO_SWAPPING)
/* the kernel process "vm_daemon"*/
static void vm_daemon(void);
static struct	proc *vmproc;

static struct kproc_desc vm_kp = {
	"vmdaemon",
	vm_daemon,
	&vmproc
};
SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
#endif


int vm_pages_needed;		/* Event on which pageout daemon sleeps */
int vm_pageout_deficit;		/* Estimated number of pages deficit */
int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */

#if !defined(NO_SWAPPING)
static int vm_pageout_req_swapout;	/* XXX */
static int vm_daemon_needed;
#endif
static int vm_max_launder = 32;
static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
static int vm_pageout_full_stats_interval = 0;
static int vm_pageout_algorithm=0;
static int defer_swap_pageouts=0;
static int disable_swap_pageouts=0;

#if defined(NO_SWAPPING)
static int vm_swap_enabled=0;
static int vm_swap_idle_enabled=0;
#else
static int vm_swap_enabled=1;
static int vm_swap_idle_enabled=0;
#endif

SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");

SYSCTL_INT(_vm, OID_AUTO, max_launder,
	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");

SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");

SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");

SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");

#if defined(NO_SWAPPING)
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
	CTLFLAG_RD, &vm_swap_enabled, 0, "");
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
#else
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
#endif

SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");

SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");

static int pageout_lock_miss;
SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");

#define VM_PAGEOUT_PAGE_COUNT 16
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;

int vm_page_max_wired;		/* XXX max # of wired pages system-wide */

#if !defined(NO_SWAPPING)
static void vm_pageout_map_deactivate_pages(vm_map_t, long);
static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
static void vm_req_vmdaemon(void);
#endif
static void vm_pageout_page_stats(void);

/*
 * vm_pageout_fallback_object_lock:
 * 
 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
 * known to have failed and page queue must be either PQ_ACTIVE or
 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
 * while locking the vm object.  Use marker page to detect page queue
 * changes and maintain notion of next page on page queue.  Return
 * TRUE if no changes were detected, FALSE otherwise.  vm object is
 * locked on return.
 * 
 * This function depends on both the lock portion of struct vm_object
 * and normal struct vm_page being type stable.
 */
static boolean_t
vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
{
	struct vm_page marker;
	boolean_t unchanged;
	u_short queue;
	vm_object_t object;

	/*
	 * Initialize our marker
	 */
	bzero(&marker, sizeof(marker));
	marker.flags = PG_FICTITIOUS | PG_MARKER;
	marker.oflags = VPO_BUSY;
	marker.queue = m->queue;
	marker.wire_count = 1;

	queue = m->queue;
	object = m->object;
	
	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
			   m, &marker, pageq);
	vm_page_unlock_queues();
	VM_OBJECT_LOCK(object);
	vm_page_lock_queues();

	/* Page queue might have changed. */
	*next = TAILQ_NEXT(&marker, pageq);
	unchanged = (m->queue == queue &&
		     m->object == object &&
		     &marker == TAILQ_NEXT(m, pageq));
	TAILQ_REMOVE(&vm_page_queues[queue].pl,
		     &marker, pageq);
	return (unchanged);
}

/*
 * vm_pageout_clean:
 *
 * Clean the page and remove it from the laundry.
 * 
 * We set the busy bit to cause potential page faults on this page to
 * block.  Note the careful timing, however, the busy bit isn't set till
 * late and we cannot do anything that will mess with the page.
 */
static int
vm_pageout_clean(m)
	vm_page_t m;
{
	vm_object_t object;
	vm_page_t mc[2*vm_pageout_page_count];
	int pageout_count;
	int ib, is, page_base;
	vm_pindex_t pindex = m->pindex;

	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);

	/*
	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
	 * with the new swapper, but we could have serious problems paging
	 * out other object types if there is insufficient memory.  
	 *
	 * Unfortunately, checking free memory here is far too late, so the
	 * check has been moved up a procedural level.
	 */

	/*
	 * Don't mess with the page if it's busy, held, or special
	 */
	if ((m->hold_count != 0) ||
	    ((m->busy != 0) || (m->oflags & VPO_BUSY) ||
	     (m->flags & PG_UNMANAGED))) {
		return 0;
	}

	mc[vm_pageout_page_count] = m;
	pageout_count = 1;
	page_base = vm_pageout_page_count;
	ib = 1;
	is = 1;

	/*
	 * Scan object for clusterable pages.
	 *
	 * We can cluster ONLY if: ->> the page is NOT
	 * clean, wired, busy, held, or mapped into a
	 * buffer, and one of the following:
	 * 1) The page is inactive, or a seldom used
	 *    active page.
	 * -or-
	 * 2) we force the issue.
	 *
	 * During heavy mmap/modification loads the pageout
	 * daemon can really fragment the underlying file
	 * due to flushing pages out of order and not trying
	 * align the clusters (which leave sporatic out-of-order
	 * holes).  To solve this problem we do the reverse scan
	 * first and attempt to align our cluster, then do a 
	 * forward scan if room remains.
	 */
	object = m->object;
more:
	while (ib && pageout_count < vm_pageout_page_count) {
		vm_page_t p;

		if (ib > pindex) {
			ib = 0;
			break;
		}

		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
			ib = 0;
			break;
		}
		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
		    (p->oflags & VPO_BUSY) || p->busy ||
		    (p->flags & PG_UNMANAGED)) {
			ib = 0;
			break;
		}
		vm_page_test_dirty(p);
		if ((p->dirty & p->valid) == 0 ||
		    p->queue != PQ_INACTIVE ||
		    p->wire_count != 0 ||	/* may be held by buf cache */
		    p->hold_count != 0) {	/* may be undergoing I/O */
			ib = 0;
			break;
		}
		mc[--page_base] = p;
		++pageout_count;
		++ib;
		/*
		 * alignment boundry, stop here and switch directions.  Do
		 * not clear ib.
		 */
		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
			break;
	}

	while (pageout_count < vm_pageout_page_count && 
	    pindex + is < object->size) {
		vm_page_t p;

		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
			break;
		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
		    (p->oflags & VPO_BUSY) || p->busy ||
		    (p->flags & PG_UNMANAGED)) {
			break;
		}
		vm_page_test_dirty(p);
		if ((p->dirty & p->valid) == 0 ||
		    p->queue != PQ_INACTIVE ||
		    p->wire_count != 0 ||	/* may be held by buf cache */
		    p->hold_count != 0) {	/* may be undergoing I/O */
			break;
		}
		mc[page_base + pageout_count] = p;
		++pageout_count;
		++is;
	}

	/*
	 * If we exhausted our forward scan, continue with the reverse scan
	 * when possible, even past a page boundry.  This catches boundry
	 * conditions.
	 */
	if (ib && pageout_count < vm_pageout_page_count)
		goto more;

	/*
	 * we allow reads during pageouts...
	 */
	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
}

/*
 * vm_pageout_flush() - launder the given pages
 *
 *	The given pages are laundered.  Note that we setup for the start of
 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
 *	reference count all in here rather then in the parent.  If we want
 *	the parent to do more sophisticated things we may have to change
 *	the ordering.
 */
int
vm_pageout_flush(vm_page_t *mc, int count, int flags)
{
	vm_object_t object = mc[0]->object;
	int pageout_status[count];
	int numpagedout = 0;
	int i;

	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
	/*
	 * Initiate I/O.  Bump the vm_page_t->busy counter and
	 * mark the pages read-only.
	 *
	 * We do not have to fixup the clean/dirty bits here... we can
	 * allow the pager to do it after the I/O completes.
	 *
	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
	 * edge case with file fragments.
	 */
	for (i = 0; i < count; i++) {
		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
			mc[i], i, count));
		vm_page_io_start(mc[i]);
		pmap_remove_write(mc[i]);
	}
	vm_page_unlock_queues();
	vm_object_pip_add(object, count);

	vm_pager_put_pages(object, mc, count,
	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
	    pageout_status);

	vm_page_lock_queues();
	for (i = 0; i < count; i++) {
		vm_page_t mt = mc[i];

		KASSERT((mt->flags & PG_WRITEABLE) == 0,
		    ("vm_pageout_flush: page %p is not write protected", mt));
		switch (pageout_status[i]) {
		case VM_PAGER_OK:
		case VM_PAGER_PEND:
			numpagedout++;
			break;
		case VM_PAGER_BAD:
			/*
			 * Page outside of range of object. Right now we
			 * essentially lose the changes by pretending it
			 * worked.
			 */
			pmap_clear_modify(mt);
			vm_page_undirty(mt);
			break;
		case VM_PAGER_ERROR:
		case VM_PAGER_FAIL:
			/*
			 * If page couldn't be paged out, then reactivate the
			 * page so it doesn't clog the inactive list.  (We
			 * will try paging out it again later).
			 */
			vm_page_activate(mt);
			break;
		case VM_PAGER_AGAIN:
			break;
		}

		/*
		 * If the operation is still going, leave the page busy to
		 * block all other accesses. Also, leave the paging in
		 * progress indicator set so that we don't attempt an object
		 * collapse.
		 */
		if (pageout_status[i] != VM_PAGER_PEND) {
			vm_object_pip_wakeup(object);
			vm_page_io_finish(mt);
			if (vm_page_count_severe())
				vm_page_try_to_cache(mt);
		}
	}
	return numpagedout;
}

#if !defined(NO_SWAPPING)
/*
 *	vm_pageout_object_deactivate_pages
 *
 *	deactivate enough pages to satisfy the inactive target
 *	requirements or if vm_page_proc_limit is set, then
 *	deactivate all of the pages in the object and its
 *	backing_objects.
 *
 *	The object and map must be locked.
 */
static void
vm_pageout_object_deactivate_pages(pmap, first_object, desired)
	pmap_t pmap;
	vm_object_t first_object;
	long desired;
{
	vm_object_t backing_object, object;
	vm_page_t p, next;
	int actcount, rcount, remove_mode;

	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
		return;
	for (object = first_object;; object = backing_object) {
		if (pmap_resident_count(pmap) <= desired)
			goto unlock_return;
		if (object->paging_in_progress)
			goto unlock_return;

		remove_mode = 0;
		if (object->shadow_count > 1)
			remove_mode = 1;
		/*
		 * scan the objects entire memory queue
		 */
		rcount = object->resident_page_count;
		p = TAILQ_FIRST(&object->memq);
		vm_page_lock_queues();
		while (p && (rcount-- > 0)) {
			if (pmap_resident_count(pmap) <= desired) {
				vm_page_unlock_queues();
				goto unlock_return;
			}
			next = TAILQ_NEXT(p, listq);
			cnt.v_pdpages++;
			if (p->wire_count != 0 ||
			    p->hold_count != 0 ||
			    p->busy != 0 ||
			    (p->oflags & VPO_BUSY) ||
			    (p->flags & PG_UNMANAGED) ||
			    !pmap_page_exists_quick(pmap, p)) {
				p = next;
				continue;
			}
			actcount = pmap_ts_referenced(p);
			if (actcount) {
				vm_page_flag_set(p, PG_REFERENCED);
			} else if (p->flags & PG_REFERENCED) {
				actcount = 1;
			}
			if ((p->queue != PQ_ACTIVE) &&
				(p->flags & PG_REFERENCED)) {
				vm_page_activate(p);
				p->act_count += actcount;
				vm_page_flag_clear(p, PG_REFERENCED);
			} else if (p->queue == PQ_ACTIVE) {
				if ((p->flags & PG_REFERENCED) == 0) {
					p->act_count -= min(p->act_count, ACT_DECLINE);
					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
						pmap_remove_all(p);
						vm_page_deactivate(p);
					} else {
						vm_pageq_requeue(p);
					}
				} else {
					vm_page_activate(p);
					vm_page_flag_clear(p, PG_REFERENCED);
					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
						p->act_count += ACT_ADVANCE;
					vm_pageq_requeue(p);
				}
			} else if (p->queue == PQ_INACTIVE) {
				pmap_remove_all(p);
			}
			p = next;
		}
		vm_page_unlock_queues();
		if ((backing_object = object->backing_object) == NULL)
			goto unlock_return;
		VM_OBJECT_LOCK(backing_object);
		if (object != first_object)
			VM_OBJECT_UNLOCK(object);
	}
unlock_return:
	if (object != first_object)
		VM_OBJECT_UNLOCK(object);
}

/*
 * deactivate some number of pages in a map, try to do it fairly, but
 * that is really hard to do.
 */
static void
vm_pageout_map_deactivate_pages(map, desired)
	vm_map_t map;
	long desired;
{
	vm_map_entry_t tmpe;
	vm_object_t obj, bigobj;
	int nothingwired;

	if (!vm_map_trylock(map))
		return;

	bigobj = NULL;
	nothingwired = TRUE;

	/*
	 * first, search out the biggest object, and try to free pages from
	 * that.
	 */
	tmpe = map->header.next;
	while (tmpe != &map->header) {
		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
			obj = tmpe->object.vm_object;
			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
				if (obj->shadow_count <= 1 &&
				    (bigobj == NULL ||
				     bigobj->resident_page_count < obj->resident_page_count)) {
					if (bigobj != NULL)
						VM_OBJECT_UNLOCK(bigobj);
					bigobj = obj;
				} else
					VM_OBJECT_UNLOCK(obj);
			}
		}
		if (tmpe->wired_count > 0)
			nothingwired = FALSE;
		tmpe = tmpe->next;
	}

	if (bigobj != NULL) {
		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
		VM_OBJECT_UNLOCK(bigobj);
	}
	/*
	 * Next, hunt around for other pages to deactivate.  We actually
	 * do this search sort of wrong -- .text first is not the best idea.
	 */
	tmpe = map->header.next;
	while (tmpe != &map->header) {
		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
			break;
		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
			obj = tmpe->object.vm_object;
			if (obj != NULL) {
				VM_OBJECT_LOCK(obj);
				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
				VM_OBJECT_UNLOCK(obj);
			}
		}
		tmpe = tmpe->next;
	}

	/*
	 * Remove all mappings if a process is swapped out, this will free page
	 * table pages.
	 */
	if (desired == 0 && nothingwired) {
		pmap_remove(vm_map_pmap(map), vm_map_min(map),
		    vm_map_max(map));
	}
	vm_map_unlock(map);
}
#endif		/* !defined(NO_SWAPPING) */

/*
 *	vm_pageout_scan does the dirty work for the pageout daemon.
 */
static void
vm_pageout_scan(int pass)
{
	vm_page_t m, next;
	struct vm_page marker;
	int page_shortage, maxscan, pcount;
	int addl_page_shortage, addl_page_shortage_init;
	struct proc *p, *bigproc;
	struct thread *td;
	vm_offset_t size, bigsize;
	vm_object_t object;
	int actcount, cache_cur, cache_first_failure;
	static int cache_last_free;
	int vnodes_skipped = 0;
	int maxlaunder;

	mtx_lock(&Giant);
	/*
	 * Decrease registered cache sizes.
	 */
	EVENTHANDLER_INVOKE(vm_lowmem, 0);
	/*
	 * We do this explicitly after the caches have been drained above.
	 */
	uma_reclaim();

	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);

	/*
	 * Calculate the number of pages we want to either free or move
	 * to the cache.
	 */
	page_shortage = vm_paging_target() + addl_page_shortage_init;

	/*
	 * Initialize our marker
	 */
	bzero(&marker, sizeof(marker));
	marker.flags = PG_FICTITIOUS | PG_MARKER;
	marker.oflags = VPO_BUSY;
	marker.queue = PQ_INACTIVE;
	marker.wire_count = 1;

	/*
	 * Start scanning the inactive queue for pages we can move to the
	 * cache or free.  The scan will stop when the target is reached or
	 * we have scanned the entire inactive queue.  Note that m->act_count
	 * is not used to form decisions for the inactive queue, only for the
	 * active queue.
	 *
	 * maxlaunder limits the number of dirty pages we flush per scan.
	 * For most systems a smaller value (16 or 32) is more robust under
	 * extreme memory and disk pressure because any unnecessary writes
	 * to disk can result in extreme performance degredation.  However,
	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
	 * used) will die horribly with limited laundering.  If the pageout
	 * daemon cannot clean enough pages in the first pass, we let it go
	 * all out in succeeding passes.
	 */
	if ((maxlaunder = vm_max_launder) <= 1)
		maxlaunder = 1;
	if (pass)
		maxlaunder = 10000;
	vm_page_lock_queues();
rescan0:
	addl_page_shortage = addl_page_shortage_init;
	maxscan = cnt.v_inactive_count;

	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
	     m != NULL && maxscan-- > 0 && page_shortage > 0;
	     m = next) {

		cnt.v_pdpages++;

		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
			goto rescan0;
		}

		next = TAILQ_NEXT(m, pageq);
		object = m->object;

		/*
		 * skip marker pages
		 */
		if (m->flags & PG_MARKER)
			continue;

		/*
		 * A held page may be undergoing I/O, so skip it.
		 */
		if (m->hold_count) {
			vm_pageq_requeue(m);
			addl_page_shortage++;
			continue;
		}
		/*
		 * Don't mess with busy pages, keep in the front of the
		 * queue, most likely are being paged out.
		 */
		if (!VM_OBJECT_TRYLOCK(object) &&
		    (!vm_pageout_fallback_object_lock(m, &next) ||
		     m->hold_count != 0)) {
			VM_OBJECT_UNLOCK(object);
			addl_page_shortage++;
			continue;
		}
		if (m->busy || (m->oflags & VPO_BUSY)) {
			VM_OBJECT_UNLOCK(object);
			addl_page_shortage++;
			continue;
		}

		/*
		 * If the object is not being used, we ignore previous 
		 * references.
		 */
		if (object->ref_count == 0) {
			vm_page_flag_clear(m, PG_REFERENCED);
			pmap_clear_reference(m);

		/*
		 * Otherwise, if the page has been referenced while in the 
		 * inactive queue, we bump the "activation count" upwards, 
		 * making it less likely that the page will be added back to 
		 * the inactive queue prematurely again.  Here we check the 
		 * page tables (or emulated bits, if any), given the upper 
		 * level VM system not knowing anything about existing 
		 * references.
		 */
		} else if (((m->flags & PG_REFERENCED) == 0) &&
			(actcount = pmap_ts_referenced(m))) {
			vm_page_activate(m);
			VM_OBJECT_UNLOCK(object);
			m->act_count += (actcount + ACT_ADVANCE);
			continue;
		}

		/*
		 * If the upper level VM system knows about any page 
		 * references, we activate the page.  We also set the 
		 * "activation count" higher than normal so that we will less 
		 * likely place pages back onto the inactive queue again.
		 */
		if ((m->flags & PG_REFERENCED) != 0) {
			vm_page_flag_clear(m, PG_REFERENCED);
			actcount = pmap_ts_referenced(m);
			vm_page_activate(m);
			VM_OBJECT_UNLOCK(object);
			m->act_count += (actcount + ACT_ADVANCE + 1);
			continue;
		}

		/*
		 * If the upper level VM system doesn't know anything about 
		 * the page being dirty, we have to check for it again.  As 
		 * far as the VM code knows, any partially dirty pages are 
		 * fully dirty.
		 */
		if (m->dirty == 0 && !pmap_is_modified(m)) {
			/*
			 * Avoid a race condition: Unless write access is
			 * removed from the page, another processor could
			 * modify it before all access is removed by the call
			 * to vm_page_cache() below.  If vm_page_cache() finds
			 * that the page has been modified when it removes all
			 * access, it panics because it cannot cache dirty
			 * pages.  In principle, we could eliminate just write
			 * access here rather than all access.  In the expected
			 * case, when there are no last instant modifications
			 * to the page, removing all access will be cheaper
			 * overall.
			 */
			if ((m->flags & PG_WRITEABLE) != 0)
				pmap_remove_all(m);
		} else {
			vm_page_dirty(m);
		}

		if (m->valid == 0) {
			/*
			 * Invalid pages can be easily freed
			 */
			vm_page_free(m);
			cnt.v_dfree++;
			--page_shortage;
		} else if (m->dirty == 0) {
			/*
			 * Clean pages can be placed onto the cache queue.
			 * This effectively frees them.
			 */
			vm_page_cache(m);
			--page_shortage;
		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
			/*
			 * Dirty pages need to be paged out, but flushing
			 * a page is extremely expensive verses freeing
			 * a clean page.  Rather then artificially limiting
			 * the number of pages we can flush, we instead give
			 * dirty pages extra priority on the inactive queue
			 * by forcing them to be cycled through the queue
			 * twice before being flushed, after which the
			 * (now clean) page will cycle through once more
			 * before being freed.  This significantly extends
			 * the thrash point for a heavily loaded machine.
			 */
			vm_page_flag_set(m, PG_WINATCFLS);
			vm_pageq_requeue(m);
		} else if (maxlaunder > 0) {
			/*
			 * We always want to try to flush some dirty pages if
			 * we encounter them, to keep the system stable.
			 * Normally this number is small, but under extreme
			 * pressure where there are insufficient clean pages
			 * on the inactive queue, we may have to go all out.
			 */
			int swap_pageouts_ok;
			struct vnode *vp = NULL;
			struct mount *mp;

			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
				swap_pageouts_ok = 1;
			} else {
				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
				vm_page_count_min());
										
			}

			/*
			 * We don't bother paging objects that are "dead".  
			 * Those objects are in a "rundown" state.
			 */
			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
				VM_OBJECT_UNLOCK(object);
				vm_pageq_requeue(m);
				continue;
			}

			/*
			 * Following operations may unlock
			 * vm_page_queue_mtx, invalidating the 'next'
			 * pointer.  To prevent an inordinate number
			 * of restarts we use our marker to remember
			 * our place.
			 *
			 */
			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
					   m, &marker, pageq);
			/*
			 * The object is already known NOT to be dead.   It
			 * is possible for the vget() to block the whole
			 * pageout daemon, but the new low-memory handling
			 * code should prevent it.
			 *
			 * The previous code skipped locked vnodes and, worse,
			 * reordered pages in the queue.  This results in
			 * completely non-deterministic operation and, on a
			 * busy system, can lead to extremely non-optimal
			 * pageouts.  For example, it can cause clean pages
			 * to be freed and dirty pages to be moved to the end
			 * of the queue.  Since dirty pages are also moved to
			 * the end of the queue once-cleaned, this gives
			 * way too large a weighting to defering the freeing
			 * of dirty pages.
			 *
			 * We can't wait forever for the vnode lock, we might
			 * deadlock due to a vn_read() getting stuck in
			 * vm_wait while holding this vnode.  We skip the 
			 * vnode if we can't get it in a reasonable amount
			 * of time.
			 */
			if (object->type == OBJT_VNODE) {
				vp = object->handle;
				mp = NULL;
				if (vp->v_type == VREG &&
				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
					++pageout_lock_miss;
					if (object->flags & OBJ_MIGHTBEDIRTY)
						vnodes_skipped++;
					vp = NULL;
					goto unlock_and_continue;
				}
				vm_page_unlock_queues();
				VI_LOCK(vp);
				VM_OBJECT_UNLOCK(object);
				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
				    LK_TIMELOCK, curthread)) {
					VM_OBJECT_LOCK(object);
					vm_page_lock_queues();
					++pageout_lock_miss;
					vn_finished_write(mp);
					if (object->flags & OBJ_MIGHTBEDIRTY)
						vnodes_skipped++;
					vp = NULL;
					goto unlock_and_continue;
				}
				VM_OBJECT_LOCK(object);
				vm_page_lock_queues();
				/*
				 * The page might have been moved to another
				 * queue during potential blocking in vget()
				 * above.  The page might have been freed and
				 * reused for another vnode.  The object might
				 * have been reused for another vnode.
				 */
				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
				    m->object != object ||
				    object->handle != vp ||
				    TAILQ_NEXT(m, pageq) != &marker) {
					if (object->flags & OBJ_MIGHTBEDIRTY)
						vnodes_skipped++;
					goto unlock_and_continue;
				}
	
				/*
				 * The page may have been busied during the
				 * blocking in vput();  We don't move the
				 * page back onto the end of the queue so that
				 * statistics are more correct if we don't.
				 */
				if (m->busy || (m->oflags & VPO_BUSY)) {
					goto unlock_and_continue;
				}

				/*
				 * If the page has become held it might
				 * be undergoing I/O, so skip it
				 */
				if (m->hold_count) {
					vm_pageq_requeue(m);
					if (object->flags & OBJ_MIGHTBEDIRTY)
						vnodes_skipped++;
					goto unlock_and_continue;
				}
			}

			/*
			 * If a page is dirty, then it is either being washed
			 * (but not yet cleaned) or it is still in the
			 * laundry.  If it is still in the laundry, then we
			 * start the cleaning operation. 
			 *
			 * decrement page_shortage on success to account for
			 * the (future) cleaned page.  Otherwise we could wind
			 * up laundering or cleaning too many pages.
			 */
			if (vm_pageout_clean(m) != 0) {
				--page_shortage;
				--maxlaunder;
			}
unlock_and_continue:
			VM_OBJECT_UNLOCK(object);
			if (vp) {
				vm_page_unlock_queues();
				vput(vp);
				vn_finished_write(mp);
				vm_page_lock_queues();
			}
			next = TAILQ_NEXT(&marker, pageq);
			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
				     &marker, pageq);
			continue;
		}
		VM_OBJECT_UNLOCK(object);
	}

	/*
	 * Compute the number of pages we want to try to move from the
	 * active queue to the inactive queue.
	 */
	page_shortage = vm_paging_target() +
		cnt.v_inactive_target - cnt.v_inactive_count;
	page_shortage += addl_page_shortage;

	/*
	 * Scan the active queue for things we can deactivate. We nominally
	 * track the per-page activity counter and use it to locate
	 * deactivation candidates.
	 */
	pcount = cnt.v_active_count;
	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);

	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {

		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
		    ("vm_pageout_scan: page %p isn't active", m));

		next = TAILQ_NEXT(m, pageq);
		object = m->object;
		if ((m->flags & PG_MARKER) != 0) {
			m = next;
			continue;
		}
		if (!VM_OBJECT_TRYLOCK(object) &&
		    !vm_pageout_fallback_object_lock(m, &next)) {
			VM_OBJECT_UNLOCK(object);
			m = next;
			continue;
		}

		/*
		 * Don't deactivate pages that are busy.
		 */
		if ((m->busy != 0) ||
		    (m->oflags & VPO_BUSY) ||
		    (m->hold_count != 0)) {
			VM_OBJECT_UNLOCK(object);
			vm_pageq_requeue(m);
			m = next;
			continue;
		}

		/*
		 * The count for pagedaemon pages is done after checking the
		 * page for eligibility...
		 */
		cnt.v_pdpages++;

		/*
		 * Check to see "how much" the page has been used.
		 */
		actcount = 0;
		if (object->ref_count != 0) {
			if (m->flags & PG_REFERENCED) {
				actcount += 1;
			}
			actcount += pmap_ts_referenced(m);
			if (actcount) {
				m->act_count += ACT_ADVANCE + actcount;
				if (m->act_count > ACT_MAX)
					m->act_count = ACT_MAX;
			}
		}

		/*
		 * Since we have "tested" this bit, we need to clear it now.
		 */
		vm_page_flag_clear(m, PG_REFERENCED);

		/*
		 * Only if an object is currently being used, do we use the
		 * page activation count stats.
		 */
		if (actcount && (object->ref_count != 0)) {
			vm_pageq_requeue(m);
		} else {
			m->act_count -= min(m->act_count, ACT_DECLINE);
			if (vm_pageout_algorithm ||
			    object->ref_count == 0 ||
			    m->act_count == 0) {
				page_shortage--;
				if (object->ref_count == 0) {
					pmap_remove_all(m);
					if (m->dirty == 0)
						vm_page_cache(m);
					else
						vm_page_deactivate(m);
				} else {
					vm_page_deactivate(m);
				}
			} else {
				vm_pageq_requeue(m);
			}
		}
		VM_OBJECT_UNLOCK(object);
		m = next;
	}

	/*
	 * We try to maintain some *really* free pages, this allows interrupt
	 * code to be guaranteed space.  Since both cache and free queues 
	 * are considered basically 'free', moving pages from cache to free
	 * does not effect other calculations.
	 */
	cache_cur = cache_last_free;
	cache_first_failure = -1;
	while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
	    (cache_cur + PQ_PRIME2) & PQ_COLORMASK) != cache_first_failure) {
		TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
		    pageq) {
			KASSERT(m->dirty == 0,
			    ("Found dirty cache page %p", m));
			KASSERT(!pmap_page_is_mapped(m),
			    ("Found mapped cache page %p", m));
			KASSERT((m->flags & PG_UNMANAGED) == 0,
			    ("Found unmanaged cache page %p", m));
			KASSERT(m->wire_count == 0,
			    ("Found wired cache page %p", m));
			if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
			    m->object)) {
				KASSERT((m->oflags & VPO_BUSY) == 0 &&
				    m->busy == 0, ("Found busy cache page %p",
				    m));
				vm_page_free(m);
				VM_OBJECT_UNLOCK(object);
				cnt.v_dfree++;
				cache_last_free = cache_cur;
				cache_first_failure = -1;
				break;
			}
		}
		if (m == NULL && cache_first_failure == -1)
			cache_first_failure = cache_cur;
	}
	vm_page_unlock_queues();
#if !defined(NO_SWAPPING)
	/*
	 * Idle process swapout -- run once per second.
	 */
	if (vm_swap_idle_enabled) {
		static long lsec;
		if (time_second != lsec) {
			vm_pageout_req_swapout |= VM_SWAP_IDLE;
			vm_req_vmdaemon();
			lsec = time_second;
		}
	}
#endif
		
	/*
	 * If we didn't get enough free pages, and we have skipped a vnode
	 * in a writeable object, wakeup the sync daemon.  And kick swapout
	 * if we did not get enough free pages.
	 */
	if (vm_paging_target() > 0) {
		if (vnodes_skipped && vm_page_count_min())
			(void) speedup_syncer();
#if !defined(NO_SWAPPING)
		if (vm_swap_enabled && vm_page_count_target()) {
			vm_req_vmdaemon();
			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
		}
#endif
	}

	/*
	 * If we are critically low on one of RAM or swap and low on
	 * the other, kill the largest process.  However, we avoid
	 * doing this on the first pass in order to give ourselves a
	 * chance to flush out dirty vnode-backed pages and to allow
	 * active pages to be moved to the inactive queue and reclaimed.
	 *
	 * We keep the process bigproc locked once we find it to keep anyone
	 * from messing with it; however, there is a possibility of
	 * deadlock if process B is bigproc and one of it's child processes
	 * attempts to propagate a signal to B while we are waiting for A's
	 * lock while walking this list.  To avoid this, we don't block on
	 * the process lock but just skip a process if it is already locked.
	 */
	if (pass != 0 &&
	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
	     (swap_pager_full && vm_paging_target() > 0))) {
		bigproc = NULL;
		bigsize = 0;
		sx_slock(&allproc_lock);
		FOREACH_PROC_IN_SYSTEM(p) {
			int breakout;

			if (PROC_TRYLOCK(p) == 0)
				continue;
			/*
			 * If this is a system or protected process, skip it.
			 */
			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
			    (p->p_flag & P_PROTECTED) ||
			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
				PROC_UNLOCK(p);
				continue;
			}
			/*
			 * If the process is in a non-running type state,
			 * don't touch it.  Check all the threads individually.
			 */
			mtx_lock_spin(&sched_lock);
			breakout = 0;
			FOREACH_THREAD_IN_PROC(p, td) {
				if (!TD_ON_RUNQ(td) &&
				    !TD_IS_RUNNING(td) &&
				    !TD_IS_SLEEPING(td)) {
					breakout = 1;
					break;
				}
			}
			if (breakout) {
				mtx_unlock_spin(&sched_lock);
				PROC_UNLOCK(p);
				continue;
			}
			mtx_unlock_spin(&sched_lock);
			/*
			 * get the process size
			 */
			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
				PROC_UNLOCK(p);
				continue;
			}
			size = vmspace_swap_count(p->p_vmspace);
			vm_map_unlock_read(&p->p_vmspace->vm_map);
			size += vmspace_resident_count(p->p_vmspace);
			/*
			 * if the this process is bigger than the biggest one
			 * remember it.
			 */
			if (size > bigsize) {
				if (bigproc != NULL)
					PROC_UNLOCK(bigproc);
				bigproc = p;
				bigsize = size;
			} else
				PROC_UNLOCK(p);
		}
		sx_sunlock(&allproc_lock);
		if (bigproc != NULL) {
			killproc(bigproc, "out of swap space");
			mtx_lock_spin(&sched_lock);
			sched_nice(bigproc, PRIO_MIN);
			mtx_unlock_spin(&sched_lock);
			PROC_UNLOCK(bigproc);
			wakeup(&cnt.v_free_count);
		}
	}
	mtx_unlock(&Giant);
}

/*
 * This routine tries to maintain the pseudo LRU active queue,
 * so that during long periods of time where there is no paging,
 * that some statistic accumulation still occurs.  This code
 * helps the situation where paging just starts to occur.
 */
static void
vm_pageout_page_stats()
{
	vm_object_t object;
	vm_page_t m,next;
	int pcount,tpcount;		/* Number of pages to check */
	static int fullintervalcount = 0;
	int page_shortage;

	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
	page_shortage = 
	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);

	if (page_shortage <= 0)
		return;

	pcount = cnt.v_active_count;
	fullintervalcount += vm_pageout_stats_interval;
	if (fullintervalcount < vm_pageout_full_stats_interval) {
		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
		if (pcount > tpcount)
			pcount = tpcount;
	} else {
		fullintervalcount = 0;
	}

	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
	while ((m != NULL) && (pcount-- > 0)) {
		int actcount;

		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
		    ("vm_pageout_page_stats: page %p isn't active", m));

		next = TAILQ_NEXT(m, pageq);
		object = m->object;

		if ((m->flags & PG_MARKER) != 0) {
			m = next;
			continue;
		}
		if (!VM_OBJECT_TRYLOCK(object) &&
		    !vm_pageout_fallback_object_lock(m, &next)) {
			VM_OBJECT_UNLOCK(object);
			m = next;
			continue;
		}

		/*
		 * Don't deactivate pages that are busy.
		 */
		if ((m->busy != 0) ||
		    (m->oflags & VPO_BUSY) ||
		    (m->hold_count != 0)) {
			VM_OBJECT_UNLOCK(object);
			vm_pageq_requeue(m);
			m = next;
			continue;
		}

		actcount = 0;
		if (m->flags & PG_REFERENCED) {
			vm_page_flag_clear(m, PG_REFERENCED);
			actcount += 1;
		}

		actcount += pmap_ts_referenced(m);
		if (actcount) {
			m->act_count += ACT_ADVANCE + actcount;
			if (m->act_count > ACT_MAX)
				m->act_count = ACT_MAX;
			vm_pageq_requeue(m);
		} else {
			if (m->act_count == 0) {
				/*
				 * We turn off page access, so that we have
				 * more accurate RSS stats.  We don't do this
				 * in the normal page deactivation when the
				 * system is loaded VM wise, because the
				 * cost of the large number of page protect
				 * operations would be higher than the value
				 * of doing the operation.
				 */
				pmap_remove_all(m);
				vm_page_deactivate(m);
			} else {
				m->act_count -= min(m->act_count, ACT_DECLINE);
				vm_pageq_requeue(m);
			}
		}
		VM_OBJECT_UNLOCK(object);
		m = next;
	}
}

/*
 *	vm_pageout is the high level pageout daemon.
 */
static void
vm_pageout()
{
	int error, pass;

	/*
	 * Initialize some paging parameters.
	 */
	cnt.v_interrupt_free_min = 2;
	if (cnt.v_page_count < 2000)
		vm_pageout_page_count = 8;

	/*
	 * v_free_reserved needs to include enough for the largest
	 * swap pager structures plus enough for any pv_entry structs
	 * when paging. 
	 */
	if (cnt.v_page_count > 1024)
		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
	else
		cnt.v_free_min = 4;
	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
	    cnt.v_interrupt_free_min;
	cnt.v_free_reserved = vm_pageout_page_count +
	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_NUMCOLORS;
	cnt.v_free_severe = cnt.v_free_min / 2;
	cnt.v_free_min += cnt.v_free_reserved;
	cnt.v_free_severe += cnt.v_free_reserved;

	/*
	 * v_free_target and v_cache_min control pageout hysteresis.  Note
	 * that these are more a measure of the VM cache queue hysteresis
	 * then the VM free queue.  Specifically, v_free_target is the
	 * high water mark (free+cache pages).
	 *
	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
	 * low water mark, while v_free_min is the stop.  v_cache_min must
	 * be big enough to handle memory needs while the pageout daemon
	 * is signalled and run to free more pages.
	 */
	if (cnt.v_free_count > 6144)
		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
	else
		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;

	if (cnt.v_free_count > 2048) {
		cnt.v_cache_min = cnt.v_free_target;
		cnt.v_cache_max = 2 * cnt.v_cache_min;
		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
	} else {
		cnt.v_cache_min = 0;
		cnt.v_cache_max = 0;
		cnt.v_inactive_target = cnt.v_free_count / 4;
	}
	if (cnt.v_inactive_target > cnt.v_free_count / 3)
		cnt.v_inactive_target = cnt.v_free_count / 3;

	/* XXX does not really belong here */
	if (vm_page_max_wired == 0)
		vm_page_max_wired = cnt.v_free_count / 3;

	if (vm_pageout_stats_max == 0)
		vm_pageout_stats_max = cnt.v_free_target;

	/*
	 * Set interval in seconds for stats scan.
	 */
	if (vm_pageout_stats_interval == 0)
		vm_pageout_stats_interval = 5;
	if (vm_pageout_full_stats_interval == 0)
		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;

	swap_pager_swap_init();
	pass = 0;
	/*
	 * The pageout daemon is never done, so loop forever.
	 */
	while (TRUE) {
		/*
		 * If we have enough free memory, wakeup waiters.  Do
		 * not clear vm_pages_needed until we reach our target,
		 * otherwise we may be woken up over and over again and
		 * waste a lot of cpu.
		 */
		mtx_lock(&vm_page_queue_free_mtx);
		if (vm_pages_needed && !vm_page_count_min()) {
			if (!vm_paging_needed())
				vm_pages_needed = 0;
			wakeup(&cnt.v_free_count);
		}
		if (vm_pages_needed) {
			/*
			 * Still not done, take a second pass without waiting
			 * (unlimited dirty cleaning), otherwise sleep a bit
			 * and try again.
			 */
			++pass;
			if (pass > 1)
				msleep(&vm_pages_needed,
				    &vm_page_queue_free_mtx, PVM, "psleep",
				    hz / 2);
		} else {
			/*
			 * Good enough, sleep & handle stats.  Prime the pass
			 * for the next run.
			 */
			if (pass > 1)
				pass = 1;
			else
				pass = 0;
			error = msleep(&vm_pages_needed,
			    &vm_page_queue_free_mtx, PVM, "psleep",
			    vm_pageout_stats_interval * hz);
			if (error && !vm_pages_needed) {
				mtx_unlock(&vm_page_queue_free_mtx);
				pass = 0;
				vm_page_lock_queues();
				vm_pageout_page_stats();
				vm_page_unlock_queues();
				continue;
			}
		}
		if (vm_pages_needed)
			cnt.v_pdwakeups++;
		mtx_unlock(&vm_page_queue_free_mtx);
		vm_pageout_scan(pass);
	}
}

/*
 * Unless the free page queue lock is held by the caller, this function
 * should be regarded as advisory.  Specifically, the caller should
 * not msleep() on &cnt.v_free_count following this function unless
 * the free page queue lock is held until the msleep() is performed.
 */
void
pagedaemon_wakeup()
{

	if (!vm_pages_needed && curthread->td_proc != pageproc) {
		vm_pages_needed = 1;
		wakeup(&vm_pages_needed);
	}
}

#if !defined(NO_SWAPPING)
static void
vm_req_vmdaemon()
{
	static int lastrun = 0;

	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
		wakeup(&vm_daemon_needed);
		lastrun = ticks;
	}
}

static void
vm_daemon()
{
	struct rlimit rsslim;
	struct proc *p;
	struct thread *td;
	int breakout;

	mtx_lock(&Giant);
	while (TRUE) {
		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
		if (vm_pageout_req_swapout) {
			swapout_procs(vm_pageout_req_swapout);
			vm_pageout_req_swapout = 0;
		}
		/*
		 * scan the processes for exceeding their rlimits or if
		 * process is swapped out -- deactivate pages
		 */
		sx_slock(&allproc_lock);
		FOREACH_PROC_IN_SYSTEM(p) {
			vm_pindex_t limit, size;

			/*
			 * if this is a system process or if we have already
			 * looked at this process, skip it.
			 */
			PROC_LOCK(p);
			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
				PROC_UNLOCK(p);
				continue;
			}
			/*
			 * if the process is in a non-running type state,
			 * don't touch it.
			 */
			mtx_lock_spin(&sched_lock);
			breakout = 0;
			FOREACH_THREAD_IN_PROC(p, td) {
				if (!TD_ON_RUNQ(td) &&
				    !TD_IS_RUNNING(td) &&
				    !TD_IS_SLEEPING(td)) {
					breakout = 1;
					break;
				}
			}
			mtx_unlock_spin(&sched_lock);
			if (breakout) {
				PROC_UNLOCK(p);
				continue;
			}
			/*
			 * get a limit
			 */
			lim_rlimit(p, RLIMIT_RSS, &rsslim);
			limit = OFF_TO_IDX(
			    qmin(rsslim.rlim_cur, rsslim.rlim_max));

			/*
			 * let processes that are swapped out really be
			 * swapped out set the limit to nothing (will force a
			 * swap-out.)
			 */
			if ((p->p_sflag & PS_INMEM) == 0)
				limit = 0;	/* XXX */
			PROC_UNLOCK(p);

			size = vmspace_resident_count(p->p_vmspace);
			if (limit >= 0 && size >= limit) {
				vm_pageout_map_deactivate_pages(
				    &p->p_vmspace->vm_map, limit);
			}
		}
		sx_sunlock(&allproc_lock);
	}
}
#endif			/* !defined(NO_SWAPPING) */
OpenPOWER on IntegriCloud