summaryrefslogtreecommitdiffstats
path: root/sys/vm/vm_page.c
blob: ab1d17b878f5cdaa65ff0ba00de35e5f96a325bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
/*
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
 *	$Id: vm_page.c,v 1.25 1995/03/18 01:04:36 davidg Exp $
 */

/*
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	Resident memory management module.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>

#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>

/*
 *	Associated with page of user-allocatable memory is a
 *	page structure.
 */

struct pglist *vm_page_buckets;	/* Array of buckets */
int vm_page_bucket_count = 0;	/* How big is array? */
int vm_page_hash_mask;		/* Mask for hash function */
simple_lock_data_t bucket_lock;	/* lock for all buckets XXX */

struct pglist vm_page_queue_free;
struct pglist vm_page_queue_active;
struct pglist vm_page_queue_inactive;
struct pglist vm_page_queue_cache;
simple_lock_data_t vm_page_queue_lock;
simple_lock_data_t vm_page_queue_free_lock;

/* has physical page allocation been initialized? */
boolean_t vm_page_startup_initialized;

vm_page_t vm_page_array;
int vm_page_array_size;
long first_page;
long last_page;
vm_offset_t first_phys_addr;
vm_offset_t last_phys_addr;
vm_size_t page_mask;
int page_shift;

/*
 * map of contiguous valid DEV_BSIZE chunks in a page
 * (this list is valid for page sizes upto 16*DEV_BSIZE)
 */
static u_short vm_page_dev_bsize_chunks[] = {
	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};


/*
 *	vm_set_page_size:
 *
 *	Sets the page size, perhaps based upon the memory
 *	size.  Must be called before any use of page-size
 *	dependent functions.
 *
 *	Sets page_shift and page_mask from cnt.v_page_size.
 */
void 
vm_set_page_size()
{

	if (cnt.v_page_size == 0)
		cnt.v_page_size = DEFAULT_PAGE_SIZE;
	page_mask = cnt.v_page_size - 1;
	if ((page_mask & cnt.v_page_size) != 0)
		panic("vm_set_page_size: page size not a power of two");
	for (page_shift = 0;; page_shift++)
		if ((1 << page_shift) == cnt.v_page_size)
			break;
}

/*
 *	vm_page_startup:
 *
 *	Initializes the resident memory module.
 *
 *	Allocates memory for the page cells, and
 *	for the object/offset-to-page hash table headers.
 *	Each page cell is initialized and placed on the free list.
 */

vm_offset_t
vm_page_startup(starta, enda, vaddr)
	register vm_offset_t starta;
	vm_offset_t enda;
	register vm_offset_t vaddr;
{
	register vm_offset_t mapped;
	register vm_page_t m;
	register struct pglist *bucket;
	vm_size_t npages, page_range;
	register vm_offset_t new_start;
	int i;
	vm_offset_t pa;
	int nblocks;
	vm_offset_t first_managed_page;

	/* the biggest memory array is the second group of pages */
	vm_offset_t start;
	vm_offset_t biggestone, biggestsize;

	vm_offset_t total;

	total = 0;
	biggestsize = 0;
	biggestone = 0;
	nblocks = 0;
	vaddr = round_page(vaddr);

	for (i = 0; phys_avail[i + 1]; i += 2) {
		phys_avail[i] = round_page(phys_avail[i]);
		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
	}

	for (i = 0; phys_avail[i + 1]; i += 2) {
		int size = phys_avail[i + 1] - phys_avail[i];

		if (size > biggestsize) {
			biggestone = i;
			biggestsize = size;
		}
		++nblocks;
		total += size;
	}

	start = phys_avail[biggestone];


	/*
	 * Initialize the locks
	 */

	simple_lock_init(&vm_page_queue_free_lock);
	simple_lock_init(&vm_page_queue_lock);

	/*
	 * Initialize the queue headers for the free queue, the active queue
	 * and the inactive queue.
	 */

	TAILQ_INIT(&vm_page_queue_free);
	TAILQ_INIT(&vm_page_queue_active);
	TAILQ_INIT(&vm_page_queue_inactive);
	TAILQ_INIT(&vm_page_queue_cache);

	/*
	 * Allocate (and initialize) the hash table buckets.
	 * 
	 * The number of buckets MUST BE a power of 2, and the actual value is
	 * the next power of 2 greater than the number of physical pages in
	 * the system.
	 * 
	 * Note: This computation can be tweaked if desired.
	 */
	vm_page_buckets = (struct pglist *) vaddr;
	bucket = vm_page_buckets;
	if (vm_page_bucket_count == 0) {
		vm_page_bucket_count = 1;
		while (vm_page_bucket_count < atop(total))
			vm_page_bucket_count <<= 1;
	}
	vm_page_hash_mask = vm_page_bucket_count - 1;

	/*
	 * Validate these addresses.
	 */

	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
	new_start = round_page(new_start);
	mapped = vaddr;
	vaddr = pmap_map(mapped, start, new_start,
	    VM_PROT_READ | VM_PROT_WRITE);
	start = new_start;
	bzero((caddr_t) mapped, vaddr - mapped);
	mapped = vaddr;

	for (i = 0; i < vm_page_bucket_count; i++) {
		TAILQ_INIT(bucket);
		bucket++;
	}

	simple_lock_init(&bucket_lock);

	/*
	 * round (or truncate) the addresses to our page size.
	 */

	/*
	 * Pre-allocate maps and map entries that cannot be dynamically
	 * allocated via malloc().  The maps include the kernel_map and
	 * kmem_map which must be initialized before malloc() will work
	 * (obviously).  Also could include pager maps which would be
	 * allocated before kmeminit.
	 * 
	 * Allow some kernel map entries... this should be plenty since people
	 * shouldn't be cluttering up the kernel map (they should use their
	 * own maps).
	 */

	kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
	    MAX_KMAPENT * sizeof(struct vm_map_entry);
	kentry_data_size = round_page(kentry_data_size);
	kentry_data = (vm_offset_t) vaddr;
	vaddr += kentry_data_size;

	/*
	 * Validate these zone addresses.
	 */

	new_start = start + (vaddr - mapped);
	pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE);
	bzero((caddr_t) mapped, (vaddr - mapped));
	start = round_page(new_start);

	/*
	 * Compute the number of pages of memory that will be available for
	 * use (taking into account the overhead of a page structure per
	 * page).
	 */

	first_page = phys_avail[0] / PAGE_SIZE;

	/* for VM_PAGE_CHECK() */
	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;

	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
	npages = (total - (page_range * sizeof(struct vm_page)) -
	    (start - phys_avail[biggestone])) / PAGE_SIZE;

	/*
	 * Initialize the mem entry structures now, and put them in the free
	 * queue.
	 */

	vm_page_array = (vm_page_t) vaddr;
	mapped = vaddr;


	/*
	 * Validate these addresses.
	 */

	new_start = round_page(start + page_range * sizeof(struct vm_page));
	mapped = pmap_map(mapped, start, new_start,
	    VM_PROT_READ | VM_PROT_WRITE);
	start = new_start;

	first_managed_page = start / PAGE_SIZE;

	/*
	 * Clear all of the page structures
	 */
	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
	vm_page_array_size = page_range;

	cnt.v_page_count = 0;
	cnt.v_free_count = 0;
	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
		if (i == biggestone)
			pa = ptoa(first_managed_page);
		else
			pa = phys_avail[i];
		while (pa < phys_avail[i + 1] && npages-- > 0) {
			++cnt.v_page_count;
			++cnt.v_free_count;
			m = PHYS_TO_VM_PAGE(pa);
			m->flags = PG_FREE;
			vm_page_set_clean(m, 0, PAGE_SIZE);
			m->object = 0;
			m->phys_addr = pa;
			m->hold_count = 0;
			TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
			pa += PAGE_SIZE;
		}
	}

	/*
	 * Initialize vm_pages_needed lock here - don't wait for pageout
	 * daemon	XXX
	 */
	simple_lock_init(&vm_pages_needed_lock);

	return (mapped);
}

/*
 *	vm_page_hash:
 *
 *	Distributes the object/offset key pair among hash buckets.
 *
 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
 */
inline const int
vm_page_hash(object, offset)
	vm_object_t object;
	vm_offset_t offset;
{
	return ((unsigned) object + offset / NBPG) & vm_page_hash_mask;
}

/*
 *	vm_page_insert:		[ internal use only ]
 *
 *	Inserts the given mem entry into the object/object-page
 *	table and object list.
 *
 *	The object and page must be locked, and must be splhigh.
 */

inline void 
vm_page_insert(mem, object, offset)
	register vm_page_t mem;
	register vm_object_t object;
	register vm_offset_t offset;
{
	register struct pglist *bucket;

	VM_PAGE_CHECK(mem);

	if (mem->flags & PG_TABLED)
		panic("vm_page_insert: already inserted");

	/*
	 * Record the object/offset pair in this page
	 */

	mem->object = object;
	mem->offset = offset;

	/*
	 * Insert it into the object_object/offset hash table
	 */

	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
	simple_lock(&bucket_lock);
	TAILQ_INSERT_TAIL(bucket, mem, hashq);
	simple_unlock(&bucket_lock);

	/*
	 * Now link into the object's list of backed pages.
	 */

	TAILQ_INSERT_TAIL(&object->memq, mem, listq);
	mem->flags |= PG_TABLED;

	/*
	 * And show that the object has one more resident page.
	 */

	object->resident_page_count++;
}

/*
 *	vm_page_remove:		[ internal use only ]
 *				NOTE: used by device pager as well -wfj
 *
 *	Removes the given mem entry from the object/offset-page
 *	table and the object page list.
 *
 *	The object and page must be locked, and at splhigh.
 */

inline void 
vm_page_remove(mem)
	register vm_page_t mem;
{
	register struct pglist *bucket;

	VM_PAGE_CHECK(mem);

	if (!(mem->flags & PG_TABLED))
		return;

	/*
	 * Remove from the object_object/offset hash table
	 */

	bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
	simple_lock(&bucket_lock);
	TAILQ_REMOVE(bucket, mem, hashq);
	simple_unlock(&bucket_lock);

	/*
	 * Now remove from the object's list of backed pages.
	 */

	TAILQ_REMOVE(&mem->object->memq, mem, listq);

	/*
	 * And show that the object has one fewer resident page.
	 */

	mem->object->resident_page_count--;

	mem->flags &= ~PG_TABLED;
}

/*
 *	vm_page_lookup:
 *
 *	Returns the page associated with the object/offset
 *	pair specified; if none is found, NULL is returned.
 *
 *	The object must be locked.  No side effects.
 */

vm_page_t 
vm_page_lookup(object, offset)
	register vm_object_t object;
	register vm_offset_t offset;
{
	register vm_page_t mem;
	register struct pglist *bucket;
	int s;

	/*
	 * Search the hash table for this object/offset pair
	 */

	bucket = &vm_page_buckets[vm_page_hash(object, offset)];

	s = splhigh();
	simple_lock(&bucket_lock);
	for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
		VM_PAGE_CHECK(mem);
		if ((mem->object == object) && (mem->offset == offset)) {
			simple_unlock(&bucket_lock);
			splx(s);
			return (mem);
		}
	}

	simple_unlock(&bucket_lock);
	splx(s);
	return (NULL);
}

/*
 *	vm_page_rename:
 *
 *	Move the given memory entry from its
 *	current object to the specified target object/offset.
 *
 *	The object must be locked.
 */
void 
vm_page_rename(mem, new_object, new_offset)
	register vm_page_t mem;
	register vm_object_t new_object;
	vm_offset_t new_offset;
{
	int s;

	if (mem->object == new_object)
		return;

	vm_page_lock_queues(); /* keep page from moving out from under pageout daemon */
	s = splhigh();
	vm_page_remove(mem);
	vm_page_insert(mem, new_object, new_offset);
	splx(s);
	vm_page_unlock_queues();
}

/*
 * vm_page_unqueue must be called at splhigh();
 */
inline void
vm_page_unqueue(vm_page_t mem)
{
	int origflags;

	origflags = mem->flags;

	if ((origflags & (PG_ACTIVE|PG_INACTIVE|PG_CACHE)) == 0)
		return;

	if (origflags & PG_ACTIVE) {
		TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
		cnt.v_active_count--;
		mem->flags &= ~PG_ACTIVE;
	} else if (origflags & PG_INACTIVE) {
		TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
		cnt.v_inactive_count--;
		mem->flags &= ~PG_INACTIVE;
	} else if (origflags & PG_CACHE) {
		TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
		cnt.v_cache_count--;
		mem->flags &= ~PG_CACHE;
		if (cnt.v_cache_count + cnt.v_free_count < cnt.v_free_reserved)
			pagedaemon_wakeup();
	}
	return;
}

/*
 *	vm_page_alloc:
 *
 *	Allocate and return a memory cell associated
 *	with this VM object/offset pair.
 *
 *	page_req classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs a page
 *	VM_ALLOC_INTERRUPT	interrupt time request
 *
 *	Object must be locked.
 */
vm_page_t
vm_page_alloc(object, offset, page_req)
	vm_object_t object;
	vm_offset_t offset;
	int page_req;
{
	register vm_page_t mem;
	int s;

	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
		page_req = VM_ALLOC_SYSTEM;
	};
		
	simple_lock(&vm_page_queue_free_lock);

	s = splhigh();

	mem = vm_page_queue_free.tqh_first;

	switch (page_req) {
	case VM_ALLOC_NORMAL:
		if (cnt.v_free_count >= cnt.v_free_reserved) {
			TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
			cnt.v_free_count--;
		} else {
			mem = vm_page_queue_cache.tqh_first;
			if (mem != NULL) {
				TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
				vm_page_remove(mem);
				cnt.v_cache_count--;
			} else {
				simple_unlock(&vm_page_queue_free_lock);
				splx(s);
				pagedaemon_wakeup();
				return (NULL);
			}
		}
		break;

	case VM_ALLOC_SYSTEM:
		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
		    ((cnt.v_cache_count == 0) &&
		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
			TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
			cnt.v_free_count--;
		} else {
			mem = vm_page_queue_cache.tqh_first;
			if (mem != NULL) {
				TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq);
				vm_page_remove(mem);
				cnt.v_cache_count--;
			} else {
				simple_unlock(&vm_page_queue_free_lock);
				splx(s);
				pagedaemon_wakeup();
				return (NULL);
			}
		}
		break;

	case VM_ALLOC_INTERRUPT:
		if (mem != NULL) {
			TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
			cnt.v_free_count--;
		} else {
			simple_unlock(&vm_page_queue_free_lock);
			splx(s);
			pagedaemon_wakeup();
			return NULL;
		}
		break;

	default:
		panic("vm_page_alloc: invalid allocation class");
	}

	simple_unlock(&vm_page_queue_free_lock);

	mem->flags = PG_BUSY;
	mem->wire_count = 0;
	mem->hold_count = 0;
	mem->act_count = 0;
	mem->busy = 0;
	mem->valid = 0;
	mem->dirty = 0;
	mem->bmapped = 0;

	/* XXX before splx until vm_page_insert is safe */
	vm_page_insert(mem, object, offset);

	splx(s);

	/*
	 * Don't wakeup too often - wakeup the pageout daemon when
	 * we would be nearly out of memory.
	 */
	if (((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) ||
	    (cnt.v_free_count < cnt.v_pageout_free_min))
		pagedaemon_wakeup();

	return (mem);
}

vm_offset_t
vm_page_alloc_contig(size, low, high, alignment)
	vm_offset_t size;
	vm_offset_t low;
	vm_offset_t high;
	vm_offset_t alignment;
{
	int i, s, start;
	vm_offset_t addr, phys, tmp_addr;
	vm_page_t pga = vm_page_array;

	if ((alignment & (alignment - 1)) != 0)
		panic("vm_page_alloc_contig: alignment must be a power of 2");

	start = 0;
	s = splhigh();
again:
	/*
	 * Find first page in array that is free, within range, and aligned.
	 */
	for (i = start; i < cnt.v_page_count; i++) {
		phys = VM_PAGE_TO_PHYS(&pga[i]);
		if (((pga[i].flags & PG_FREE) == PG_FREE) &&
		    (phys >= low) && (phys < high) &&
		    ((phys & (alignment - 1)) == 0))
			break;
	}

	/*
	 * If the above failed or we will exceed the upper bound, fail.
	 */
	if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
		splx(s);
		return (NULL);
	}
	start = i;

	/*
	 * Check successive pages for contiguous and free.
	 */
	for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
		if ((VM_PAGE_TO_PHYS(&pga[i]) !=
			(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
		    ((pga[i].flags & PG_FREE) != PG_FREE)) {
			start++;
			goto again;
		}
	}

	/*
	 * We've found a contiguous chunk that meets are requirements.
	 * Allocate kernel VM, unfree and assign the physical pages to it and
	 * return kernel VM pointer.
	 */
	tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);

	for (i = start; i < (start + size / PAGE_SIZE); i++) {
		vm_page_t m = &pga[i];

		TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
		cnt.v_free_count--;
		m->valid = VM_PAGE_BITS_ALL;
		m->flags = 0;
		m->dirty = 0;
		m->wire_count = 0;
		m->act_count = 0;
		m->bmapped = 0;
		m->busy = 0;
		vm_page_insert(m, kernel_object, tmp_addr - VM_MIN_KERNEL_ADDRESS);
		vm_page_wire(m);
		pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
		tmp_addr += PAGE_SIZE;
	}

	splx(s);
	return (addr);
}

/*
 *	vm_page_free:
 *
 *	Returns the given page to the free list,
 *	disassociating it with any VM object.
 *
 *	Object and page must be locked prior to entry.
 */
void 
vm_page_free(mem)
	register vm_page_t mem;
{
	int s;
	int flags;

	s = splhigh();
	vm_page_remove(mem);
	vm_page_unqueue(mem);

	flags = mem->flags;
	if (mem->bmapped || mem->busy || flags & (PG_BUSY|PG_FREE)) {
		if (flags & PG_FREE)
			panic("vm_page_free: freeing free page");
		printf("vm_page_free: offset(%d), bmapped(%d), busy(%d), PG_BUSY(%d)\n",
		    mem->offset, mem->bmapped, mem->busy, (flags & PG_BUSY) ? 1 : 0);
		panic("vm_page_free: freeing busy page");
	}

	if ((flags & PG_WANTED) != 0)
		wakeup((caddr_t) mem);
	if ((flags & PG_FICTITIOUS) == 0) {

		simple_lock(&vm_page_queue_free_lock);
		if (mem->wire_count) {
			if (mem->wire_count > 1) {
				printf("vm_page_free: wire count > 1 (%d)", mem->wire_count);
				panic("vm_page_free: invalid wire count");
			}
			cnt.v_wire_count--;
			mem->wire_count = 0;
		}
		mem->flags |= PG_FREE;
		TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);

		simple_unlock(&vm_page_queue_free_lock);
		splx(s);
		/*
		 * if pageout daemon needs pages, then tell it that there are
		 * some free.
		 */
		if (vm_pageout_pages_needed) {
			wakeup((caddr_t) &vm_pageout_pages_needed);
			vm_pageout_pages_needed = 0;
		}

		cnt.v_free_count++;
		/*
		 * wakeup processes that are waiting on memory if we hit a
		 * high water mark. And wakeup scheduler process if we have
		 * lots of memory. this process will swapin processes.
		 */
		if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
			wakeup((caddr_t) &cnt.v_free_count);
			wakeup((caddr_t) &proc0);
		}
	} else {
		splx(s);
	}
	cnt.v_tfree++;
}


/*
 *	vm_page_wire:
 *
 *	Mark this page as wired down by yet
 *	another map, removing it from paging queues
 *	as necessary.
 *
 *	The page queues must be locked.
 */
void 
vm_page_wire(mem)
	register vm_page_t mem;
{
	int s;
	VM_PAGE_CHECK(mem);

	if (mem->wire_count == 0) {
		s = splhigh();
		vm_page_unqueue(mem);
		splx(s);
		cnt.v_wire_count++;
	}
	mem->flags |= PG_WRITEABLE|PG_MAPPED;
	mem->wire_count++;
}

/*
 *	vm_page_unwire:
 *
 *	Release one wiring of this page, potentially
 *	enabling it to be paged again.
 *
 *	The page queues must be locked.
 */
void 
vm_page_unwire(mem)
	register vm_page_t mem;
{
	int s;

	VM_PAGE_CHECK(mem);

	s = splhigh();

	if (mem->wire_count)
		mem->wire_count--;
	if (mem->wire_count == 0) {
		TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
		cnt.v_active_count++;
		mem->flags |= PG_ACTIVE;
		cnt.v_wire_count--;
	}
	splx(s);
}

/*
 *	vm_page_deactivate:
 *
 *	Returns the given page to the inactive list,
 *	indicating that no physical maps have access
 *	to this page.  [Used by the physical mapping system.]
 *
 *	The page queues must be locked.
 */
void
vm_page_deactivate(m)
	register vm_page_t m;
{
	int spl;

	VM_PAGE_CHECK(m);

	/*
	 * Only move active pages -- ignore locked or already inactive ones.
	 * 
	 * XXX: sometimes we get pages which aren't wired down or on any queue -
	 * we need to put them on the inactive queue also, otherwise we lose
	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
	 */

	spl = splhigh();
	if (!(m->flags & PG_INACTIVE) && m->wire_count == 0 &&
	    m->hold_count == 0) {
		pmap_clear_reference(VM_PAGE_TO_PHYS(m));
		vm_page_unqueue(m);
		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
		m->flags |= PG_INACTIVE;
		cnt.v_inactive_count++;
		m->act_count = 0;
	}
	splx(spl);
}

/*
 * vm_page_cache
 *
 * Put the specified page onto the page cache queue (if appropriate).
 */

void 
vm_page_cache(m)
	register vm_page_t m;
{
	int s;

	VM_PAGE_CHECK(m);
	if ((m->flags & (PG_CACHE | PG_BUSY)) || m->busy || m->wire_count ||
	    m->bmapped)
		return;

	s = splhigh();
	vm_page_unqueue(m);
	vm_page_protect(m, VM_PROT_NONE);

	TAILQ_INSERT_TAIL(&vm_page_queue_cache, m, pageq);
	m->flags |= PG_CACHE;
	cnt.v_cache_count++;
	if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) {
		wakeup((caddr_t) &cnt.v_free_count);
		wakeup((caddr_t) &proc0);
	}
	if (vm_pageout_pages_needed) {
		wakeup((caddr_t) &vm_pageout_pages_needed);
		vm_pageout_pages_needed = 0;
	}

	splx(s);
}

/*
 *	vm_page_activate:
 *
 *	Put the specified page on the active list (if appropriate).
 *
 *	The page queues must be locked.
 */

void 
vm_page_activate(m)
	register vm_page_t m;
{
	int s;

	VM_PAGE_CHECK(m);

	s = splhigh();
	if (m->flags & PG_ACTIVE)
		panic("vm_page_activate: already active");

	vm_page_unqueue(m);

	if (m->wire_count == 0) {
		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
		m->flags |= PG_ACTIVE;
		TAILQ_REMOVE(&m->object->memq, m, listq);
		TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
		if (m->act_count < 5)
			m->act_count = 5;
		else if( m->act_count < ACT_MAX)
			m->act_count += 1;
		cnt.v_active_count++;
	}
	splx(s);
}

/*
 *	vm_page_zero_fill:
 *
 *	Zero-fill the specified page.
 *	Written as a standard pagein routine, to
 *	be used by the zero-fill object.
 */

boolean_t
vm_page_zero_fill(m)
	vm_page_t m;
{
	VM_PAGE_CHECK(m);

	pmap_zero_page(VM_PAGE_TO_PHYS(m));
	m->valid = VM_PAGE_BITS_ALL;
	return (TRUE);
}

/*
 *	vm_page_copy:
 *
 *	Copy one page to another
 */
void
vm_page_copy(src_m, dest_m)
	vm_page_t src_m;
	vm_page_t dest_m;
{
	VM_PAGE_CHECK(src_m);
	VM_PAGE_CHECK(dest_m);

	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
	dest_m->valid = VM_PAGE_BITS_ALL;
}


/*
 * mapping function for valid bits or for dirty bits in
 * a page
 */
inline int 
vm_page_bits(int base, int size)
{
	u_short chunk;

	if ((base == 0) && (size >= PAGE_SIZE))
		return VM_PAGE_BITS_ALL;
	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
	base = (base % PAGE_SIZE) / DEV_BSIZE;
	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
	return (chunk << base) & VM_PAGE_BITS_ALL;
}

/*
 * set a page (partially) valid
 */
void
vm_page_set_valid(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	m->valid |= vm_page_bits(base, size);
}

/*
 * set a page (partially) invalid
 */
void
vm_page_set_invalid(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	int bits;

	m->valid &= ~(bits = vm_page_bits(base, size));
	if (m->valid == 0)
		m->dirty &= ~bits;
}

/*
 * is (partial) page valid?
 */
int
vm_page_is_valid(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	int bits;

	if (m->valid && ((m->valid & (bits = vm_page_bits(base, size))) == bits))
		return 1;
	else
		return 0;
}


/*
 * set a page (partially) dirty
 */
void
vm_page_set_dirty(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	if ((base != 0) || (size != PAGE_SIZE)) {
		if (pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
			m->dirty = VM_PAGE_BITS_ALL;
			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
			return;
		}
		m->dirty |= vm_page_bits(base, size);
	} else {
		m->dirty = VM_PAGE_BITS_ALL;
		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
	}
}

void
vm_page_test_dirty(m)
	vm_page_t m;
{
	if ((m->dirty != VM_PAGE_BITS_ALL) &&
		pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
		m->dirty = VM_PAGE_BITS_ALL;
	}
}

/*
 * set a page (partially) clean
 */
void
vm_page_set_clean(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	m->dirty &= ~vm_page_bits(base, size);
}

/*
 * is (partial) page clean
 */
int
vm_page_is_clean(m, base, size)
	vm_page_t m;
	int base;
	int size;
{
	if (pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
		m->dirty = VM_PAGE_BITS_ALL;
		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
	}
	if ((m->dirty & m->valid & vm_page_bits(base, size)) == 0)
		return 1;
	else
		return 0;
}

void
print_page_info()
{
	printf("cnt.v_free_count: %d\n", cnt.v_free_count);
	printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
	printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
	printf("cnt.v_active_count: %d\n", cnt.v_active_count);
	printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
	printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
	printf("cnt.v_free_min: %d\n", cnt.v_free_min);
	printf("cnt.v_free_target: %d\n", cnt.v_free_target);
	printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
	printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
OpenPOWER on IntegriCloud