1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
|
/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Kernel memory management.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h> /* for ticks and hz */
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
vm_map_t kernel_map=0;
vm_map_t kmem_map=0;
vm_map_t exec_map=0;
vm_map_t pipe_map;
vm_map_t buffer_map=0;
const void *zero_region;
CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
#if defined(__arm__) || defined(__sparc64__)
&vm_max_kernel_address, 0,
#else
NULL, VM_MAX_KERNEL_ADDRESS,
#endif
"Max kernel address");
/*
* kmem_alloc_nofault:
*
* Allocate a virtual address range with no underlying object and
* no initial mapping to physical memory. Any mapping from this
* range to physical memory must be explicitly created prior to
* its use, typically with pmap_qenter(). Any attempt to create
* a mapping on demand through vm_fault() will result in a panic.
*/
vm_offset_t
kmem_alloc_nofault(map, size)
vm_map_t map;
vm_size_t size;
{
vm_offset_t addr;
int result;
size = round_page(size);
addr = vm_map_min(map);
result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
if (result != KERN_SUCCESS) {
return (0);
}
return (addr);
}
/*
* kmem_alloc_nofault_space:
*
* Allocate a virtual address range with no underlying object and
* no initial mapping to physical memory within the specified
* address space. Any mapping from this range to physical memory
* must be explicitly created prior to its use, typically with
* pmap_qenter(). Any attempt to create a mapping on demand
* through vm_fault() will result in a panic.
*/
vm_offset_t
kmem_alloc_nofault_space(map, size, find_space)
vm_map_t map;
vm_size_t size;
int find_space;
{
vm_offset_t addr;
int result;
size = round_page(size);
addr = vm_map_min(map);
result = vm_map_find(map, NULL, 0, &addr, size, find_space,
VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
if (result != KERN_SUCCESS) {
return (0);
}
return (addr);
}
/*
* Allocate wired-down memory in the kernel's address map
* or a submap.
*/
vm_offset_t
kmem_alloc(map, size)
vm_map_t map;
vm_size_t size;
{
vm_offset_t addr;
vm_offset_t offset;
size = round_page(size);
/*
* Use the kernel object for wired-down kernel pages. Assume that no
* region of the kernel object is referenced more than once.
*/
/*
* Locate sufficient space in the map. This will give us the final
* virtual address for the new memory, and thus will tell us the
* offset within the kernel map.
*/
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
vm_map_unlock(map);
return (0);
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(kernel_object);
vm_map_insert(map, kernel_object, offset, addr, addr + size,
VM_PROT_ALL, VM_PROT_ALL, 0);
vm_map_unlock(map);
/*
* And finally, mark the data as non-pageable.
*/
(void) vm_map_wire(map, addr, addr + size,
VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
return (addr);
}
/*
* Allocates a region from the kernel address map and physical pages
* within the specified address range to the kernel object. Creates a
* wired mapping from this region to these pages, and returns the
* region's starting virtual address. The allocated pages are not
* necessarily physically contiguous. If M_ZERO is specified through the
* given flags, then the pages are zeroed before they are mapped.
*/
vm_offset_t
kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
vm_paddr_t high, vm_memattr_t memattr)
{
vm_object_t object = kernel_object;
vm_offset_t addr;
vm_ooffset_t end_offset, offset;
vm_page_t m;
int pflags, tries;
size = round_page(size);
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
vm_map_unlock(map);
return (0);
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(object);
vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
VM_PROT_ALL, 0);
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY;
VM_OBJECT_LOCK(object);
end_offset = offset + size;
for (; offset < end_offset; offset += PAGE_SIZE) {
tries = 0;
retry:
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1,
low, high, PAGE_SIZE, 0, memattr);
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
vm_map_unlock(map);
vm_pageout_grow_cache(tries, low, high);
vm_map_lock(map);
VM_OBJECT_LOCK(object);
tries++;
goto retry;
}
/*
* Since the pages that were allocated by any previous
* iterations of this loop are not busy, they can be
* freed by vm_object_page_remove(), which is called
* by vm_map_delete().
*/
vm_map_delete(map, addr, addr + size);
vm_map_unlock(map);
return (0);
}
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
}
VM_OBJECT_UNLOCK(object);
vm_map_unlock(map);
vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
VM_MAP_WIRE_NOHOLES);
return (addr);
}
/*
* Allocates a region from the kernel address map and physically
* contiguous pages within the specified address range to the kernel
* object. Creates a wired mapping from this region to these pages, and
* returns the region's starting virtual address. If M_ZERO is specified
* through the given flags, then the pages are zeroed before they are
* mapped.
*/
vm_offset_t
kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr)
{
vm_object_t object = kernel_object;
vm_offset_t addr;
vm_ooffset_t offset;
vm_page_t end_m, m;
int pflags, tries;
size = round_page(size);
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
vm_map_unlock(map);
return (0);
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(object);
vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
VM_PROT_ALL, 0);
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY;
VM_OBJECT_LOCK(object);
tries = 0;
retry:
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
atop(size), low, high, alignment, boundary, memattr);
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
vm_map_unlock(map);
vm_pageout_grow_cache(tries, low, high);
vm_map_lock(map);
VM_OBJECT_LOCK(object);
tries++;
goto retry;
}
vm_map_delete(map, addr, addr + size);
vm_map_unlock(map);
return (0);
}
end_m = m + atop(size);
for (; m < end_m; m++) {
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
}
VM_OBJECT_UNLOCK(object);
vm_map_unlock(map);
vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
VM_MAP_WIRE_NOHOLES);
return (addr);
}
/*
* kmem_free:
*
* Release a region of kernel virtual memory allocated
* with kmem_alloc, and return the physical pages
* associated with that region.
*
* This routine may not block on kernel maps.
*/
void
kmem_free(map, addr, size)
vm_map_t map;
vm_offset_t addr;
vm_size_t size;
{
(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
}
/*
* kmem_suballoc:
*
* Allocates a map to manage a subrange
* of the kernel virtual address space.
*
* Arguments are as follows:
*
* parent Map to take range from
* min, max Returned endpoints of map
* size Size of range to find
* superpage_align Request that min is superpage aligned
*/
vm_map_t
kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
vm_size_t size, boolean_t superpage_align)
{
int ret;
vm_map_t result;
size = round_page(size);
*min = vm_map_min(parent);
ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
MAP_ACC_NO_CHARGE);
if (ret != KERN_SUCCESS)
panic("kmem_suballoc: bad status return of %d", ret);
*max = *min + size;
result = vm_map_create(vm_map_pmap(parent), *min, *max);
if (result == NULL)
panic("kmem_suballoc: cannot create submap");
if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
panic("kmem_suballoc: unable to change range to submap");
return (result);
}
/*
* kmem_malloc:
*
* Allocate wired-down memory in the kernel's address map for the higher
* level kernel memory allocator (kern/kern_malloc.c). We cannot use
* kmem_alloc() because we may need to allocate memory at interrupt
* level where we cannot block (canwait == FALSE).
*
* This routine has its own private kernel submap (kmem_map) and object
* (kmem_object). This, combined with the fact that only malloc uses
* this routine, ensures that we will never block in map or object waits.
*
* We don't worry about expanding the map (adding entries) since entries
* for wired maps are statically allocated.
*
* `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
* which we never free.
*/
vm_offset_t
kmem_malloc(map, size, flags)
vm_map_t map;
vm_size_t size;
int flags;
{
vm_offset_t addr;
int i, rv;
size = round_page(size);
addr = vm_map_min(map);
/*
* Locate sufficient space in the map. This will give us the final
* virtual address for the new memory, and thus will tell us the
* offset within the kernel map.
*/
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
vm_map_unlock(map);
if ((flags & M_NOWAIT) == 0) {
for (i = 0; i < 8; i++) {
EVENTHANDLER_INVOKE(vm_lowmem, 0);
uma_reclaim();
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map),
size, &addr) == 0) {
break;
}
vm_map_unlock(map);
tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
}
if (i == 8) {
panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
(long)size, (long)map->size);
}
} else {
return (0);
}
}
rv = kmem_back(map, addr, size, flags);
vm_map_unlock(map);
return (rv == KERN_SUCCESS ? addr : 0);
}
/*
* kmem_back:
*
* Allocate physical pages for the specified virtual address range.
*/
int
kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
{
vm_offset_t offset, i;
vm_map_entry_t entry;
vm_page_t m;
int pflags;
boolean_t found;
KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(kmem_object);
vm_map_insert(map, kmem_object, offset, addr, addr + size,
VM_PROT_ALL, VM_PROT_ALL, 0);
/*
* Assert: vm_map_insert() will never be able to extend the
* previous entry so vm_map_lookup_entry() will find a new
* entry exactly corresponding to this address range and it
* will have wired_count == 0.
*/
found = vm_map_lookup_entry(map, addr, &entry);
KASSERT(found && entry->start == addr && entry->end == addr + size &&
entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
== 0, ("kmem_back: entry not found or misaligned"));
pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
VM_OBJECT_LOCK(kmem_object);
for (i = 0; i < size; i += PAGE_SIZE) {
retry:
m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
/*
* Ran out of space, free everything up and return. Don't need
* to lock page queues here as we know that the pages we got
* aren't on any queues.
*/
if (m == NULL) {
if ((flags & M_NOWAIT) == 0) {
VM_OBJECT_UNLOCK(kmem_object);
entry->eflags |= MAP_ENTRY_IN_TRANSITION;
vm_map_unlock(map);
VM_WAIT;
vm_map_lock(map);
KASSERT(
(entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
MAP_ENTRY_IN_TRANSITION,
("kmem_back: volatile entry"));
entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
VM_OBJECT_LOCK(kmem_object);
goto retry;
}
/*
* Free the pages before removing the map entry.
* They are already marked busy. Calling
* vm_map_delete before the pages has been freed or
* unbusied will cause a deadlock.
*/
while (i != 0) {
i -= PAGE_SIZE;
m = vm_page_lookup(kmem_object,
OFF_TO_IDX(offset + i));
vm_page_unwire(m, 0);
vm_page_free(m);
}
VM_OBJECT_UNLOCK(kmem_object);
vm_map_delete(map, addr, addr + size);
return (KERN_NO_SPACE);
}
if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
KASSERT((m->oflags & VPO_UNMANAGED) != 0,
("kmem_malloc: page %p is managed", m));
}
VM_OBJECT_UNLOCK(kmem_object);
/*
* Mark map entry as non-pageable. Repeat the assert.
*/
KASSERT(entry->start == addr && entry->end == addr + size &&
entry->wired_count == 0,
("kmem_back: entry not found or misaligned after allocation"));
entry->wired_count = 1;
/*
* At this point, the kmem_object must be unlocked because
* vm_map_simplify_entry() calls vm_object_deallocate(), which
* locks the kmem_object.
*/
vm_map_simplify_entry(map, entry);
/*
* Loop thru pages, entering them in the pmap.
*/
VM_OBJECT_LOCK(kmem_object);
for (i = 0; i < size; i += PAGE_SIZE) {
m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
/*
* Because this is kernel_pmap, this call will not block.
*/
pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
TRUE);
vm_page_wakeup(m);
}
VM_OBJECT_UNLOCK(kmem_object);
return (KERN_SUCCESS);
}
/*
* kmem_alloc_wait:
*
* Allocates pageable memory from a sub-map of the kernel. If the submap
* has no room, the caller sleeps waiting for more memory in the submap.
*
* This routine may block.
*/
vm_offset_t
kmem_alloc_wait(map, size)
vm_map_t map;
vm_size_t size;
{
vm_offset_t addr;
size = round_page(size);
if (!swap_reserve(size))
return (0);
for (;;) {
/*
* To make this work for more than one map, use the map's lock
* to lock out sleepers/wakers.
*/
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
break;
/* no space now; see if we can ever get space */
if (vm_map_max(map) - vm_map_min(map) < size) {
vm_map_unlock(map);
swap_release(size);
return (0);
}
map->needs_wakeup = TRUE;
vm_map_unlock_and_wait(map, 0);
}
vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
VM_PROT_ALL, MAP_ACC_CHARGED);
vm_map_unlock(map);
return (addr);
}
/*
* kmem_free_wakeup:
*
* Returns memory to a submap of the kernel, and wakes up any processes
* waiting for memory in that map.
*/
void
kmem_free_wakeup(map, addr, size)
vm_map_t map;
vm_offset_t addr;
vm_size_t size;
{
vm_map_lock(map);
(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
if (map->needs_wakeup) {
map->needs_wakeup = FALSE;
vm_map_wakeup(map);
}
vm_map_unlock(map);
}
static void
kmem_init_zero_region(void)
{
vm_offset_t addr, i;
vm_page_t m;
int error;
/*
* Map a single physical page of zeros to a larger virtual range.
* This requires less looping in places that want large amounts of
* zeros, while not using much more physical resources.
*/
addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
pmap_qenter(addr + i, &m, 1);
error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
VM_PROT_READ, TRUE);
KASSERT(error == 0, ("error=%d", error));
zero_region = (const void *)addr;
}
/*
* kmem_init:
*
* Create the kernel map; insert a mapping covering kernel text,
* data, bss, and all space allocated thus far (`boostrap' data). The
* new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
* `start' as allocated, and the range between `start' and `end' as free.
*/
void
kmem_init(start, end)
vm_offset_t start, end;
{
vm_map_t m;
m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
m->system_map = 1;
vm_map_lock(m);
/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
kernel_map = m;
(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
#ifdef __amd64__
KERNBASE,
#else
VM_MIN_KERNEL_ADDRESS,
#endif
start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
/* ... and ending with the completion of the above `insert' */
vm_map_unlock(m);
kmem_init_zero_region();
}
#ifdef DIAGNOSTIC
/*
* Allow userspace to directly trigger the VM drain routine for testing
* purposes.
*/
static int
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
{
int error, i;
i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error)
return (error);
if (i)
EVENTHANDLER_INVOKE(vm_lowmem, 0);
return (0);
}
SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
#endif
|