summaryrefslogtreecommitdiffstats
path: root/sys/security/audit/audit_worker.c
blob: d9cbdbfbed8d01fa91425893b03d0a3076216918 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*
 * Copyright (c) 1999-2005 Apple Computer, Inc.
 * Copyright (c) 2006 Robert N. M. Watson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/condvar.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/fcntl.h>
#include <sys/ipc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/sysproto.h>
#include <sys/sysent.h>
#include <sys/systm.h>
#include <sys/ucred.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/unistd.h>
#include <sys/vnode.h>

#include <bsm/audit.h>
#include <bsm/audit_internal.h>
#include <bsm/audit_kevents.h>

#include <netinet/in.h>
#include <netinet/in_pcb.h>

#include <security/audit/audit.h>
#include <security/audit/audit_private.h>

#include <vm/uma.h>

/*
 * Worker thread that will schedule disk I/O, etc.
 */
static struct proc		*audit_thread;

/*
 * When an audit log is rotated, the actual rotation must be performed by the
 * audit worker thread, as it may have outstanding writes on the current
 * audit log.  audit_replacement_vp holds the vnode replacing the current
 * vnode.  We can't let more than one replacement occur at a time, so if more
 * than one thread requests a replacement, only one can have the replacement
 * "in progress" at any given moment.  If a thread tries to replace the audit
 * vnode and discovers a replacement is already in progress (i.e.,
 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
 * waiting its turn to perform a replacement.  When a replacement is
 * completed, this cv is signalled by the worker thread so a waiting thread
 * can start another replacement.  We also store a credential to perform
 * audit log write operations with.
 *
 * The current credential and vnode are thread-local to audit_worker.
 */
static struct cv		audit_replacement_cv;

static int			audit_replacement_flag;
static struct vnode		*audit_replacement_vp;
static struct ucred		*audit_replacement_cred;

/*
 * Flags related to Kernel->user-space communication.
 */
static int			audit_file_rotate_wait;

/*
 * XXXAUDIT: Should adjust comments below to make it clear that we get to
 * this point only if we believe we have storage, so not having space here is
 * a violation of invariants derived from administrative procedures. I.e.,
 * someone else has written to the audit partition, leaving less space than
 * we accounted for.
 */
static int
audit_record_write(struct vnode *vp, struct kaudit_record *ar,
    struct ucred *cred, struct thread *td)
{
	int ret;
	long temp;
	struct au_record *bsm;
	struct vattr vattr;
	struct statfs *mnt_stat = &vp->v_mount->mnt_stat;
	int vfslocked;

	vfslocked = VFS_LOCK_GIANT(vp->v_mount);

	/*
	 * First, gather statistics on the audit log file and file system so
	 * that we know how we're doing on space.  In both cases, if we're
	 * unable to perform the operation, we drop the record and return.
	 * However, this is arguably an assertion failure.
	 * XXX Need a FreeBSD equivalent.
	 */
	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
	if (ret)
		goto out;

	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
	ret = VOP_GETATTR(vp, &vattr, cred, td);
	VOP_UNLOCK(vp, 0, td);
	if (ret)
		goto out;

	/* update the global stats struct */
	audit_fstat.af_currsz = vattr.va_size;

	/*
	 * XXX Need to decide what to do if the trigger to the audit daemon
	 * fails.
	 */

	/*
	 * If we fall below minimum free blocks (hard limit), tell the audit
	 * daemon to force a rotation off of the file system. We also stop
	 * writing, which means this audit record is probably lost.  If we
	 * fall below the minimum percent free blocks (soft limit), then
	 * kindly suggest to the audit daemon to do something.
	 */
	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
		/*
		 * Hopefully userspace did something about all the previous
		 * triggers that were sent prior to this critical condition.
		 * If fail-stop is set, then we're done; goodnight Gracie.
		 */
		if (audit_fail_stop)
			panic("Audit log space exhausted and fail-stop set.");
		else {
			audit_suspended = 1;
			ret = ENOSPC;
			goto out;
		}
	} else
		/*
		 * Send a message to the audit daemon that disk space is
		 * getting low.
		 *
		 * XXXAUDIT: Check math and block size calculation here.
		 */
		if (audit_qctrl.aq_minfree != 0) {
			temp = mnt_stat->f_blocks / (100 /
			    audit_qctrl.aq_minfree);
			if (mnt_stat->f_bfree < temp)
				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
		}

	/*
	 * Check if the current log file is full; if so, call for a log
	 * rotate. This is not an exact comparison; we may write some records
	 * over the limit. If that's not acceptable, then add a fudge factor
	 * here.
	 */
	if ((audit_fstat.af_filesz != 0) &&
	    (audit_file_rotate_wait == 0) &&
	    (vattr.va_size >= audit_fstat.af_filesz)) {
		audit_file_rotate_wait = 1;
		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
	}

	/*
	 * If the estimated amount of audit data in the audit event queue
	 * (plus records allocated but not yet queued) has reached the amount
	 * of free space on the disk, then we need to go into an audit fail
	 * stop state, in which we do not permit the allocation/committing of
	 * any new audit records.  We continue to process packets but don't
	 * allow any activities that might generate new records.  In the
	 * future, we might want to detect when space is available again and
	 * allow operation to continue, but this behavior is sufficient to
	 * meet fail stop requirements in CAPP.
	 */
	if (audit_fail_stop &&
	    (unsigned long)
	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
		printf("audit_record_write: free space below size of audit "
		    "queue, failing stop\n");
		audit_in_failure = 1;
	}

	/*
	 * If there is a user audit record attached to the kernel record,
	 * then write the user record.
	 *
	 * XXX Need to decide a few things here: IF the user audit record is
	 * written, but the write of the kernel record fails, what to do?
	 * Should the kernel record come before or after the user record?
	 * For now, we write the user record first, and we ignore errors.
	 */
	if (ar->k_ar_commit & AR_COMMIT_USER) {
		/*
		 * Try submitting the record to any active audit pipes.
		 */
		audit_pipe_submit((void *)ar->k_udata, ar->k_ulen);

		/*
		 * And to disk.
		 */
		ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen,
		    (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL,
		    NULL, td);
		if (ret)
			goto out;
	}

	/*
	 * Convert the internal kernel record to BSM format and write it out
	 * if everything's OK.
	 */
	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) {
		ret = 0;
		goto out;
	}

	/*
	 * XXXAUDIT: Should we actually allow this conversion to fail?  With
	 * sleeping memory allocation and invariants checks, perhaps not.
	 */
	ret = kaudit_to_bsm(ar, &bsm);
	if (ret == BSM_NOAUDIT) {
		ret = 0;
		goto out;
	}

	/*
	 * XXX: We drop the record on BSM conversion failure, but really this
	 * is an assertion failure.
	 */
	if (ret == BSM_FAILURE) {
		AUDIT_PRINTF(("BSM conversion failure\n"));
		ret = EINVAL;
		goto out;
	}

	/*
	 * Try submitting the record to any active audit pipes.
	 */
	audit_pipe_submit((void *)bsm->data, bsm->len);

	/*
	 * XXX We should break the write functionality away from the BSM
	 * record generation and have the BSM generation done before this
	 * function is called. This function will then take the BSM record as
	 * a parameter.
	 */
	ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, (off_t)0,
	    UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, NULL, td));
	kau_free(bsm);

out:
	/*
	 * When we're done processing the current record, we have to check to
	 * see if we're in a failure mode, and if so, whether this was the
	 * last record left to be drained.  If we're done draining, then we
	 * fsync the vnode and panic.
	 */
	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
		(void)VOP_FSYNC(vp, MNT_WAIT, td);
		VOP_UNLOCK(vp, 0, td);
		panic("Audit store overflow; record queue drained.");
	}

	VFS_UNLOCK_GIANT(vfslocked);

	return (ret);
}

/*
 * If an appropriate signal has been received rotate the audit log based on
 * the global replacement variables.  Signal consumers as needed that the
 * rotation has taken place.
 *
 * XXXRW: The global variables and CVs used to signal the audit_worker to
 * perform a rotation are essentially a message queue of depth 1.  It would
 * be much nicer to actually use a message queue.
 */
static void
audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
    struct thread *audit_td)
{
	int do_replacement_signal, vfslocked;
	struct ucred *old_cred;
	struct vnode *old_vp;

	mtx_assert(&audit_mtx, MA_OWNED);

	do_replacement_signal = 0;
	while (audit_replacement_flag != 0) {
		old_cred = *audit_credp;
		old_vp = *audit_vpp;
		*audit_credp = audit_replacement_cred;
		*audit_vpp = audit_replacement_vp;
		audit_replacement_cred = NULL;
		audit_replacement_vp = NULL;
		audit_replacement_flag = 0;

		audit_enabled = (*audit_vpp != NULL);

		/*
		 * XXX: What to do about write failures here?
		 */
		if (old_vp != NULL) {
			AUDIT_PRINTF(("Closing old audit file\n"));
			mtx_unlock(&audit_mtx);
			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
			    audit_td);
			VFS_UNLOCK_GIANT(vfslocked);
			crfree(old_cred);
			mtx_lock(&audit_mtx);
			old_cred = NULL;
			old_vp = NULL;
			AUDIT_PRINTF(("Audit file closed\n"));
		}
		if (*audit_vpp != NULL) {
			AUDIT_PRINTF(("Opening new audit file\n"));
		}
		do_replacement_signal = 1;
	}

	/*
	 * Signal that replacement have occurred to wake up and
	 * start any other replacements started in parallel.  We can
	 * continue about our business in the mean time.  We
	 * broadcast so that both new replacements can be inserted,
	 * but also so that the source(s) of replacement can return
	 * successfully.
	 */
	if (do_replacement_signal)
		cv_broadcast(&audit_replacement_cv);
}

/*
 * Drain the audit commit queue and free the records.  Used if there are
 * records present, but no audit log target.
 */
static void
audit_worker_drain(void)
{
	struct kaudit_record *ar;

	mtx_assert(&audit_mtx, MA_OWNED);

	while ((ar = TAILQ_FIRST(&audit_q))) {
		TAILQ_REMOVE(&audit_q, ar, k_q);
		audit_free(ar);
		audit_q_len--;
	}
}

/*
 * Given a kernel audit record, process as required.  Currently, that means
 * passing it to audit_record_write(), but in the future it will mean
 * converting it to BSM and then routing it to various possible output
 * streams, including the audit trail and audit pipes.  The caller will free
 * the record.
 */
static void
audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
    struct thread *audit_td, struct kaudit_record *ar)
{
	int error;

	if (audit_vp == NULL)
		return;

	error = audit_record_write(audit_vp, ar, audit_cred, audit_td);
	if (error) {
		if (audit_panic_on_write_fail)
			panic("audit_worker: write error %d\n", error);
		else
			printf("audit_worker: write error %d\n", error);
	}
}

/*
 * The audit_worker thread is responsible for watching the event queue,
 * dequeueing records, converting them to BSM format, and committing them to
 * disk.  In order to minimize lock thrashing, records are dequeued in sets
 * to a thread-local work queue.  In addition, the audit_work performs the
 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
 * variable.
 */
static void
audit_worker(void *arg)
{
	struct kaudit_queue ar_worklist;
	struct kaudit_record *ar;
	struct ucred *audit_cred;
	struct thread *audit_td;
	struct vnode *audit_vp;
	int lowater_signal;

	AUDIT_PRINTF(("audit_worker starting\n"));

	/*
	 * These are thread-local variables requiring no synchronization.
	 */
	TAILQ_INIT(&ar_worklist);
	audit_cred = NULL;
	audit_td = curthread;
	audit_vp = NULL;

	mtx_lock(&audit_mtx);
	while (1) {
		mtx_assert(&audit_mtx, MA_OWNED);

		/*
		 * Wait for record or rotation events.
		 */
		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
			AUDIT_PRINTF(("audit_worker waiting\n"));
			cv_wait(&audit_worker_cv, &audit_mtx);
			AUDIT_PRINTF(("audit_worker woken up\n"));
			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
			    "flag %d\n", audit_replacement_vp,
			    audit_replacement_flag));
		}

		/*
		 * First priority: replace the audit log target if requested.
		 */
		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);

		/*
		 * If we have records, but there's no active vnode to write
		 * to, drain the record queue.  Generally, we prevent the
		 * unnecessary allocation of records elsewhere, but we need
		 * to allow for races between conditional allocation and
		 * queueing.  Go back to waiting when we're done.
		 */
		if (audit_vp == NULL) {
			audit_worker_drain();
			continue;
		}

		/*
		 * We have both records to write and an active vnode to write
		 * to.  Dequeue a record, and start the write.  Eventually,
		 * it might make sense to dequeue several records and perform
		 * our own clustering, if the lower layers aren't doing it
		 * automatically enough.
		 */
		lowater_signal = 0;
		while ((ar = TAILQ_FIRST(&audit_q))) {
			TAILQ_REMOVE(&audit_q, ar, k_q);
			audit_q_len--;
			if (audit_q_len == audit_qctrl.aq_lowater)
				lowater_signal++;
			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
		}
		if (lowater_signal)
			cv_broadcast(&audit_watermark_cv);

		mtx_unlock(&audit_mtx);
		while ((ar = TAILQ_FIRST(&ar_worklist))) {
			TAILQ_REMOVE(&ar_worklist, ar, k_q);
			audit_worker_process_record(audit_vp, audit_cred,
			    audit_td, ar);
			audit_free(ar);
		}
		mtx_lock(&audit_mtx);
	}
}

/*
 * audit_rotate_vnode() is called by a user or kernel thread to configure or
 * de-configure auditing on a vnode.  The arguments are the replacement
 * credential and vnode to substitute for the current credential and vnode,
 * if any.  If either is set to NULL, both should be NULL, and this is used
 * to indicate that audit is being disabled.  The real work is done in the
 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
 * to complete.
 *
 * The vnode should be referenced and opened by the caller.  The credential
 * should be referenced.  audit_rotate_vnode() will own both references as of
 * this call, so the caller should not release either.
 *
 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
 * message queue of depth 1.
 *
 * XXXAUDIT: Enhance the comments below to indicate that we are basically
 * acquiring ownership of the communications queue, inserting our message,
 * and waiting for an acknowledgement.
 */
void
audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
{

	/*
	 * If other parallel log replacements have been requested, we wait
	 * until they've finished before continuing.
	 */
	mtx_lock(&audit_mtx);
	while (audit_replacement_flag != 0) {
		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
		    "flag\n"));
		cv_wait(&audit_replacement_cv, &audit_mtx);
		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
		    audit_replacement_flag));
	}
	audit_replacement_cred = cred;
	audit_replacement_flag = 1;
	audit_replacement_vp = vp;

	/*
	 * Wake up the audit worker to perform the exchange once we
	 * release the mutex.
	 */
	cv_signal(&audit_worker_cv);

	/*
	 * Wait for the audit_worker to broadcast that a replacement has
	 * taken place; we know that once this has happened, our vnode
	 * has been replaced in, so we can return successfully.
	 */
	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
	    "replacement\n"));
	cv_wait(&audit_replacement_cv, &audit_mtx);
	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
	mtx_unlock(&audit_mtx);

	audit_file_rotate_wait = 0; /* We can now request another rotation */
}

void
audit_worker_init(void)
{
	int error;

	cv_init(&audit_replacement_cv, "audit_replacement_cv");
	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
	    0, "audit_worker");
	if (error)
		panic("audit_worker_init: kthread_create returned %d", error);
}
OpenPOWER on IntegriCloud