summaryrefslogtreecommitdiffstats
path: root/sys/security/audit/audit_worker.c
blob: cdf1cf2683fbad39db3b67c694aff5228a51e810 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * Copyright (c) 1999-2005 Apple Computer, Inc.
 * Copyright (c) 2006 Robert N. M. Watson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/condvar.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/fcntl.h>
#include <sys/ipc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/sysproto.h>
#include <sys/sysent.h>
#include <sys/systm.h>
#include <sys/ucred.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/unistd.h>
#include <sys/vnode.h>

#include <bsm/audit.h>
#include <bsm/audit_internal.h>
#include <bsm/audit_kevents.h>

#include <netinet/in.h>
#include <netinet/in_pcb.h>

#include <security/audit/audit.h>
#include <security/audit/audit_private.h>

#include <vm/uma.h>

/*
 * Worker thread that will schedule disk I/O, etc.
 */
static struct proc		*audit_thread;

/*
 * When an audit log is rotated, the actual rotation must be performed by the
 * audit worker thread, as it may have outstanding writes on the current
 * audit log.  audit_replacement_vp holds the vnode replacing the current
 * vnode.  We can't let more than one replacement occur at a time, so if more
 * than one thread requests a replacement, only one can have the replacement
 * "in progress" at any given moment.  If a thread tries to replace the audit
 * vnode and discovers a replacement is already in progress (i.e.,
 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
 * waiting its turn to perform a replacement.  When a replacement is
 * completed, this cv is signalled by the worker thread so a waiting thread
 * can start another replacement.  We also store a credential to perform
 * audit log write operations with.
 *
 * The current credential and vnode are thread-local to audit_worker.
 */
static struct cv		audit_replacement_cv;

static int			audit_replacement_flag;
static struct vnode		*audit_replacement_vp;
static struct ucred		*audit_replacement_cred;

/*
 * Flags related to Kernel->user-space communication.
 */
static int			audit_file_rotate_wait;

/*
 * Write an audit record to a file, performed as the last stage after both
 * preselection and BSM conversion.  Both space management and write failures
 * are handled in this function.
 *
 * No attempt is made to deal with possible failure to deliver a trigger to
 * the audit daemon, since the message is asynchronous anyway.
 */
static void
audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
    void *data, size_t len)
{
	static struct timeval last_lowspace_trigger;
	static struct timeval last_fail;
	static int cur_lowspace_trigger;
	struct statfs *mnt_stat;
	int error, vfslocked;
	static int cur_fail;
	struct vattr vattr;
	long temp;

	if (vp == NULL)
		return;

 	mnt_stat = &vp->v_mount->mnt_stat;
	vfslocked = VFS_LOCK_GIANT(vp->v_mount);

	/*
	 * First, gather statistics on the audit log file and file system so
	 * that we know how we're doing on space.  Consider failure of these
	 * operations to indicate a future inability to write to the file.
	 */
	error = VFS_STATFS(vp->v_mount, mnt_stat, td);
	if (error)
		goto fail;
	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
	error = VOP_GETATTR(vp, &vattr, cred, td);
	VOP_UNLOCK(vp, 0, td);
	if (error)
		goto fail;
	audit_fstat.af_currsz = vattr.va_size;

	/*
	 * We handle four different space-related limits:
	 *
	 * - A fixed (hard) limit on the minimum free blocks we require on
	 *   the file system, and results in record loss, a trigger, and
	 *   possible fail stop due to violating invariants.
	 *
	 * - An administrative (soft) limit, which when fallen below, results
	 *   in the kernel notifying the audit daemon of low space.
	 *
	 * - An audit trail size limit, which when gone above, results in the
	 *   kernel notifying the audit daemon that rotation is desired.
	 *
	 * - The total depth of the kernel audit record exceeding free space,
	 *   which can lead to possible fail stop (with drain), in order to
	 *   prevent violating invariants.  Failure here doesn't halt
	 *   immediately, but prevents new records from being generated.
	 *
	 * Possibly, the last of these should be handled differently, always
	 * allowing a full queue to be lost, rather than trying to prevent
	 * loss.
	 *
	 * First, handle the hard limit, which generates a trigger and may
	 * fail stop.  This is handled in the same manner as ENOSPC from
	 * VOP_WRITE, and results in record loss.
	 */
	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
		error = ENOSPC;
		goto fail_enospc;
	}

	/*
	 * Second, handle falling below the soft limit, if defined; we send
	 * the daemon a trigger and continue processing the record.  Triggers
	 * are limited to 1/sec.
	 */
	if (audit_qctrl.aq_minfree != 0) {
		/*
		 * XXXAUDIT: Check math and block size calculations here.
		 */
		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
		if (mnt_stat->f_bfree < temp) {
			if (ppsratecheck(&last_lowspace_trigger,
			    &cur_lowspace_trigger, 1)) {
				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
				printf("Warning: audit space low\n");
			}
		}
	}

	/*
	 * If the current file is getting full, generate a rotation trigger
	 * to the daemon.  This is only approximate, which is fine as more
	 * records may be generated before the daemon rotates the file.
	 */
	if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
	    (vattr.va_size >= audit_fstat.af_filesz)) {
		audit_file_rotate_wait = 1;
		(void)send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
	}

	/*
	 * If the estimated amount of audit data in the audit event queue
	 * (plus records allocated but not yet queued) has reached the amount
	 * of free space on the disk, then we need to go into an audit fail
	 * stop state, in which we do not permit the allocation/committing of
	 * any new audit records.  We continue to process records but don't
	 * allow any activities that might generate new records.  In the
	 * future, we might want to detect when space is available again and
	 * allow operation to continue, but this behavior is sufficient to
	 * meet fail stop requirements in CAPP.
	 */
	if (audit_fail_stop) {
		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
		    (unsigned long)(mnt_stat->f_bfree)) {
			if (ppsratecheck(&last_fail, &cur_fail, 1))
				printf("audit_record_write: free space "
				    "below size of audit queue, failing "
				    "stop\n");
			audit_in_failure = 1;
		} else if (audit_in_failure) {
			/*
			 * Note: if we want to handle recovery, this is the
			 * spot to do it: unset audit_in_failure, and issue a
			 * wakeup on the cv.
			 */
		}
	}

	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
	if (error == ENOSPC)
		goto fail_enospc;
	else if (error)
		goto fail;

	/*
	 * Catch completion of a queue drain here; if we're draining and the
	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
	 * true, since audit_in_failure can only be set of audit_fail_stop is
	 * set.
	 *
	 * Note: if we handle recovery from audit_in_failure, then we need to
	 * make panic here conditional.
	 */
	if (audit_in_failure) {
		if (audit_q_len == 0 && audit_pre_q_len == 0) {
			VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
			(void)VOP_FSYNC(vp, MNT_WAIT, td);
			VOP_UNLOCK(vp, 0, td);
			panic("Audit store overflow; record queue drained.");
		}
	}

	VFS_UNLOCK_GIANT(vfslocked);
	return;

fail_enospc:
	/*
	 * ENOSPC is considered a special case with respect to failures, as
	 * this can reflect either our preemptive detection of insufficient
	 * space, or ENOSPC returned by the vnode write call.
	 */
	if (audit_fail_stop) {
		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
		(void)VOP_FSYNC(vp, MNT_WAIT, td);
		VOP_UNLOCK(vp, 0, td);
		panic("Audit log space exhausted and fail-stop set.");
	}
	(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
	audit_suspended = 1;

	/* FALLTHROUGH */
fail:
	/*
	 * We have failed to write to the file, so the current record is
	 * lost, which may require an immediate system halt.
	 */
	if (audit_panic_on_write_fail) {
		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
		(void)VOP_FSYNC(vp, MNT_WAIT, td);
		VOP_UNLOCK(vp, 0, td);
		panic("audit_worker: write error %d\n", error);
	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
		printf("audit_worker: write error %d\n", error);
	VFS_UNLOCK_GIANT(vfslocked);
}

/*
 * If an appropriate signal has been received rotate the audit log based on
 * the global replacement variables.  Signal consumers as needed that the
 * rotation has taken place.
 *
 * The global variables and CVs used to signal the audit_worker to perform a
 * rotation are essentially a message queue of depth 1.  It would be much
 * nicer to actually use a message queue.
 */
static void
audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
    struct thread *audit_td)
{
	int do_replacement_signal, vfslocked;
	struct ucred *old_cred;
	struct vnode *old_vp;

	mtx_assert(&audit_mtx, MA_OWNED);

	do_replacement_signal = 0;
	while (audit_replacement_flag != 0) {
		old_cred = *audit_credp;
		old_vp = *audit_vpp;
		*audit_credp = audit_replacement_cred;
		*audit_vpp = audit_replacement_vp;
		audit_replacement_cred = NULL;
		audit_replacement_vp = NULL;
		audit_replacement_flag = 0;

		audit_enabled = (*audit_vpp != NULL);

		if (old_vp != NULL) {
			mtx_unlock(&audit_mtx);
			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
			    audit_td);
			VFS_UNLOCK_GIANT(vfslocked);
			crfree(old_cred);
			mtx_lock(&audit_mtx);
			old_cred = NULL;
			old_vp = NULL;
		}
		do_replacement_signal = 1;
	}

	/*
	 * Signal that replacement have occurred to wake up and start any
	 * other replacements started in parallel.  We can continue about our
	 * business in the mean time.  We broadcast so that both new
	 * replacements can be inserted, but also so that the source(s) of
	 * replacement can return successfully.
	 */
	if (do_replacement_signal)
		cv_broadcast(&audit_replacement_cv);
}

/*
 * Given a kernel audit record, process as required.  Kernel audit records
 * are converted to one, or possibly two, BSM records, depending on whether
 * there is a user audit record present also.  Kernel records need be
 * converted to BSM before they can be written out.  Both types will be
 * written to disk, and audit pipes.
 */
static void
audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
    struct thread *audit_td, struct kaudit_record *ar)
{
	struct au_record *bsm;
	au_class_t class;
	au_event_t event;
	au_id_t auid;
	int error, sorf;

	/*
	 * First, handle the user record, if any: commit to the system trail
	 * and audit pipes as selected.
	 */
	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL))
		audit_record_write(audit_vp, audit_cred, audit_td,
		    ar->k_udata, ar->k_ulen);

	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);

	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
		return;

	auid = ar->k_ar.ar_subj_auid;
	event = ar->k_ar.ar_event;
	class = au_event_class(event);
	if (ar->k_ar.ar_errno == 0)
		sorf = AU_PRS_SUCCESS;
	else
		sorf = AU_PRS_FAILURE;

	error = kaudit_to_bsm(ar, &bsm);
	switch (error) {
	case BSM_NOAUDIT:
		return;

	case BSM_FAILURE:
		printf("audit_worker_process_record: BSM_FAILURE\n");
		return;

	case BSM_SUCCESS:
		break;

	default:
		panic("kaudit_to_bsm returned %d", error);
	}

	if (ar->k_ar_commit & AR_PRESELECT_TRAIL)
		audit_record_write(audit_vp, audit_cred, audit_td, bsm->data,
		    bsm->len);

	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
		audit_pipe_submit(auid, event, class, sorf,
		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
		    bsm->len);

	kau_free(bsm);
}

/*
 * The audit_worker thread is responsible for watching the event queue,
 * dequeueing records, converting them to BSM format, and committing them to
 * disk.  In order to minimize lock thrashing, records are dequeued in sets
 * to a thread-local work queue.  In addition, the audit_work performs the
 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
 * variable.
 */
static void
audit_worker(void *arg)
{
	struct kaudit_queue ar_worklist;
	struct kaudit_record *ar;
	struct ucred *audit_cred;
	struct thread *audit_td;
	struct vnode *audit_vp;
	int lowater_signal;

	/*
	 * These are thread-local variables requiring no synchronization.
	 */
	TAILQ_INIT(&ar_worklist);
	audit_cred = NULL;
	audit_td = curthread;
	audit_vp = NULL;

	mtx_lock(&audit_mtx);
	while (1) {
		mtx_assert(&audit_mtx, MA_OWNED);

		/*
		 * Wait for record or rotation events.
		 */
		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q))
			cv_wait(&audit_worker_cv, &audit_mtx);

		/*
		 * First priority: replace the audit log target if requested.
		 */
		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);

		/*
		 * If there are records in the global audit record queue,
		 * transfer them to a thread-local queue and process them
		 * one by one.  If we cross the low watermark threshold,
		 * signal any waiting processes that they may wake up and
		 * continue generating records.
		 */
		lowater_signal = 0;
		while ((ar = TAILQ_FIRST(&audit_q))) {
			TAILQ_REMOVE(&audit_q, ar, k_q);
			audit_q_len--;
			if (audit_q_len == audit_qctrl.aq_lowater)
				lowater_signal++;
			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
		}
		if (lowater_signal)
			cv_broadcast(&audit_watermark_cv);

		mtx_unlock(&audit_mtx);
		while ((ar = TAILQ_FIRST(&ar_worklist))) {
			TAILQ_REMOVE(&ar_worklist, ar, k_q);
			audit_worker_process_record(audit_vp, audit_cred,
			    audit_td, ar);
			audit_free(ar);
		}
		mtx_lock(&audit_mtx);
	}
}

/*
 * audit_rotate_vnode() is called by a user or kernel thread to configure or
 * de-configure auditing on a vnode.  The arguments are the replacement
 * credential and vnode to substitute for the current credential and vnode,
 * if any.  If either is set to NULL, both should be NULL, and this is used
 * to indicate that audit is being disabled.  The real work is done in the
 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
 * to complete.
 *
 * The vnode should be referenced and opened by the caller.  The credential
 * should be referenced.  audit_rotate_vnode() will own both references as of
 * this call, so the caller should not release either.
 *
 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
 * message queue of depth 1.  We are essentially acquiring ownership of the
 * communications queue, inserting our message, and waiting for an
 * acknowledgement.
 */
void
audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
{

	/*
	 * If other parallel log replacements have been requested, we wait
	 * until they've finished before continuing.
	 */
	mtx_lock(&audit_mtx);
	while (audit_replacement_flag != 0)
		cv_wait(&audit_replacement_cv, &audit_mtx);
	audit_replacement_cred = cred;
	audit_replacement_flag = 1;
	audit_replacement_vp = vp;

	/*
	 * Wake up the audit worker to perform the exchange once we release
	 * the mutex.
	 */
	cv_signal(&audit_worker_cv);

	/*
	 * Wait for the audit_worker to broadcast that a replacement has
	 * taken place; we know that once this has happened, our vnode has
	 * been replaced in, so we can return successfully.
	 */
	cv_wait(&audit_replacement_cv, &audit_mtx);
	audit_file_rotate_wait = 0; /* We can now request another rotation */
	mtx_unlock(&audit_mtx);
}

void
audit_worker_init(void)
{
	int error;

	cv_init(&audit_replacement_cv, "audit_replacement_cv");
	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
	    0, "audit");
	if (error)
		panic("audit_worker_init: kthread_create returned %d", error);
}
OpenPOWER on IntegriCloud