summaryrefslogtreecommitdiffstats
path: root/sys/pc98/i386/machdep.c
blob: 57bd14010c6a0ca9ae5574a25f73c84ed53cf718 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
/*-
 * Copyright (c) 1992 Terrence R. Lambert.
 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * William Jolitz.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
 *	$Id: machdep.c,v 1.113 1999/04/20 09:08:51 kato Exp $
 */

#include "apm.h"
#include "ether.h"
#include "npx.h"
#include "opt_atalk.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_ipx.h"
#include "opt_maxmem.h"
#include "opt_msgbuf.h"
#include "opt_perfmon.h"
#include "opt_smp.h"
#include "opt_sysvipc.h"
#include "opt_user_ldt.h"
#include "opt_userconfig.h"
#include "opt_vm86.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/bus.h>

#ifdef SYSVSHM
#include <sys/shm.h>
#endif

#ifdef SYSVMSG
#include <sys/msg.h>
#endif

#ifdef SYSVSEM
#include <sys/sem.h>
#endif

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>

#include <sys/user.h>
#include <sys/exec.h>

#include <ddb/ddb.h>

#include <net/netisr.h>

#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/clock.h>
#include <machine/specialreg.h>
#include <machine/cons.h>
#include <machine/bootinfo.h>
#include <machine/ipl.h>
#include <machine/md_var.h>
#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
#ifdef SMP
#include <machine/smp.h>
#include <machine/globaldata.h>
#endif
#ifdef PERFMON
#include <machine/perfmon.h>
#endif

#ifdef OLD_BUS_ARCH
#include <i386/isa/isa_device.h>
#endif
#include <i386/isa/intr_machdep.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h>
#include <pc98/pc98/pc98.h>
#else
#ifndef VM86
#include <i386/isa/rtc.h>
#endif
#endif
#include <machine/random.h>
#include <sys/ptrace.h>

extern void init386 __P((int first));
extern void dblfault_handler __P((void));

extern void printcpuinfo(void);	/* XXX header file */
extern void earlysetcpuclass(void);	/* same header file */
extern void finishidentcpu(void);
extern void panicifcpuunsupported(void);
extern void initializecpu(void);

static void cpu_startup __P((void *));
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)

static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");

#ifdef PC98
int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
#endif

int	_udatasel, _ucodesel;
u_int	atdevbase;

#if defined(SWTCH_OPTIM_STATS)
extern int swtch_optim_stats;
SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
	CTLFLAG_RD, &swtch_optim_stats, 0, "");
SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
	CTLFLAG_RD, &tlb_flush_count, 0, "");
#endif

#ifdef PC98
static int	ispc98 = 1;
#else
static int	ispc98 = 0;
#endif
SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");

int physmem = 0;
int cold = 1;

static int
sysctl_hw_physmem SYSCTL_HANDLER_ARGS
{
	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
	return (error);
}

SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
	0, 0, sysctl_hw_physmem, "I", "");

static int
sysctl_hw_usermem SYSCTL_HANDLER_ARGS
{
	int error = sysctl_handle_int(oidp, 0,
		ctob(physmem - cnt.v_wire_count), req);
	return (error);
}

SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
	0, 0, sysctl_hw_usermem, "I", "");

static int
sysctl_hw_availpages SYSCTL_HANDLER_ARGS
{
	int error = sysctl_handle_int(oidp, 0,
		i386_btop(avail_end - avail_start), req);
	return (error);
}

SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
	0, 0, sysctl_hw_availpages, "I", "");

static int
sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
{
	int error;

	/* Unwind the buffer, so that it's linear (possibly starting with
	 * some initial nulls).
	 */
	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
		msgbufp->msg_size-msgbufp->msg_bufr,req);
	if(error) return(error);
	if(msgbufp->msg_bufr>0) {
		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
			msgbufp->msg_bufr,req);
	}
	return(error);
}

SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");

static int msgbuf_clear;

static int
sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
{
	int error;
	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
		req);
	if (!error && req->newptr) {
		/* Clear the buffer and reset write pointer */
		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
		msgbuf_clear=0;
	}
	return (error);
}

SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
	"Clear kernel message buffer");

int bootverbose = 0, Maxmem = 0;
#ifdef PC98
int Maxmem_under16M = 0;
#endif
long dumplo;

vm_offset_t phys_avail[10];

/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)

static vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
static vm_offset_t pager_sva, pager_eva;
#if NNPX > 0
extern struct isa_driver npxdriver;
#endif

#define offsetof(type, member)	((size_t)(&((type *)0)->member))

static void
cpu_startup(dummy)
	void *dummy;
{
	register unsigned i;
	register caddr_t v;
	vm_offset_t maxaddr;
	vm_size_t size = 0;
	int firstaddr;
	vm_offset_t minaddr;

	if (boothowto & RB_VERBOSE)
		bootverbose++;

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	printf(version);
	earlysetcpuclass();
	startrtclock();
	printcpuinfo();
	panicifcpuunsupported();
#ifdef PERFMON
	perfmon_init();
#endif
	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
	/*
	 * Display any holes after the first chunk of extended memory.
	 */
	if (bootverbose) {
		int indx;

		printf("Physical memory chunk(s):\n");
		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
			int size1 = phys_avail[indx + 1] - phys_avail[indx];

			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
			    size1 / PAGE_SIZE);
		}
	}

	/*
	 * Calculate callout wheel size
	 */
	for (callwheelsize = 1, callwheelbits = 0;
	     callwheelsize < ncallout;
	     callwheelsize <<= 1, ++callwheelbits)
		;
	callwheelmask = callwheelsize - 1;

	/*
	 * Allocate space for system data structures.
	 * The first available kernel virtual address is in "v".
	 * As pages of kernel virtual memory are allocated, "v" is incremented.
	 * As pages of memory are allocated and cleared,
	 * "firstaddr" is incremented.
	 * An index into the kernel page table corresponding to the
	 * virtual memory address maintained in "v" is kept in "mapaddr".
	 */

	/*
	 * Make two passes.  The first pass calculates how much memory is
	 * needed and allocates it.  The second pass assigns virtual
	 * addresses to the various data structures.
	 */
	firstaddr = 0;
again:
	v = (caddr_t)firstaddr;

#define	valloc(name, type, num) \
	    (name) = (type *)v; v = (caddr_t)((name)+(num))
#define	valloclim(name, type, num, lim) \
	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))

	valloc(callout, struct callout, ncallout);
	valloc(callwheel, struct callout_tailq, callwheelsize);
#ifdef SYSVSHM
	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
	valloc(sema, struct semid_ds, seminfo.semmni);
	valloc(sem, struct sem, seminfo.semmns);
	/* This is pretty disgusting! */
	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
	valloc(msgpool, char, msginfo.msgmax);
	valloc(msgmaps, struct msgmap, msginfo.msgseg);
	valloc(msghdrs, struct msg, msginfo.msgtql);
	valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif

	if (nbuf == 0) {
		nbuf = 30;
		if( physmem > 1024)
			nbuf += min((physmem - 1024) / 8, 2048);
	}
	nswbuf = max(min(nbuf/4, 64), 16);

	valloc(swbuf, struct buf, nswbuf);
	valloc(buf, struct buf, nbuf);


	/*
	 * End of first pass, size has been calculated so allocate memory
	 */
	if (firstaddr == 0) {
		size = (vm_size_t)(v - firstaddr);
		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
		if (firstaddr == 0)
			panic("startup: no room for tables");
		goto again;
	}

	/*
	 * End of second pass, addresses have been assigned
	 */
	if ((vm_size_t)(v - firstaddr) != size)
		panic("startup: table size inconsistency");

	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
				(nbuf*BKVASIZE));
	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
				(nswbuf*MAXPHYS) + pager_map_size);
	pager_map->system_map = 1;
	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
				(16*(ARG_MAX+(PAGE_SIZE*3))));

	/*
	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
	 * we use the more space efficient malloc in place of kmem_alloc.
	 */
	{
		vm_offset_t mb_map_size;
		int xclusters;

		/* Allow override of NMBCLUSTERS from the kernel environment */
		if (getenv_int("kern.ipc.nmbclusters", &xclusters) && 
		    xclusters > nmbclusters)
		    nmbclusters = xclusters;

		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
		bzero(mclrefcnt, mb_map_size / MCLBYTES);
		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
			mb_map_size);
		mb_map->system_map = 1;
	}

	/*
	 * Initialize callouts
	 */
	SLIST_INIT(&callfree);
	for (i = 0; i < ncallout; i++) {
		callout_init(&callout[i]);
		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
	}

	for (i = 0; i < callwheelsize; i++) {
		TAILQ_INIT(&callwheel[i]);
	}

#if defined(USERCONFIG)
	userconfig();
	cninit();		/* the preferred console may have changed */
#endif

	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
	    ptoa(cnt.v_free_count) / 1024);

	/*
	 * Set up buffers, so they can be used to read disk labels.
	 */
	bufinit();
	vm_pager_bufferinit();

#ifdef SMP
	/*
	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
	 */
	mp_start();			/* fire up the APs and APICs */
	mp_announce();
#endif  /* SMP */
}

int
register_netisr(num, handler)
	int num;
	netisr_t *handler;
{
	
	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
		printf("register_netisr: bad isr number: %d\n", num);
		return (EINVAL);
	}
	netisrs[num] = handler;
	return (0);
}

void
netisr_sysinit(data)
	void *data;
{
	const struct netisrtab *nit;

	nit = (const struct netisrtab *)data;
	register_netisr(nit->nit_num, nit->nit_isr);
}

/*
 * Send an interrupt to process.
 *
 * Stack is set up to allow sigcode stored
 * at top to call routine, followed by kcall
 * to sigreturn routine below.  After sigreturn
 * resets the signal mask, the stack, and the
 * frame pointer, it returns to the user
 * specified pc, psl.
 */
void
sendsig(catcher, sig, mask, code)
	sig_t catcher;
	int sig, mask;
	u_long code;
{
	register struct proc *p = curproc;
	register struct trapframe *regs;
	register struct sigframe *fp;
	struct sigframe sf;
	struct sigacts *psp = p->p_sigacts;
	int oonstack;

	regs = p->p_md.md_regs;
        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
	/*
	 * Allocate and validate space for the signal handler context.
	 */
        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
	    (psp->ps_sigonstack & sigmask(sig))) {
		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
	} else {
		fp = (struct sigframe *)regs->tf_esp - 1;
	}

	/*
	 * grow() will return FALSE if the fp will not fit inside the stack
	 *	and the stack can not be grown. useracc will return FALSE
	 *	if access is denied.
	 */
	if ((grow_stack (p, (int)fp) == FALSE) ||
	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		SIGACTION(p, SIGILL) = SIG_DFL;
		sig = sigmask(SIGILL);
		p->p_sigignore &= ~sig;
		p->p_sigcatch &= ~sig;
		p->p_sigmask &= ~sig;
		psignal(p, SIGILL);
		return;
	}

	/*
	 * Build the argument list for the signal handler.
	 */
	if (p->p_sysent->sv_sigtbl) {
		if (sig < p->p_sysent->sv_sigsize)
			sig = p->p_sysent->sv_sigtbl[sig];
		else
			sig = p->p_sysent->sv_sigsize + 1;
	}
	sf.sf_signum = sig;
	sf.sf_code = code;
	sf.sf_scp = &fp->sf_sc;
	sf.sf_addr = (char *) regs->tf_err;
	sf.sf_handler = catcher;

	/* save scratch registers */
	sf.sf_sc.sc_eax = regs->tf_eax;
	sf.sf_sc.sc_ebx = regs->tf_ebx;
	sf.sf_sc.sc_ecx = regs->tf_ecx;
	sf.sf_sc.sc_edx = regs->tf_edx;
	sf.sf_sc.sc_esi = regs->tf_esi;
	sf.sf_sc.sc_edi = regs->tf_edi;
	sf.sf_sc.sc_cs = regs->tf_cs;
	sf.sf_sc.sc_ds = regs->tf_ds;
	sf.sf_sc.sc_ss = regs->tf_ss;
	sf.sf_sc.sc_es = regs->tf_es;
	sf.sf_sc.sc_fs = regs->tf_fs;
	sf.sf_sc.sc_isp = regs->tf_isp;

	/*
	 * Build the signal context to be used by sigreturn.
	 */
	sf.sf_sc.sc_onstack = oonstack;
	sf.sf_sc.sc_mask = mask;
	sf.sf_sc.sc_sp = regs->tf_esp;
	sf.sf_sc.sc_fp = regs->tf_ebp;
	sf.sf_sc.sc_pc = regs->tf_eip;
	sf.sf_sc.sc_ps = regs->tf_eflags;
	sf.sf_sc.sc_trapno = regs->tf_trapno;
	sf.sf_sc.sc_err = regs->tf_err;

#ifdef VM86
	/*
	 * If we're a vm86 process, we want to save the segment registers.
	 * We also change eflags to be our emulated eflags, not the actual
	 * eflags.
	 */
	if (regs->tf_eflags & PSL_VM) {
		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;

		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
		sf.sf_sc.sc_es = tf->tf_vm86_es;
		sf.sf_sc.sc_ds = tf->tf_vm86_ds;

		if (vm86->vm86_has_vme == 0)
			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));

		/*
		 * We should never have PSL_T set when returning from vm86
		 * mode.  It may be set here if we deliver a signal before
		 * getting to vm86 mode, so turn it off.
		 *
		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
		 * syscalls made by the signal handler.  This just avoids
		 * wasting time for our lazy fixup of such faults.  PSL_NT
		 * does nothing in vm86 mode, but vm86 programs can set it
		 * almost legitimately in probes for old cpu types.
		 */
		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
	}
#endif /* VM86 */

	/*
	 * Copy the sigframe out to the user's stack.
	 */
	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		sigexit(p, SIGILL);
	}

	regs->tf_esp = (int)fp;
	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
	regs->tf_cs = _ucodesel;
	regs->tf_ds = _udatasel;
	regs->tf_es = _udatasel;
	regs->tf_fs = _udatasel;
	regs->tf_ss = _udatasel;
}

/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * state to gain improper privileges.
 */
int
sigreturn(p, uap)
	struct proc *p;
	struct sigreturn_args /* {
		struct sigcontext *sigcntxp;
	} */ *uap;
{
	register struct sigcontext *scp;
	register struct sigframe *fp;
	register struct trapframe *regs = p->p_md.md_regs;
	int eflags;

	/*
	 * (XXX old comment) regs->tf_esp points to the return address.
	 * The user scp pointer is above that.
	 * The return address is faked in the signal trampoline code
	 * for consistency.
	 */
	scp = uap->sigcntxp;
	fp = (struct sigframe *)
	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));

	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
		return(EFAULT);

	eflags = scp->sc_ps;
#ifdef VM86
	if (eflags & PSL_VM) {
		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
		struct vm86_kernel *vm86;

		/*
		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
		 * set up the vm86 area, and we can't enter vm86 mode.
		 */
		if (p->p_addr->u_pcb.pcb_ext == 0)
			return (EINVAL);
		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
		if (vm86->vm86_inited == 0)
			return (EINVAL);

		/* go back to user mode if both flags are set */
		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
			trapsignal(p, SIGBUS, 0);

		if (vm86->vm86_has_vme) {
			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
			    (eflags & VME_USERCHANGE) | PSL_VM;
		} else {
			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
		}
		tf->tf_vm86_ds = scp->sc_ds;
		tf->tf_vm86_es = scp->sc_es;
		tf->tf_vm86_fs = scp->sc_fs;
		tf->tf_vm86_gs = scp->sc_gs;
		tf->tf_ds = _udatasel;
		tf->tf_es = _udatasel;
		tf->tf_fs = _udatasel;
	} else {
#endif /* VM86 */
		/*
		 * Don't allow users to change privileged or reserved flags.
		 */
#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
		/*
		 * XXX do allow users to change the privileged flag PSL_RF.
		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
		 * should sometimes set it there too.  tf_eflags is kept in
		 * the signal context during signal handling and there is no
		 * other place to remember it, so the PSL_RF bit may be
		 * corrupted by the signal handler without us knowing.
		 * Corruption of the PSL_RF bit at worst causes one more or
		 * one less debugger trap, so allowing it is fairly harmless.
		 */
		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
#ifdef DEBUG
	    		printf("sigreturn: eflags = 0x%x\n", eflags);
#endif
	    		return(EINVAL);
		}

		/*
		 * Don't allow users to load a valid privileged %cs.  Let the
		 * hardware check for invalid selectors, excess privilege in
		 * other selectors, invalid %eip's and invalid %esp's.
		 */
#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
		if (!CS_SECURE(scp->sc_cs)) {
#ifdef DEBUG
    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
#endif
			trapsignal(p, SIGBUS, T_PROTFLT);
			return(EINVAL);
		}
		regs->tf_ds = scp->sc_ds;
		regs->tf_es = scp->sc_es;
		regs->tf_fs = scp->sc_fs;
#ifdef VM86
	}
#endif

	/* restore scratch registers */
	regs->tf_eax = scp->sc_eax;
	regs->tf_ebx = scp->sc_ebx;
	regs->tf_ecx = scp->sc_ecx;
	regs->tf_edx = scp->sc_edx;
	regs->tf_esi = scp->sc_esi;
	regs->tf_edi = scp->sc_edi;
	regs->tf_cs = scp->sc_cs;
	regs->tf_ss = scp->sc_ss;
	regs->tf_isp = scp->sc_isp;

	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
		return(EINVAL);

	if (scp->sc_onstack & 01)
		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
	else
		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
	p->p_sigmask = scp->sc_mask & ~sigcantmask;
	regs->tf_ebp = scp->sc_fp;
	regs->tf_esp = scp->sc_sp;
	regs->tf_eip = scp->sc_pc;
	regs->tf_eflags = eflags;
	return(EJUSTRETURN);
}

/*
 * Machine dependent boot() routine
 *
 * I haven't seen anything to put here yet
 * Possibly some stuff might be grafted back here from boot()
 */
void
cpu_boot(int howto)
{
}

/*
 * Shutdown the CPU as much as possible
 */
void
cpu_halt(void)
{
	for (;;)
		__asm__ ("hlt");
}

/*
 * Clear registers on exec
 */
void
setregs(p, entry, stack, ps_strings)
	struct proc *p;
	u_long entry;
	u_long stack;
	u_long ps_strings;
{
	struct trapframe *regs = p->p_md.md_regs;
	struct pcb *pcb = &p->p_addr->u_pcb;

#ifdef USER_LDT
	/* was i386_user_cleanup() in NetBSD */
	if (pcb->pcb_ldt) {
		if (pcb == curpcb) {
			lldt(_default_ldt);
			currentldt = _default_ldt;
		}
		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
			pcb->pcb_ldt_len * sizeof(union descriptor));
		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
 	}
#endif
  
	bzero((char *)regs, sizeof(struct trapframe));
	regs->tf_eip = entry;
	regs->tf_esp = stack;
	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
	regs->tf_ss = _udatasel;
	regs->tf_ds = _udatasel;
	regs->tf_es = _udatasel;
	regs->tf_fs = _udatasel;
	regs->tf_cs = _ucodesel;

	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
	regs->tf_ebx = ps_strings;

	/* reset %gs as well */
	pcb->pcb_gs = _udatasel;
	if (pcb == curpcb) {
		load_gs(_udatasel);
	}

	/*
	 * Initialize the math emulator (if any) for the current process.
	 * Actually, just clear the bit that says that the emulator has
	 * been initialized.  Initialization is delayed until the process
	 * traps to the emulator (if it is done at all) mainly because
	 * emulators don't provide an entry point for initialization.
	 */
	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;

	/*
	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
	 * for why fwait must be trapped at least if there is an npx or an
	 * emulator).  This is mainly to handle the case where npx0 is not
	 * configured, since the npx routines normally set up the trap
	 * otherwise.  It should be done only at boot time, but doing it
	 * here allows modifying `npx_exists' for testing the emulator on
	 * systems with an npx.
	 */
	load_cr0(rcr0() | CR0_MP | CR0_TS);

#if NNPX > 0
	/* Initialize the npx (if any) for the current process. */
	npxinit(__INITIAL_NPXCW__);
#endif

      /*
       * XXX - Linux emulator
       * Make sure sure edx is 0x0 on entry. Linux binaries depend
       * on it.
       */
      p->p_retval[1] = 0;
}

static int
sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
{
	int error;
	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
		req);
	if (!error && req->newptr)
		resettodr();
	return (error);
}

SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");

SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
	CTLFLAG_RW, &disable_rtc_set, 0, "");

SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo, 
	CTLFLAG_RD, &bootinfo, bootinfo, "");

SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
	CTLFLAG_RW, &wall_cmos_clock, 0, "");

/*
 * Initialize 386 and configure to run kernel
 */

/*
 * Initialize segments & interrupt table
 */

int _default_ldt;
#ifdef SMP
union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
#else
union descriptor gdt[NGDT];		/* global descriptor table */
#endif
struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
union descriptor ldt[NLDT];		/* local descriptor table */
#ifdef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif

#ifdef VM86
#ifndef SMP
extern struct segment_descriptor common_tssd;
#endif
int private_tss;			/* flag indicating private tss */
#endif /* VM86 */

#if defined(I586_CPU) && !defined(NO_F00F_HACK)
struct gate_descriptor *t_idt;
extern int has_f00f_bug;
#endif

static struct i386tss dblfault_tss;
static char dblfault_stack[PAGE_SIZE];

extern  struct user *proc0paddr;


/* software prototypes -- in more palatable form */
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL	0 Null Descriptor */
{	0x0,			/* segment base address  */
	0x0,			/* length */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GCODE_SEL	1 Code Descriptor for kernel */
{	0x0,			/* segment base address  */
	0xfffff,		/* length - all address space */
	SDT_MEMERA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
/* GDATA_SEL	2 Data Descriptor for kernel */
{	0x0,			/* segment base address  */
	0xfffff,		/* length - all address space */
	SDT_MEMRWA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
{	0x0,			/* segment base address  */
	0xfffff,		/* length - all address space */
	SDT_MEMRWA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
{
	0x0,			/* segment base address */
	sizeof(struct i386tss)-1,/* length - all address space */
	SDT_SYS386TSS,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	0,			/* unused - default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GLDT_SEL	5 LDT Descriptor */
{	(int) ldt,		/* segment base address  */
	sizeof(ldt)-1,		/* length - all address space */
	SDT_SYSLDT,		/* segment type */
	SEL_UPL,		/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	0,			/* unused - default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GUSERLDT_SEL	6 User LDT Descriptor per process */
{	(int) ldt,		/* segment base address  */
	(512 * sizeof(union descriptor)-1),		/* length */
	SDT_SYSLDT,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	0,			/* unused - default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GTGATE_SEL	7 Null Descriptor - Placeholder */
{	0x0,			/* segment base address  */
	0x0,			/* length - all address space */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GPANIC_SEL	8 Panic Tss Descriptor */
{	(int) &dblfault_tss,	/* segment base address  */
	sizeof(struct i386tss)-1,/* length - all address space */
	SDT_SYS386TSS,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	0,			/* unused - default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
/* GAPMCODE32_SEL 9 APM BIOS 32-bit interface (32bit Code) */
{	0,			/* segment base address (overwritten by APM)  */
	0xfffff,		/* length */
	SDT_MEMERA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
/* GAPMCODE16_SEL 10 APM BIOS 32-bit interface (16bit Code) */
{	0,			/* segment base address (overwritten by APM)  */
	0xfffff,		/* length */
	SDT_MEMERA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
/* GAPMDATA_SEL	11 APM BIOS 32-bit interface (Data) */
{	0,			/* segment base address (overwritten by APM) */
	0xfffff,		/* length */
	SDT_MEMRWA,		/* segment type */
	0,			/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
};

static struct soft_segment_descriptor ldt_segs[] = {
	/* Null Descriptor - overwritten by call gate */
{	0x0,			/* segment base address  */
	0x0,			/* length - all address space */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
	/* Null Descriptor - overwritten by call gate */
{	0x0,			/* segment base address  */
	0x0,			/* length - all address space */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
	/* Null Descriptor - overwritten by call gate */
{	0x0,			/* segment base address  */
	0x0,			/* length - all address space */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
	/* Code Descriptor for user */
{	0x0,			/* segment base address  */
	0xfffff,		/* length - all address space */
	SDT_MEMERA,		/* segment type */
	SEL_UPL,		/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
	/* Null Descriptor - overwritten by call gate */
{	0x0,			/* segment base address  */
	0x0,			/* length - all address space */
	0,			/* segment type */
	0,			/* segment descriptor priority level */
	0,			/* segment descriptor present */
	0, 0,
	0,			/* default 32 vs 16 bit size */
	0  			/* limit granularity (byte/page units)*/ },
	/* Data Descriptor for user */
{	0x0,			/* segment base address  */
	0xfffff,		/* length - all address space */
	SDT_MEMRWA,		/* segment type */
	SEL_UPL,		/* segment descriptor priority level */
	1,			/* segment descriptor present */
	0, 0,
	1,			/* default 32 vs 16 bit size */
	1  			/* limit granularity (byte/page units)*/ },
};

void
setidt(idx, func, typ, dpl, selec)
	int idx;
	inthand_t *func;
	int typ;
	int dpl;
	int selec;
{
	struct gate_descriptor *ip;

#if defined(I586_CPU) && !defined(NO_F00F_HACK)
	ip = (t_idt != NULL ? t_idt : idt) + idx;
#else
	ip = idt + idx;
#endif
	ip->gd_looffset = (int)func;
	ip->gd_selector = selec;
	ip->gd_stkcpy = 0;
	ip->gd_xx = 0;
	ip->gd_type = typ;
	ip->gd_dpl = dpl;
	ip->gd_p = 1;
	ip->gd_hioffset = ((int)func)>>16 ;
}

#define	IDTVEC(name)	__CONCAT(X,name)

extern inthand_t
	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
	IDTVEC(syscall), IDTVEC(int0x80_syscall);

void
sdtossd(sd, ssd)
	struct segment_descriptor *sd;
	struct soft_segment_descriptor *ssd;
{
	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
	ssd->ssd_type  = sd->sd_type;
	ssd->ssd_dpl   = sd->sd_dpl;
	ssd->ssd_p     = sd->sd_p;
	ssd->ssd_def32 = sd->sd_def32;
	ssd->ssd_gran  = sd->sd_gran;
}

void
init386(first)
	int first;
{
	int x;
	unsigned biosbasemem, biosextmem;
	struct gate_descriptor *gdp;
	int gsel_tss;
#if NNPX > 0
	int msize;
#endif

#ifndef SMP
	/* table descriptors - used to load tables by microp */
	struct region_descriptor r_gdt, r_idt;
#endif
	int pagesinbase, pagesinext;
	vm_offset_t target_page;
	int pa_indx, off;
	int speculative_mprobe;

	/*
	 * Prevent lowering of the ipl if we call tsleep() early.
	 */
	safepri = cpl;

	proc0.p_addr = proc0paddr;

	atdevbase = ISA_HOLE_START + KERNBASE;

#ifdef PC98
	/*
	 * Initialize DMAC
	 */
	pc98_init_dmac();
#endif

	/*
	 * make gdt memory segments, the code segment goes up to end of the
	 * page with etext in it, the data segment goes to the end of
	 * the address space
	 */
	/*
	 * XXX text protection is temporarily (?) disabled.  The limit was
	 * i386_btop(round_page(etext)) - 1.
	 */
	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
#ifdef SMP
	gdt_segs[GPRIV_SEL].ssd_limit =
		i386_btop(sizeof(struct privatespace)) - 1;
	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
	gdt_segs[GPROC0_SEL].ssd_base =
		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
#else
	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
#endif

	for (x = 0; x < NGDT; x++) {
#ifdef BDE_DEBUGGER
		/* avoid overwriting db entries with APM ones */
		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
			continue;
#endif
		ssdtosd(&gdt_segs[x], &gdt[x].sd);
	}

	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
	r_gdt.rd_base =  (int) gdt;
	lgdt(&r_gdt);

	/* make ldt memory segments */
	/*
	 * The data segment limit must not cover the user area because we
	 * don't want the user area to be writable in copyout() etc. (page
	 * level protection is lost in kernel mode on 386's).  Also, we
	 * don't want the user area to be writable directly (page level
	 * protection of the user area is not available on 486's with
	 * CR0_WP set, because there is no user-read/kernel-write mode).
	 *
	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
	 * should be spelled ...MAX_USER...
	 */
#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
	/*
	 * The code segment limit has to cover the user area until we move
	 * the signal trampoline out of the user area.  This is safe because
	 * the code segment cannot be written to directly.
	 */
#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
		ssdtosd(&ldt_segs[x], &ldt[x].sd);

	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
	lldt(_default_ldt);
#ifdef USER_LDT
	currentldt = _default_ldt;
#endif

	/* exceptions */
	for (x = 0; x < NIDT; x++)
		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
 	setidt(0x80, &IDTVEC(int0x80_syscall),
			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));

	r_idt.rd_limit = sizeof(idt) - 1;
	r_idt.rd_base = (int) idt;
	lidt(&r_idt);

	/*
	 * Initialize the console before we print anything out.
	 */
	cninit();

#include	"isa.h"
#if	NISA >0
	isa_defaultirq();
#endif
	rand_initialize();

#ifdef DDB
	kdb_init();
	if (boothowto & RB_KDB)
		Debugger("Boot flags requested debugger");
#endif

	finishidentcpu();	/* Final stage of CPU initialization */
	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	initializecpu();	/* Initialize CPU registers */

	/* make an initial tss so cpu can get interrupt stack on syscall! */
#ifdef VM86
	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
#else
	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
#endif /* VM86 */
	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
	common_tss.tss_ioopt = (sizeof common_tss) << 16;
	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
	ltr(gsel_tss);
#ifdef VM86
	private_tss = 0;
	common_tssd = gdt[GPROC0_SEL].sd;
#endif

	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
	dblfault_tss.tss_cr3 = (int)IdlePTD;
	dblfault_tss.tss_eip = (int) dblfault_handler;
	dblfault_tss.tss_eflags = PSL_KERNEL;
	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs = 
	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);

#ifdef VM86
	initial_bioscalls(&biosbasemem, &biosextmem);
#endif

#ifdef PC98
	pc98_getmemsize();
	biosbasemem = 640;                      /* 640KB */
	biosextmem = (Maxmem * PAGE_SIZE - 0x100000)/1024;   /* extent memory */
#elif !defined(VM86) /* IBM-PC */
	/* Use BIOS values stored in RTC CMOS RAM, since probing
	 * breaks certain 386 AT relics.
	 */
	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);

	/*
	 * If BIOS tells us that it has more than 640k in the basemem,
	 *	don't believe it - set it to 640k.
	 */
	if (biosbasemem > 640) {
		printf("Preposterous RTC basemem of %uK, truncating to 640K\n",
		       biosbasemem);
		biosbasemem = 640;
	}
	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
		       bootinfo.bi_basemem);
		bootinfo.bi_basemem = 640;
	}

	/*
	 * Warn if the official BIOS interface disagrees with the RTC
	 * interface used above about the amount of base memory or the
	 * amount of extended memory.  Prefer the BIOS value for the base
	 * memory.  This is necessary for machines that `steal' base
	 * memory for use as BIOS memory, at least if we are going to use
	 * the BIOS for apm.  Prefer the RTC value for extended memory.
	 * Eventually the hackish interface shouldn't even be looked at.
	 */
	if (bootinfo.bi_memsizes_valid) {
		if (bootinfo.bi_basemem != biosbasemem) {
			vm_offset_t pa;

			printf(
	"BIOS basemem (%uK) != RTC basemem (%uK), setting to BIOS value\n",
			       bootinfo.bi_basemem, biosbasemem);
			biosbasemem = bootinfo.bi_basemem;

			/*
			 * XXX if biosbasemem is now < 640, there is `hole'
			 * between the end of base memory and the start of
			 * ISA memory.  The hole may be empty or it may
			 * contain BIOS code or data.  Map it read/write so
			 * that the BIOS can write to it.  (Memory from 0 to
			 * the physical end of the kernel is mapped read-only
			 * to begin with and then parts of it are remapped.
			 * The parts that aren't remapped form holes that
			 * remain read-only and are unused by the kernel.
			 * The base memory area is below the physical end of
			 * the kernel and right now forms a read-only hole.
			 * The part of it from PAGE_SIZE to
			 * (trunc_page(biosbasemem * 1024) - 1) will be
			 * remapped and used by the kernel later.)
			 *
			 * This code is similar to the code used in
			 * pmap_mapdev, but since no memory needs to be
			 * allocated we simply change the mapping.
			 */
			for (pa = trunc_page(biosbasemem * 1024);
			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
				unsigned *pte;

				pte = (unsigned *)vtopte(pa + KERNBASE);
				*pte = pa | PG_RW | PG_V;
			}
		}
		if (bootinfo.bi_extmem != biosextmem)
			printf("BIOS extmem (%uK) != RTC extmem (%uK)\n",
			       bootinfo.bi_extmem, biosextmem);
	}
#endif

#ifdef SMP
	/* make hole for AP bootstrap code */
	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
#else
	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
#endif

	pagesinext = biosextmem * 1024 / PAGE_SIZE;

	/*
	 * Special hack for chipsets that still remap the 384k hole when
	 *	there's 16MB of memory - this really confuses people that
	 *	are trying to use bus mastering ISA controllers with the
	 *	"16MB limit"; they only have 16MB, but the remapping puts
	 *	them beyond the limit.
	 */
#ifndef PC98
	/*
	 * If extended memory is between 15-16MB (16-17MB phys address range),
	 *	chop it to 15MB.
	 */
	if ((pagesinext > 3840) && (pagesinext < 4096))
		pagesinext = 3840;
#endif

	/*
	 * Maxmem isn't the "maximum memory", it's one larger than the
	 * highest page of the physical address space.  It should be
	 * called something like "Maxphyspage".
	 */
	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
	/*
	 * Indicate that we wish to do a speculative search for memory beyond
	 * the end of the reported size if the indicated amount is 64MB (0x4000
	 * pages) - which is the largest amount that the BIOS/bootblocks can
	 * currently report. If a specific amount of memory is indicated via
	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
	 * memory probe.
	 */
	if (Maxmem >= 0x4000)
		speculative_mprobe = TRUE;
	else
		speculative_mprobe = FALSE;

#ifdef MAXMEM
	Maxmem = MAXMEM/4;
	speculative_mprobe = FALSE;
#endif

#if NNPX > 0
	if (resource_int_value("npx", 0, "msize", &msize) == 0) {
		if (msize != 0) {
			Maxmem = msize / 4;
			speculative_mprobe = FALSE;
		}
	}
#endif

#ifdef SMP
	/* look for the MP hardware - needed for apic addresses */
	mp_probe();
#endif

	/* call pmap initialization to make new kernel address space */
	pmap_bootstrap (first, 0);

	/*
	 * Size up each available chunk of physical memory.
	 */

	/*
	 * We currently don't bother testing base memory.
	 * XXX  ...but we probably should.
	 */
	pa_indx = 0;
	if (pagesinbase > 1) {
		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
		physmem = pagesinbase - 1;
	} else {
		/* point at first chunk end */
		pa_indx++;
	}

	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
		int tmp, page_bad;

		page_bad = FALSE;

#ifdef PC98
		/* skip system area */
		if (target_page>=ptoa(Maxmem_under16M) &&
				target_page < ptoa(4096))
			page_bad = TRUE;
#endif
		/*
		 * map page into kernel: valid, read/write, non-cacheable
		 */
#ifdef PC98
		if (pc98_machine_type & M_EPSON_PC98) {
			switch (epson_machine_id) {
			case 0x34:				/* PC-486HX */
			case 0x35:				/* PC-486HG */
			case 0x3B:				/* PC-486HA */
				*(int *)CMAP1 = PG_V | PG_RW | target_page;
				break;
			default:
#ifdef WB_CACHE
				*(int *)CMAP1 = PG_V | PG_RW | target_page;
#else
				*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
#endif
				break;
			}
		} else {
#endif /* PC98 */
		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
#ifdef PC98
		}
#endif
		invltlb();

		tmp = *(int *)CADDR1;
		/*
		 * Test for alternating 1's and 0's
		 */
		*(volatile int *)CADDR1 = 0xaaaaaaaa;
		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
			page_bad = TRUE;
		}
		/*
		 * Test for alternating 0's and 1's
		 */
		*(volatile int *)CADDR1 = 0x55555555;
		if (*(volatile int *)CADDR1 != 0x55555555) {
			page_bad = TRUE;
		}
		/*
		 * Test for all 1's
		 */
		*(volatile int *)CADDR1 = 0xffffffff;
		if (*(volatile int *)CADDR1 != 0xffffffff) {
			page_bad = TRUE;
		}
		/*
		 * Test for all 0's
		 */
		*(volatile int *)CADDR1 = 0x0;
		if (*(volatile int *)CADDR1 != 0x0) {
			/*
			 * test of page failed
			 */
			page_bad = TRUE;
		}
		/*
		 * Restore original value.
		 */
		*(int *)CADDR1 = tmp;

		/*
		 * Adjust array of valid/good pages.
		 */
		if (page_bad == FALSE) {
			/*
			 * If this good page is a continuation of the
			 * previous set of good pages, then just increase
			 * the end pointer. Otherwise start a new chunk.
			 * Note that "end" points one higher than end,
			 * making the range >= start and < end.
			 * If we're also doing a speculative memory
			 * test and we at or past the end, bump up Maxmem
			 * so that we keep going. The first bad page
			 * will terminate the loop.
			 */
			if (phys_avail[pa_indx] == target_page) {
				phys_avail[pa_indx] += PAGE_SIZE;
				if (speculative_mprobe == TRUE &&
				    phys_avail[pa_indx] >= (64*1024*1024))
					Maxmem++;
			} else {
				pa_indx++;
				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
					printf("Too many holes in the physical address space, giving up\n");
					pa_indx--;
					break;
				}
				phys_avail[pa_indx++] = target_page;	/* start */
				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
			}
			physmem++;
		}
	}

	*(int *)CMAP1 = 0;
	invltlb();

	/*
	 * XXX
	 * The last chunk must contain at least one page plus the message
	 * buffer to avoid complicating other code (message buffer address
	 * calculation, etc.).
	 */
	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
		phys_avail[pa_indx--] = 0;
		phys_avail[pa_indx--] = 0;
	}

	Maxmem = atop(phys_avail[pa_indx]);

	/* Trim off space for the message buffer. */
	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);

	avail_end = phys_avail[pa_indx];

	/* now running on new page tables, configured,and u/iom is accessible */

	/* Map the message buffer. */
	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
			   avail_end + off, VM_PROT_ALL, TRUE);

	msgbufinit(msgbufp, MSGBUF_SIZE);

	/* make a call gate to reenter kernel with */
	gdp = &ldt[LSYS5CALLS_SEL].gd;

	x = (int) &IDTVEC(syscall);
	gdp->gd_looffset = x++;
	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
	gdp->gd_stkcpy = 1;
	gdp->gd_type = SDT_SYS386CGT;
	gdp->gd_dpl = SEL_UPL;
	gdp->gd_p = 1;
	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;

	/* XXX does this work? */
	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];

	/* transfer to user mode */

	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);

	/* setup proc 0's pcb */
	proc0.p_addr->u_pcb.pcb_flags = 0;
	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
#ifdef SMP
	proc0.p_addr->u_pcb.pcb_mpnest = 1;
#endif
#ifdef VM86
	proc0.p_addr->u_pcb.pcb_ext = 0;
#endif
	SET_CURPROC(&proc0);

	/* Sigh, relocate physical addresses left from bootstrap */
	if (bootinfo.bi_modulep) {
		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
		preload_bootstrap_relocate(KERNBASE);
	}
	if (bootinfo.bi_envp)
		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
}

#if defined(I586_CPU) && !defined(NO_F00F_HACK)
static void f00f_hack(void *unused);
SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);

static void
f00f_hack(void *unused) {
#ifndef SMP
	struct region_descriptor r_idt;
#endif
	vm_offset_t tmp;

	if (!has_f00f_bug)
		return;

	printf("Intel Pentium detected, installing workaround for F00F bug\n");

	r_idt.rd_limit = sizeof(idt) - 1;

	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
	if (tmp == 0)
		panic("kmem_alloc returned 0");
	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
		panic("kmem_alloc returned non-page-aligned memory");
	/* Put the first seven entries in the lower page */
	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
	bcopy(idt, t_idt, sizeof(idt));
	r_idt.rd_base = (int)t_idt;
	lidt(&r_idt);
	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
		panic("vm_map_protect failed");
	return;
}
#endif /* defined(I586_CPU) && !NO_F00F_HACK */

int
ptrace_set_pc(p, addr)
	struct proc *p;
	unsigned long addr;
{
	p->p_md.md_regs->tf_eip = addr;
	return (0);
}

int
ptrace_single_step(p)
	struct proc *p;
{
	p->p_md.md_regs->tf_eflags |= PSL_T;
	return (0);
}

int ptrace_read_u_check(p, addr, len)
	struct proc *p;
	vm_offset_t addr;
	size_t len;
{
	vm_offset_t gap;

	if ((vm_offset_t) (addr + len) < addr)
		return EPERM;
	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
		return 0;

	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
	
	if ((vm_offset_t) addr < gap)
		return EPERM;
	if ((vm_offset_t) (addr + len) <= 
	    (vm_offset_t) (gap + sizeof(struct trapframe)))
		return 0;
	return EPERM;
}

int ptrace_write_u(p, off, data)
	struct proc *p;
	vm_offset_t off;
	long data;
{
	struct trapframe frame_copy;
	vm_offset_t min;
	struct trapframe *tp;

	/*
	 * Privileged kernel state is scattered all over the user area.
	 * Only allow write access to parts of regs and to fpregs.
	 */
	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
		tp = p->p_md.md_regs;
		frame_copy = *tp;
		*(int *)((char *)&frame_copy + (off - min)) = data;
		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
		    !CS_SECURE(frame_copy.tf_cs))
			return (EINVAL);
		*(int*)((char *)p->p_addr + off) = data;
		return (0);
	}
	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
		*(int*)((char *)p->p_addr + off) = data;
		return (0);
	}
	return (EFAULT);
}

int
fill_regs(p, regs)
	struct proc *p;
	struct reg *regs;
{
	struct pcb *pcb;
	struct trapframe *tp;

	tp = p->p_md.md_regs;
	regs->r_fs = tp->tf_fs;
	regs->r_es = tp->tf_es;
	regs->r_ds = tp->tf_ds;
	regs->r_edi = tp->tf_edi;
	regs->r_esi = tp->tf_esi;
	regs->r_ebp = tp->tf_ebp;
	regs->r_ebx = tp->tf_ebx;
	regs->r_edx = tp->tf_edx;
	regs->r_ecx = tp->tf_ecx;
	regs->r_eax = tp->tf_eax;
	regs->r_eip = tp->tf_eip;
	regs->r_cs = tp->tf_cs;
	regs->r_eflags = tp->tf_eflags;
	regs->r_esp = tp->tf_esp;
	regs->r_ss = tp->tf_ss;
	pcb = &p->p_addr->u_pcb;
	regs->r_gs = pcb->pcb_gs;
	return (0);
}

int
set_regs(p, regs)
	struct proc *p;
	struct reg *regs;
{
	struct pcb *pcb;
	struct trapframe *tp;

	tp = p->p_md.md_regs;
	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
	    !CS_SECURE(regs->r_cs))
		return (EINVAL);
	tp->tf_fs = regs->r_fs;
	tp->tf_es = regs->r_es;
	tp->tf_ds = regs->r_ds;
	tp->tf_edi = regs->r_edi;
	tp->tf_esi = regs->r_esi;
	tp->tf_ebp = regs->r_ebp;
	tp->tf_ebx = regs->r_ebx;
	tp->tf_edx = regs->r_edx;
	tp->tf_ecx = regs->r_ecx;
	tp->tf_eax = regs->r_eax;
	tp->tf_eip = regs->r_eip;
	tp->tf_cs = regs->r_cs;
	tp->tf_eflags = regs->r_eflags;
	tp->tf_esp = regs->r_esp;
	tp->tf_ss = regs->r_ss;
	pcb = &p->p_addr->u_pcb;
	pcb->pcb_gs = regs->r_gs;
	return (0);
}

int
fill_fpregs(p, fpregs)
	struct proc *p;
	struct fpreg *fpregs;
{
	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
	return (0);
}

int
set_fpregs(p, fpregs)
	struct proc *p;
	struct fpreg *fpregs;
{
	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
	return (0);
}

#ifndef DDB
void
Debugger(const char *msg)
{
	printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */

#include <sys/disklabel.h>

/*
 * Determine the size of the transfer, and make sure it is
 * within the boundaries of the partition. Adjust transfer
 * if needed, and signal errors or early completion.
 */
int
bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
{
        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
        int labelsect = lp->d_partitions[0].p_offset;
        int maxsz = p->p_size,
                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;

        /* overwriting disk label ? */
        /* XXX should also protect bootstrap in first 8K */
        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
                bp->b_error = EROFS;
                goto bad;
        }

#if     defined(DOSBBSECTOR) && defined(notyet)
        /* overwriting master boot record? */
        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
                bp->b_error = EROFS;
                goto bad;
        }
#endif

        /* beyond partition? */
        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
                /* if exactly at end of disk, return an EOF */
                if (bp->b_blkno == maxsz) {
                        bp->b_resid = bp->b_bcount;
                        return(0);
                }
                /* or truncate if part of it fits */
                sz = maxsz - bp->b_blkno;
                if (sz <= 0) {
                        bp->b_error = EINVAL;
                        goto bad;
                }
                bp->b_bcount = sz << DEV_BSHIFT;
        }

        bp->b_pblkno = bp->b_blkno + p->p_offset;
        return(1);

bad:
        bp->b_flags |= B_ERROR;
        return(-1);
}

#ifdef DDB

/*
 * Provide inb() and outb() as functions.  They are normally only
 * available as macros calling inlined functions, thus cannot be
 * called inside DDB.
 *
 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 */

#undef inb
#undef outb

/* silence compiler warnings */
u_char inb(u_int);
void outb(u_int, u_char);

u_char
inb(u_int port)
{
	u_char	data;
	/*
	 * We use %%dx and not %1 here because i/o is done at %dx and not at
	 * %edx, while gcc generates inferior code (movw instead of movl)
	 * if we tell it to load (u_short) port.
	 */
	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
	return (data);
}

void
outb(u_int port, u_char data)
{
	u_char	al;
	/*
	 * Use an unnecessary assignment to help gcc's register allocator.
	 * This make a large difference for gcc-1.40 and a tiny difference
	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
	 * best results.  gcc-2.6.0 can't handle this.
	 */
	al = data;
	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}

#endif /* DDB */
OpenPOWER on IntegriCloud