summaryrefslogtreecommitdiffstats
path: root/sys/pc98/cbus/pcrtc.c
blob: 2bddae22c40346b1faa9b374dd27ef002a768b48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
/*-
 * Copyright (c) 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * William Jolitz and Don Ahn.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
 *	$Id: clock.c,v 1.10 1996/10/30 22:39:48 asami Exp $
 */

/*
 * Routines to handle clock hardware.
 */

/*
 * inittodr, settodr and support routines written
 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
 *
 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
 */

/*
 * modified for PC98 by Kakefuda
 */

#include "opt_clock.h"
#include "opt_cpu.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>

#include <machine/clock.h>
#ifdef CLK_CALIBRATION_LOOP
#include <machine/cons.h>
#endif
#include <machine/cpu.h>
#include <machine/frame.h>

#include <i386/isa/icu.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#include <i386/isa/isa_device.h>
#else
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/rtc.h>
#endif
#include <i386/isa/timerreg.h>

/*
 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
 * can use a simple formula for leap years.
 */
#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)

#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))

/*
 * Time in timer cycles that it takes for microtime() to disable interrupts
 * and latch the count.  microtime() currently uses "cli; outb ..." so it
 * normally takes less than 2 timer cycles.  Add a few for cache misses.
 * Add a few more to allow for latency in bogus calls to microtime() with
 * interrupts already disabled.
 */
#define	TIMER0_LATCH_COUNT	20

/*
 * Maximum frequency that we are willing to allow for timer0.  Must be
 * low enough to guarantee that the timer interrupt handler returns
 * before the next timer interrupt.  Must result in a lower TIMER_DIV
 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
 * underflow in the calculation of timer0_overflow_threshold.
 */
#define	TIMER0_MAX_FREQ		20000

int	adjkerntz;		/* local offset	from GMT in seconds */
int	disable_rtc_set;	/* disable resettodr() if != 0 */
u_int	idelayed;
#if defined(I586_CPU) || defined(I686_CPU)
u_int	i586_ctr_bias;
u_int	i586_ctr_comultiplier;
u_int	i586_ctr_freq;
u_int	i586_ctr_multiplier;
#endif
int	statclock_disable;
u_int	stat_imask = SWI_CLOCK_MASK;
#ifdef TIMER_FREQ
u_int	timer_freq = TIMER_FREQ;
#else
#ifdef PC98
#ifndef AUTO_CLOCK
#ifndef PC98_8M
u_int	timer_freq = 2457600;
#else	/* !PC98_8M */
u_int	timer_freq = 1996800;
#endif	/* PC98_8M */
#else	/* AUTO_CLOCK */
u_int	timer_freq = 2457600;
#endif	/* AUTO_CLOCK */
#else /* IBM-PC */
u_int	timer_freq = 1193182;
#endif /* PC98 */
#endif
int	timer0_max_count;
u_int	timer0_overflow_threshold;
u_int	timer0_prescaler_count;
int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */

static	int	beeping = 0;
static	u_int	clk_imask = HWI_MASK | SWI_MASK;
static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
static	u_int	hardclock_max_count;
/*
 * XXX new_function and timer_func should not handle clockframes, but
 * timer_func currently needs to hold hardclock to handle the
 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
 * to switch between clkintr() and a slightly different timerintr().
 */
static	void	(*new_function) __P((struct clockframe *frame));
static	u_int	new_rate;
#ifndef PC98
static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
#endif

/* Values for timerX_state: */
#define	RELEASED	0
#define	RELEASE_PENDING	1
#define	ACQUIRED	2
#define	ACQUIRE_PENDING	3

static 	u_char	timer0_state;
#ifdef	PC98
static 	u_char	timer1_state;
#endif
static	u_char	timer2_state;
static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
#ifdef PC98
int rtc_inb __P((void));
void rtc_outb __P((int));
#endif

#if defined(I586_CPU) || defined(I686_CPU)
static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
#endif

static void
clkintr(struct clockframe frame)
{
	timer_func(&frame);
	switch (timer0_state) {

	case RELEASED:
		setdelayed();
		break;

	case ACQUIRED:
		if ((timer0_prescaler_count += timer0_max_count)
		    >= hardclock_max_count) {
			hardclock(&frame);
			setdelayed();
			timer0_prescaler_count -= hardclock_max_count;
		}
		break;

	case ACQUIRE_PENDING:
		setdelayed();
		timer0_max_count = TIMER_DIV(new_rate);
		timer0_overflow_threshold =
			timer0_max_count - TIMER0_LATCH_COUNT;
		disable_intr();
		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
		outb(TIMER_CNTR0, timer0_max_count & 0xff);
		outb(TIMER_CNTR0, timer0_max_count >> 8);
		enable_intr();
		timer0_prescaler_count = 0;
		timer_func = new_function;
		timer0_state = ACQUIRED;
		break;

	case RELEASE_PENDING:
		if ((timer0_prescaler_count += timer0_max_count)
		    >= hardclock_max_count) {
			hardclock(&frame);
			setdelayed();
			timer0_max_count = hardclock_max_count;
			timer0_overflow_threshold =
				timer0_max_count - TIMER0_LATCH_COUNT;
			disable_intr();
			outb(TIMER_MODE,
			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
			outb(TIMER_CNTR0, timer0_max_count & 0xff);
			outb(TIMER_CNTR0, timer0_max_count >> 8);
			enable_intr();
			/*
			 * See microtime.s for this magic.
			 */
#ifdef PC98
#ifndef AUTO_CLOCK
#ifndef PC98_8M
			time.tv_usec += (6667 *
				(timer0_prescaler_count - hardclock_max_count))
				>> 14;
#else /* PC98_8M */
			time.tv_usec += (16411 *
				(timer0_prescaler_count - hardclock_max_count))
				>> 15;
#endif /* PC98_8M */
#else /* AUTO_CLOCK */
			if (pc98_machine_type & M_8M) {
				/* PC98_8M */
				time.tv_usec += (16411 *
					(timer0_prescaler_count -
					 hardclock_max_count)) >> 15;
			} else {
				time.tv_usec += (6667 *
					(timer0_prescaler_count -
					 hardclock_max_count)) >> 14;
			}
#endif /* AUTO_CLOCK */
#else /* IBM-PC */
			time.tv_usec += (27465 *
				(timer0_prescaler_count - hardclock_max_count))
				>> 15;
#endif /* PC98 */
			if (time.tv_usec >= 1000000)
				time.tv_usec -= 1000000;
			timer0_prescaler_count = 0;
			timer_func = hardclock;
			timer0_state = RELEASED;
		}
		break;
	}
}

/*
 * The acquire and release functions must be called at ipl >= splclock().
 */
int
acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
{
	static int old_rate;

	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
		return (-1);
	switch (timer0_state) {

	case RELEASED:
		timer0_state = ACQUIRE_PENDING;
		break;

	case RELEASE_PENDING:
		if (rate != old_rate)
			return (-1);
		/*
		 * The timer has been released recently, but is being
		 * re-acquired before the release completed.  In this
		 * case, we simply reclaim it as if it had not been
		 * released at all.
		 */
		timer0_state = ACQUIRED;
		break;

	default:
		return (-1);	/* busy */
	}
	new_function = function;
	old_rate = new_rate = rate;
	return (0);
}

#ifdef PC98
int
acquire_timer1(int mode)
{

	if (timer1_state != RELEASED)
		return (-1);
	timer1_state = ACQUIRED;

	/*
	 * This access to the timer registers is as atomic as possible
	 * because it is a single instruction.  We could do better if we
	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
	 * and this is probably good enough for timer2, so we aren't as
	 * careful with it as with timer0.
	 */
	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));

	return (0);
}
#endif

int
acquire_timer2(int mode)
{

	if (timer2_state != RELEASED)
		return (-1);
	timer2_state = ACQUIRED;

	/*
	 * This access to the timer registers is as atomic as possible
	 * because it is a single instruction.  We could do better if we
	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
	 * and this is probably good enough for timer2, so we aren't as
	 * careful with it as with timer0.
	 */
	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));

	return (0);
}

int
release_timer0()
{
	switch (timer0_state) {

	case ACQUIRED:
		timer0_state = RELEASE_PENDING;
		break;

	case ACQUIRE_PENDING:
		/* Nothing happened yet, release quickly. */
		timer0_state = RELEASED;
		break;

	default:
		return (-1);
	}
	return (0);
}

#ifdef PC98
int
release_timer1()
{

	if (timer1_state != ACQUIRED)
		return (-1);
	timer1_state = RELEASED;
	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
	return (0);
}
#endif

int
release_timer2()
{

	if (timer2_state != ACQUIRED)
		return (-1);
	timer2_state = RELEASED;
	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
	return (0);
}

#ifndef PC98
/*
 * This routine receives statistical clock interrupts from the RTC.
 * As explained above, these occur at 128 interrupts per second.
 * When profiling, we receive interrupts at a rate of 1024 Hz.
 *
 * This does not actually add as much overhead as it sounds, because
 * when the statistical clock is active, the hardclock driver no longer
 * needs to keep (inaccurate) statistics on its own.  This decouples
 * statistics gathering from scheduling interrupts.
 *
 * The RTC chip requires that we read status register C (RTC_INTR)
 * to acknowledge an interrupt, before it will generate the next one.
 */
static void
rtcintr(struct clockframe frame)
{
	u_char stat;
	stat = rtcin(RTC_INTR);
	if(stat & RTCIR_PERIOD) {
		statclock(&frame);
	}
}

#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>

DB_SHOW_COMMAND(rtc, rtc)
{
	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
}
#endif /* DDB */
#endif /* for PC98 */

static int
getit(void)
{
	u_long ef;
	int high, low;

	ef = read_eflags();
	disable_intr();

	/* Select timer0 and latch counter value. */
	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);

	low = inb(TIMER_CNTR0);
	high = inb(TIMER_CNTR0);

	write_eflags(ef);
	return ((high << 8) | low);
}

/*
 * Wait "n" microseconds.
 * Relies on timer 1 counting down from (timer_freq / hz)
 * Note: timer had better have been programmed before this is first used!
 */
void
DELAY(int n)
{
	int prev_tick, tick, ticks_left, sec, usec;

#ifdef DELAYDEBUG
	int getit_calls = 1;
	int n1;
	static int state = 0;

	if (state == 0) {
		state = 1;
		for (n1 = 1; n1 <= 10000000; n1 *= 10)
			DELAY(n1);
		state = 2;
	}
	if (state == 1)
		printf("DELAY(%d)...", n);
#endif
	/*
	 * Read the counter first, so that the rest of the setup overhead is
	 * counted.  Guess the initial overhead is 20 usec (on most systems it
	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
	 * multiplications and divisions to scale the count take a while).
	 */
	prev_tick = getit();
	n -= 20;
	/*
	 * Calculate (n * (timer_freq / 1e6)) without using floating point
	 * and without any avoidable overflows.
	 */
	sec = n / 1000000;
	usec = n - sec * 1000000;
	ticks_left = sec * timer_freq
		     + usec * (timer_freq / 1000000)
		     + usec * ((timer_freq % 1000000) / 1000) / 1000
		     + usec * (timer_freq % 1000) / 1000000;
	if (n < 0)
		ticks_left = 0;	/* XXX timer_freq is unsigned */

	while (ticks_left > 0) {
		tick = getit();
#ifdef DELAYDEBUG
		++getit_calls;
#endif
		if (tick > prev_tick)
			ticks_left -= prev_tick - (tick - timer0_max_count);
		else
			ticks_left -= prev_tick - tick;
		prev_tick = tick;
	}
#ifdef DELAYDEBUG
	if (state == 1)
		printf(" %d calls to getit() at %d usec each\n",
		       getit_calls, (n + 5) / getit_calls);
#endif
}

static void
sysbeepstop(void *chan)
{
#ifdef PC98	/* PC98 */
	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
	release_timer1();
#else
	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
	release_timer2();
#endif
	beeping = 0;
}

int
sysbeep(int pitch, int period)
{
	int x = splclock();

#ifdef PC98
	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT)) 
		if (!beeping) {
			/* Something else owns it. */
			splx(x);
			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
		}
	disable_intr();
	outb(0x3fdb, pitch);
	outb(0x3fdb, (pitch>>8));
	enable_intr();
	if (!beeping) {
		/* enable counter1 output to speaker */
		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
		beeping = period;
		timeout(sysbeepstop, (void *)NULL, period);
	}
#else
	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
		if (!beeping) {
			/* Something else owns it. */
			splx(x);
			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
		}
	disable_intr();
	outb(TIMER_CNTR2, pitch);
	outb(TIMER_CNTR2, (pitch>>8));
	enable_intr();
	if (!beeping) {
		/* enable counter2 output to speaker */
		outb(IO_PPI, inb(IO_PPI) | 3);
		beeping = period;
		timeout(sysbeepstop, (void *)NULL, period);
	}
#endif
	splx(x);
	return (0);
}

#ifndef PC98
/*
 * RTC support routines
 */

int
rtcin(reg)
	int reg;
{
	u_char val;

	outb(IO_RTC, reg);
	inb(0x84);
	val = inb(IO_RTC + 1);
	inb(0x84);
	return (val);
}

static __inline void
writertc(u_char reg, u_char val)
{
	outb(IO_RTC, reg);
	outb(IO_RTC + 1, val);
}

static __inline int
readrtc(int port)
{
	return(bcd2bin(rtcin(port)));
}
#endif

#ifdef PC98
unsigned int delaycount;
#define FIRST_GUESS	0x2000
static void findcpuspeed(void)
{
	int i;
	int remainder;

	/* Put counter in count down mode */
	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
	outb(TIMER_CNTR0, 0xff);
	outb(TIMER_CNTR0, 0xff);
	for (i = FIRST_GUESS; i; i--)
		;
	remainder = getit();
	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
#endif

#ifndef PC98
static u_int
calibrate_clocks(void)
{
	u_int count, prev_count, tot_count;
	int sec, start_sec, timeout;

	printf("Calibrating clock(s) relative to mc146818A clock ... ");
	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
		goto fail;
	timeout = 100000000;

	/* Read the mc146818A seconds counter. */
	for (;;) {
		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
			sec = rtcin(RTC_SEC);
			break;
		}
		if (--timeout == 0)
			goto fail;
	}

	/* Wait for the mC146818A seconds counter to change. */
	start_sec = sec;
	for (;;) {
		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
			sec = rtcin(RTC_SEC);
			if (sec != start_sec)
				break;
		}
		if (--timeout == 0)
			goto fail;
	}

	/* Start keeping track of the i8254 counter. */
	prev_count = getit();
	if (prev_count == 0 || prev_count > timer0_max_count)
		goto fail;
	tot_count = 0;

#if defined(I586_CPU) || defined(I686_CPU)
	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
#endif

	/*
	 * Wait for the mc146818A seconds counter to change.  Read the i8254
	 * counter for each iteration since this is convenient and only
	 * costs a few usec of inaccuracy. The timing of the final reads
	 * of the counters almost matches the timing of the initial reads,
	 * so the main cause of inaccuracy is the varying latency from 
	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
	 * maximum inaccuracy from this cause is < 10 usec on 486's.
	 */
	start_sec = sec;
	for (;;) {
		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
			sec = rtcin(RTC_SEC);
		count = getit();
		if (count == 0 || count > timer0_max_count)
			goto fail;
		if (count > prev_count)
			tot_count += prev_count - (count - timer0_max_count);
		else
			tot_count += prev_count - count;
		prev_count = count;
		if (sec != start_sec)
			break;
		if (--timeout == 0)
			goto fail;
	}

#if defined(I586_CPU) || defined(I686_CPU)
	/*
	 * Read the cpu cycle counter.  The timing considerations are
	 * similar to those for the i8254 clock.
	 */
	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
		printf("i586 clock: %u Hz, ", i586_ctr_freq);
	}
#endif

	printf("i8254 clock: %u Hz\n", tot_count);
	return (tot_count);

fail:
	printf("failed, using default i8254 clock of %u Hz\n", timer_freq);
	return (timer_freq);
}
#endif	/* !PC98 */

static void
set_timer_freq(u_int freq, int intr_freq)
{
	u_long ef;

	ef = read_eflags();
	disable_intr();
	timer_freq = freq;
	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
	outb(TIMER_CNTR0, timer0_max_count & 0xff);
	outb(TIMER_CNTR0, timer0_max_count >> 8);
	write_eflags(ef);
}

/*
 * Initialize 8253 timer 0 early so that it can be used in DELAY().
 * XXX initialization of other timers is unintentionally left blank.
 */
void
startrtclock()
{
	u_int delta, freq;

#ifdef PC98
	findcpuspeed();
#ifndef AUTO_CLOCK
	if (pc98_machine_type & M_8M) {
#ifndef	PC98_8M
		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
#endif
	} else {
#ifdef	PC98_8M
		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
#endif
	}
#else /* AUTO_CLOCK */
	if (pc98_machine_type & M_8M)
		timer_freq = 1996800L; /* 1.9968 MHz */
	else
		timer_freq = 2457600L; /* 2.4576 MHz */
#endif /* AUTO_CLOCK */
#endif /* PC98 */

#ifndef PC98
	writertc(RTC_STATUSA, rtc_statusa);
	writertc(RTC_STATUSB, RTCSB_24HR);
#endif

#ifndef PC98
	set_timer_freq(timer_freq, hz);
	freq = calibrate_clocks();
#ifdef CLK_CALIBRATION_LOOP
	if (bootverbose) {
		printf(
		"Press a key on the console to abort clock calibration\n");
		while (cncheckc() == -1)
			calibrate_clocks();
	}
#endif

	/*
	 * Use the calibrated i8254 frequency if it seems reasonable.
	 * Otherwise use the default, and don't use the calibrated i586
	 * frequency.
	 */
	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
	if (delta < timer_freq / 100) {
#ifndef CLK_USE_I8254_CALIBRATION
		if (bootverbose)
			printf(
"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
		freq = timer_freq;
#endif
		timer_freq = freq;
	} else {
		printf("%d Hz differs from default of %d Hz by more than 1%%\n",
		       freq, timer_freq);
#if defined(I586_CPU) || defined(I686_CPU)
		i586_ctr_freq = 0;
#endif
	}
#endif

	set_timer_freq(timer_freq, hz);

#if defined(I586_CPU) || defined(I686_CPU)
#ifndef CLK_USE_I586_CALIBRATION
	if (i586_ctr_freq != 0) {
		if (bootverbose)
			printf(
"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
		i586_ctr_freq = 0;
	}
#endif
	if (i586_ctr_freq == 0 &&
	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
		/*
		 * Calibration of the i586 clock relative to the mc146818A
		 * clock failed.  Do a less accurate calibration relative
		 * to the i8254 clock.
		 */
		wrmsr(0x10, 0LL);	/* XXX */
		DELAY(1000000);
		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
#ifdef CLK_USE_I586_CALIBRATION
		printf("i586 clock: %u Hz\n", i586_ctr_freq);
#endif
	}
#endif
}

#ifdef PC98
void
rtc_serialcombit(int i)
{
	outb(IO_RTC, ((i&0x01)<<5)|0x07);
	DELAY(1);
	outb(IO_RTC, ((i&0x01)<<5)|0x17);
	DELAY(1);
	outb(IO_RTC, ((i&0x01)<<5)|0x07);
	DELAY(1);
}

void
rtc_serialcom(int i)
{
	rtc_serialcombit(i&0x01);
	rtc_serialcombit((i&0x02)>>1);
	rtc_serialcombit((i&0x04)>>2);
	rtc_serialcombit((i&0x08)>>3);
	outb(IO_RTC, 0x07);
	DELAY(1);
	outb(IO_RTC, 0x0f);
	DELAY(1);
	outb(IO_RTC, 0x07);
 	DELAY(1);
}

void
rtc_outb(int val)
{
	int s;
	int sa = 0;

	for (s=0;s<8;s++) {
	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
	    DELAY(1);
	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
	    DELAY(1);
	} 
	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
}

int
rtc_inb(void)
{
	int s;
	int sa = 0;

	for (s=0;s<8;s++) {
	    sa |= ((inb(0x33) & 0x01) << s);
	    outb(IO_RTC, 0x17);	/* CLK 1 */
	    DELAY(1);
	    outb(IO_RTC, 0x07);	/* CLK 0 */
	    DELAY(2);
	} 
	return sa;
}
#endif /* PC-98 */

/*
 * Initialize the time of day register,	based on the time base which is, e.g.
 * from	a filesystem.
 */
void
inittodr(time_t base)
{
	unsigned long	sec, days;
	int		yd;
	int		year, month;
	int		y, m, s;
#ifdef PC98
	int		second, min, hour;
#endif

	s = splclock();
	time.tv_sec  = base;
	time.tv_usec = 0;
	splx(s);

#ifdef PC98
	rtc_serialcom(0x03);	/* Time Read */
	rtc_serialcom(0x01);	/* Register shift command. */
	DELAY(20);

	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
	min = bcd2bin(rtc_inb() & 0xff);	/* min */
	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */

	month = (rtc_inb() >> 4) & 0x0f;	/* month */
	for (m = 1; m <	month; m++)
		days +=	daysinmonth[m-1];
	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
	/* 2000 year problem */
	if (year < 1995)
		year += 100;
	if (year < 1970)
		goto wrong_time;
	for (y = 1970; y < year; y++)
		days +=	DAYSPERYEAR + LEAPYEAR(y);
	if ((month > 2)	&& LEAPYEAR(year))
		days ++;
	sec = ((( days * 24 +
		  hour) * 60 +
		  min) * 60 +
		  second);
	/* sec now contains the	number of seconds, since Jan 1 1970,
	   in the local	time zone */
#else	/* IBM-PC */
	/* Look	if we have a RTC present and the time is valid */
	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
		goto wrong_time;

	/* wait	for time update	to complete */
	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
	while (rtcin(RTC_STATUSA) & RTCSA_TUP);

	days = 0;
#ifdef USE_RTC_CENTURY
	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
#else
	year = readrtc(RTC_YEAR) + 1900;
	if (year < 1970)
		year += 100;
#endif
	if (year < 1970)
		goto wrong_time;
	month =	readrtc(RTC_MONTH);
	for (m = 1; m <	month; m++)
		days +=	daysinmonth[m-1];
	if ((month > 2)	&& LEAPYEAR(year))
		days ++;
	days +=	readrtc(RTC_DAY) - 1;
	yd = days;
	for (y = 1970; y < year; y++)
		days +=	DAYSPERYEAR + LEAPYEAR(y);
	sec = ((( days * 24 +
		  readrtc(RTC_HRS)) * 60 +
		  readrtc(RTC_MIN)) * 60 +
		  readrtc(RTC_SEC));
	/* sec now contains the	number of seconds, since Jan 1 1970,
	   in the local	time zone */
#endif

	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);

	s = splclock();
	time.tv_sec = sec;
	splx(s);
	return;

wrong_time:
	printf("Invalid	time in	real time clock.\n");
	printf("Check and reset	the date immediately!\n");
}

/*
 * Write system	time back to RTC
 */
void
resettodr()
{
	unsigned long	tm;
	int		y, m, s;
#ifdef PC98
	int		wd;
#endif

	if (disable_rtc_set)
		return;

	s = splclock();
	tm = time.tv_sec;
	splx(s);

#ifdef PC98
	rtc_serialcom(0x01);	/* Register shift command. */

	/* Calculate local time	to put in RTC */

	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);

	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */

	/* We have now the days	since 01-01-1970 in tm */
	wd = (tm+4)%7;
	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
	     tm >= m;
	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
	     tm -= m;

	/* Now we have the years in y and the day-of-the-year in tm */
	for (m = 0; ; m++) {
		int ml;

		ml = daysinmonth[m];
		if (m == 1 && LEAPYEAR(y))
			ml++;
		if (tm < ml)
			break;
		tm -= ml;
	}

	m++;
	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
	rtc_outb(bin2bcd(y%100));		/* Write back Year    */

	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
	rtc_serialcom(0x00);	/* Register hold command. */
#else
	/* Disable RTC updates and interrupts. */
	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);

	/* Calculate local time	to put in RTC */

	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);

	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */

	/* We have now the days	since 01-01-1970 in tm */
	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
	     tm >= m;
	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
	     tm -= m;

	/* Now we have the years in y and the day-of-the-year in tm */
	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
#ifdef USE_RTC_CENTURY
	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
#endif
	for (m = 0; ; m++) {
		int ml;

		ml = daysinmonth[m];
		if (m == 1 && LEAPYEAR(y))
			ml++;
		if (tm < ml)
			break;
		tm -= ml;
	}

	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */

	/* Reenable RTC updates and interrupts. */
	writertc(RTC_STATUSB, rtc_statusb);
#endif
}

/*
 * Start both clocks running.
 */
void
cpu_initclocks()
{
#ifndef PC98
	int diag;

	if (statclock_disable) {
		/*
		 * The stat interrupt mask is different without the
		 * statistics clock.  Also, don't set the interrupt
		 * flag which would normally cause the RTC to generate
		 * interrupts.
		 */
		stat_imask = HWI_MASK | SWI_MASK;
		rtc_statusb = RTCSB_24HR;
	} else {
	        /* Setting stathz to nonzero early helps avoid races. */
		stathz = RTC_NOPROFRATE;
		profhz = RTC_PROFRATE;
        }
#endif

	/* Finish initializing 8253 timer 0. */
	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
		      /* unit */ 0);
	INTREN(IRQ0);
#if defined(I586_CPU) || defined(I686_CPU)
	/*
	 * Finish setting up anti-jitter measures.
	 */
	if (i586_ctr_freq != 0)
		i586_ctr_bias = rdtsc();
#endif

#ifndef PC98
	/* Initialize RTC. */
	writertc(RTC_STATUSA, rtc_statusa);
	writertc(RTC_STATUSB, RTCSB_24HR);

	/* Don't bother enabling the statistics clock. */
	if (statclock_disable)
		return;
	diag = rtcin(RTC_DIAG);
	if (diag != 0)
		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
		      /* unit */ 0);
	INTREN(IRQ8);
	writertc(RTC_STATUSB, rtc_statusb);
#endif
}

void
setstatclockrate(int newhz)
{
#ifndef PC98
	if (newhz == RTC_PROFRATE)
		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
	else
		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
	writertc(RTC_STATUSA, rtc_statusa);
#endif
}

static int
sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
{
	int error;
	u_int freq;

	/*
	 * Use `i8254' instead of `timer' in external names because `timer'
	 * is is too generic.  Should use it everywhere.
	 */
	freq = timer_freq;
	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
	if (error == 0 && req->newptr != NULL) {
		if (timer0_state != 0)
			return (EBUSY);	/* too much trouble to handle */
		set_timer_freq(freq, hz);
#if defined(I586_CPU) || defined(I686_CPU)
		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
#endif
	}
	return (error);
}

SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");

#if defined(I586_CPU) || defined(I686_CPU)
static void
set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
{
	u_int comultiplier, multiplier;
	u_long ef;

	if (i586_freq == 0) {
		i586_ctr_freq = i586_freq;
		return;
	}
	comultiplier = ((unsigned long long)i586_freq
			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
	ef = read_eflags();
	disable_intr();
	i586_ctr_freq = i586_freq;
	i586_ctr_comultiplier = comultiplier;
	i586_ctr_multiplier = multiplier;
	write_eflags(ef);
}

static int
sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
{
	int error;
	u_int freq;

	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
		return (EOPNOTSUPP);
	freq = i586_ctr_freq;
	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
	if (error == 0 && req->newptr != NULL)
		set_i586_ctr_freq(freq, timer_freq);
	return (error);
}

SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
#endif /* defined(I586_CPU) || defined(I686_CPU) */
OpenPOWER on IntegriCloud