1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
|
/*
* Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*/
#ifdef _KERNEL
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <net/if.h> /* IFNAMSIZ */
#include <netinet/in.h>
#include <netinet/ip_var.h> /* ipfw_rule_ref */
#include <netinet/ip_fw.h> /* flow_id */
#include <netinet/ip_dummynet.h>
#include <netpfil/ipfw/dn_heap.h>
#include <netpfil/ipfw/ip_dn_private.h>
#include <netpfil/ipfw/dn_sched.h>
#else
#include <dn_test.h>
#endif
#ifdef QFQ_DEBUG
#define _P64 unsigned long long /* cast for printing uint64_t */
struct qfq_sched;
static void dump_sched(struct qfq_sched *q, const char *msg);
#define NO(x) x
#else
#define NO(x)
#endif
#define DN_SCHED_QFQ 4 // XXX Where?
typedef unsigned long bitmap;
/*
* bitmaps ops are critical. Some linux versions have __fls
* and the bitmap ops. Some machines have ffs
* NOTE: fls() returns 1 for the least significant bit,
* __fls() returns 0 for the same case.
* We use the base-0 version __fls() to match the description in
* the ToN QFQ paper
*/
#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
int fls(unsigned int n)
{
int i = 0;
for (i = 0; n > 0; n >>= 1, i++)
;
return i;
}
#endif
#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
static inline unsigned long __fls(unsigned long word)
{
return fls(word) - 1;
}
#endif
#if !defined(_KERNEL) || !defined(__linux__)
#ifdef QFQ_DEBUG
static int test_bit(int ix, bitmap *p)
{
if (ix < 0 || ix > 31)
D("bad index %d", ix);
return *p & (1<<ix);
}
static void __set_bit(int ix, bitmap *p)
{
if (ix < 0 || ix > 31)
D("bad index %d", ix);
*p |= (1<<ix);
}
static void __clear_bit(int ix, bitmap *p)
{
if (ix < 0 || ix > 31)
D("bad index %d", ix);
*p &= ~(1<<ix);
}
#else /* !QFQ_DEBUG */
/* XXX do we have fast version, or leave it to the compiler ? */
#define test_bit(ix, pData) ((*pData) & (1<<(ix)))
#define __set_bit(ix, pData) (*pData) |= (1<<(ix))
#define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
#endif /* !QFQ_DEBUG */
#endif /* !__linux__ */
#ifdef __MIPSEL__
#define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
#endif
/*-------------------------------------------*/
/*
Virtual time computations.
S, F and V are all computed in fixed point arithmetic with
FRAC_BITS decimal bits.
QFQ_MAX_INDEX is the maximum index allowed for a group. We need
one bit per index.
QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
The layout of the bits is as below:
[ MTU_SHIFT ][ FRAC_BITS ]
[ MAX_INDEX ][ MIN_SLOT_SHIFT ]
^.__grp->index = 0
*.__grp->slot_shift
where MIN_SLOT_SHIFT is derived by difference from the others.
The max group index corresponds to Lmax/w_min, where
Lmax=1<<MTU_SHIFT, w_min = 1 .
From this, and knowing how many groups (MAX_INDEX) we want,
we can derive the shift corresponding to each group.
Because we often need to compute
F = S + len/w_i and V = V + len/wsum
instead of storing w_i store the value
inv_w = (1<<FRAC_BITS)/w_i
so we can do F = S + len * inv_w * wsum.
We use W_TOT in the formulas so we can easily move between
static and adaptive weight sum.
The per-scheduler-instance data contain all the data structures
for the scheduler: bitmaps and bucket lists.
*/
/*
* Maximum number of consecutive slots occupied by backlogged classes
* inside a group. This is approx lmax/lmin + 5.
* XXX check because it poses constraints on MAX_INDEX
*/
#define QFQ_MAX_SLOTS 32
/*
* Shifts used for class<->group mapping. Class weights are
* in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
* group with the smallest index that can support the L_i / r_i
* configured for the class.
*
* grp->index is the index of the group; and grp->slot_shift
* is the shift for the corresponding (scaled) sigma_i.
*
* When computing the group index, we do (len<<FP_SHIFT)/weight,
* then compute an FLS (which is like a log2()), and if the result
* is below the MAX_INDEX region we use 0 (which is the same as
* using a larger len).
*/
#define QFQ_MAX_INDEX 19
#define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */
#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
#define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
#define FRAC_BITS 30 /* fixed point arithmetic */
#define ONE_FP (1UL << FRAC_BITS)
#define QFQ_MTU_SHIFT 11 /* log2(max_len) */
#define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
/*
* Possible group states, also indexes for the bitmaps array in
* struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
*/
enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
struct qfq_group;
/*
* additional queue info. Some of this info should come from
* the flowset, we copy them here for faster processing.
* This is an overlay of the struct dn_queue
*/
struct qfq_class {
struct dn_queue _q;
uint64_t S, F; /* flow timestamps (exact) */
struct qfq_class *next; /* Link for the slot list. */
/* group we belong to. In principle we would need the index,
* which is log_2(lmax/weight), but we never reference it
* directly, only the group.
*/
struct qfq_group *grp;
/* these are copied from the flowset. */
uint32_t inv_w; /* ONE_FP/weight */
uint32_t lmax; /* Max packet size for this flow. */
};
/* Group descriptor, see the paper for details.
* Basically this contains the bucket lists
*/
struct qfq_group {
uint64_t S, F; /* group timestamps (approx). */
unsigned int slot_shift; /* Slot shift. */
unsigned int index; /* Group index. */
unsigned int front; /* Index of the front slot. */
bitmap full_slots; /* non-empty slots */
/* Array of lists of active classes. */
struct qfq_class *slots[QFQ_MAX_SLOTS];
};
/* scheduler instance descriptor. */
struct qfq_sched {
uint64_t V; /* Precise virtual time. */
uint32_t wsum; /* weight sum */
uint32_t iwsum; /* inverse weight sum */
NO(uint32_t i_wsum;) /* ONE_FP/w_sum */
NO(uint32_t queued;) /* debugging */
NO(uint32_t loops;) /* debugging */
bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
};
/*---- support functions ----------------------------*/
/* Generic comparison function, handling wraparound. */
static inline int qfq_gt(uint64_t a, uint64_t b)
{
return (int64_t)(a - b) > 0;
}
/* Round a precise timestamp to its slotted value. */
static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
{
return ts & ~((1ULL << shift) - 1);
}
/* return the pointer to the group with lowest index in the bitmap */
static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
unsigned long bitmap)
{
int index = ffs(bitmap) - 1; // zero-based
return &q->groups[index];
}
/*
* Calculate a flow index, given its weight and maximum packet length.
* index = log_2(maxlen/weight) but we need to apply the scaling.
* This is used only once at flow creation.
*/
static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
{
uint64_t slot_size = (uint64_t)maxlen *inv_w;
unsigned long size_map;
int index = 0;
size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
if (!size_map)
goto out;
index = __fls(size_map) + 1; // basically a log_2()
index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
if (index < 0)
index = 0;
out:
ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
return index;
}
/*---- end support functions ----*/
/*-------- API calls --------------------------------*/
/*
* Validate and copy parameters from flowset.
*/
static int
qfq_new_queue(struct dn_queue *_q)
{
struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
struct qfq_class *cl = (struct qfq_class *)_q;
int i;
uint32_t w; /* approximated weight */
/* import parameters from the flowset. They should be correct
* already.
*/
w = _q->fs->fs.par[0];
cl->lmax = _q->fs->fs.par[1];
if (!w || w > QFQ_MAX_WEIGHT) {
w = 1;
D("rounding weight to 1");
}
cl->inv_w = ONE_FP/w;
w = ONE_FP/cl->inv_w;
if (q->wsum + w > QFQ_MAX_WSUM)
return EINVAL;
i = qfq_calc_index(cl->inv_w, cl->lmax);
cl->grp = &q->groups[i];
q->wsum += w;
q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
// XXX cl->S = q->V; ?
return 0;
}
/* remove an empty queue */
static int
qfq_free_queue(struct dn_queue *_q)
{
struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
struct qfq_class *cl = (struct qfq_class *)_q;
if (cl->inv_w) {
q->wsum -= ONE_FP/cl->inv_w;
if (q->wsum != 0)
q->iwsum = ONE_FP / q->wsum;
cl->inv_w = 0; /* reset weight to avoid run twice */
}
return 0;
}
/* Calculate a mask to mimic what would be ffs_from(). */
static inline unsigned long
mask_from(unsigned long bitmap, int from)
{
return bitmap & ~((1UL << from) - 1);
}
/*
* The state computation relies on ER=0, IR=1, EB=2, IB=3
* First compute eligibility comparing grp->S, q->V,
* then check if someone is blocking us and possibly add EB
*/
static inline unsigned int
qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
{
/* if S > V we are not eligible */
unsigned int state = qfq_gt(grp->S, q->V);
unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
struct qfq_group *next;
if (mask) {
next = qfq_ffs(q, mask);
if (qfq_gt(grp->F, next->F))
state |= EB;
}
return state;
}
/*
* In principle
* q->bitmaps[dst] |= q->bitmaps[src] & mask;
* q->bitmaps[src] &= ~mask;
* but we should make sure that src != dst
*/
static inline void
qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
{
q->bitmaps[dst] |= q->bitmaps[src] & mask;
q->bitmaps[src] &= ~mask;
}
static inline void
qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
{
unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
struct qfq_group *next;
if (mask) {
next = qfq_ffs(q, mask);
if (!qfq_gt(next->F, old_finish))
return;
}
mask = (1UL << index) - 1;
qfq_move_groups(q, mask, EB, ER);
qfq_move_groups(q, mask, IB, IR);
}
/*
* perhaps
*
old_V ^= q->V;
old_V >>= QFQ_MIN_SLOT_SHIFT;
if (old_V) {
...
}
*
*/
static inline void
qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
{
unsigned long mask, vslot, old_vslot;
vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
if (vslot != old_vslot) {
/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
qfq_move_groups(q, mask, IR, ER);
qfq_move_groups(q, mask, IB, EB);
}
}
/*
* XXX we should make sure that slot becomes less than 32.
* This is guaranteed by the input values.
* roundedS is always cl->S rounded on grp->slot_shift bits.
*/
static inline void
qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
{
uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
cl->next = grp->slots[i];
grp->slots[i] = cl;
__set_bit(slot, &grp->full_slots);
}
/*
* remove the entry from the slot
*/
static inline void
qfq_front_slot_remove(struct qfq_group *grp)
{
struct qfq_class **h = &grp->slots[grp->front];
*h = (*h)->next;
if (!*h)
__clear_bit(0, &grp->full_slots);
}
/*
* Returns the first full queue in a group. As a side effect,
* adjust the bucket list so the first non-empty bucket is at
* position 0 in full_slots.
*/
static inline struct qfq_class *
qfq_slot_scan(struct qfq_group *grp)
{
int i;
ND("grp %d full %x", grp->index, grp->full_slots);
if (!grp->full_slots)
return NULL;
i = ffs(grp->full_slots) - 1; // zero-based
if (i > 0) {
grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
grp->full_slots >>= i;
}
return grp->slots[grp->front];
}
/*
* adjust the bucket list. When the start time of a group decreases,
* we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
* move the objects. The mask of occupied slots must be shifted
* because we use ffs() to find the first non-empty slot.
* This covers decreases in the group's start time, but what about
* increases of the start time ?
* Here too we should make sure that i is less than 32
*/
static inline void
qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
{
unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
(void)q;
grp->full_slots <<= i;
grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
}
static inline void
qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
{
bitmap ineligible;
ineligible = q->bitmaps[IR] | q->bitmaps[IB];
if (ineligible) {
if (!q->bitmaps[ER]) {
struct qfq_group *grp;
grp = qfq_ffs(q, ineligible);
if (qfq_gt(grp->S, q->V))
q->V = grp->S;
}
qfq_make_eligible(q, old_V);
}
}
/*
* Updates the class, returns true if also the group needs to be updated.
*/
static inline int
qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
struct qfq_class *cl)
{
(void)q;
cl->S = cl->F;
if (cl->_q.mq.head == NULL) {
qfq_front_slot_remove(grp);
} else {
unsigned int len;
uint64_t roundedS;
len = cl->_q.mq.head->m_pkthdr.len;
cl->F = cl->S + (uint64_t)len * cl->inv_w;
roundedS = qfq_round_down(cl->S, grp->slot_shift);
if (roundedS == grp->S)
return 0;
qfq_front_slot_remove(grp);
qfq_slot_insert(grp, cl, roundedS);
}
return 1;
}
static struct mbuf *
qfq_dequeue(struct dn_sch_inst *si)
{
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
struct qfq_group *grp;
struct qfq_class *cl;
struct mbuf *m;
uint64_t old_V;
NO(q->loops++;)
if (!q->bitmaps[ER]) {
NO(if (q->queued)
dump_sched(q, "start dequeue");)
return NULL;
}
grp = qfq_ffs(q, q->bitmaps[ER]);
cl = grp->slots[grp->front];
/* extract from the first bucket in the bucket list */
m = dn_dequeue(&cl->_q);
if (!m) {
D("BUG/* non-workconserving leaf */");
return NULL;
}
NO(q->queued--;)
old_V = q->V;
q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
if (qfq_update_class(q, grp, cl)) {
uint64_t old_F = grp->F;
cl = qfq_slot_scan(grp);
if (!cl) { /* group gone, remove from ER */
__clear_bit(grp->index, &q->bitmaps[ER]);
// grp->S = grp->F + 1; // XXX debugging only
} else {
uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
unsigned int s;
if (grp->S == roundedS)
goto skip_unblock;
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift);
/* remove from ER and put in the new set */
__clear_bit(grp->index, &q->bitmaps[ER]);
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
}
/* we need to unblock even if the group has gone away */
qfq_unblock_groups(q, grp->index, old_F);
}
skip_unblock:
qfq_update_eligible(q, old_V);
NO(if (!q->bitmaps[ER] && q->queued)
dump_sched(q, "end dequeue");)
return m;
}
/*
* Assign a reasonable start time for a new flow k in group i.
* Admissible values for \hat(F) are multiples of \sigma_i
* no greater than V+\sigma_i . Larger values mean that
* we had a wraparound so we consider the timestamp to be stale.
*
* If F is not stale and F >= V then we set S = F.
* Otherwise we should assign S = V, but this may violate
* the ordering in ER. So, if we have groups in ER, set S to
* the F_j of the first group j which would be blocking us.
* We are guaranteed not to move S backward because
* otherwise our group i would still be blocked.
*/
static inline void
qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
{
unsigned long mask;
uint64_t limit, roundedF;
int slot_shift = cl->grp->slot_shift;
roundedF = qfq_round_down(cl->F, slot_shift);
limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
/* timestamp was stale */
mask = mask_from(q->bitmaps[ER], cl->grp->index);
if (mask) {
struct qfq_group *next = qfq_ffs(q, mask);
if (qfq_gt(roundedF, next->F)) {
/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
if (qfq_gt(limit, next->F))
cl->S = next->F;
else /* preserve timestamp correctness */
cl->S = limit;
return;
}
}
cl->S = q->V;
} else { /* timestamp is not stale */
cl->S = cl->F;
}
}
static int
qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
{
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
struct qfq_group *grp;
struct qfq_class *cl = (struct qfq_class *)_q;
uint64_t roundedS;
int s;
NO(q->loops++;)
DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
_q, cl->inv_w, cl->grp->index);
/* XXX verify that the packet obeys the parameters */
if (m != _q->mq.head) {
if (dn_enqueue(_q, m, 0)) /* packet was dropped */
return 1;
NO(q->queued++;)
if (m != _q->mq.head)
return 0;
}
/* If reach this point, queue q was idle */
grp = cl->grp;
qfq_update_start(q, cl); /* adjust start time */
/* compute new finish time and rounded start. */
cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
roundedS = qfq_round_down(cl->S, grp->slot_shift);
/*
* insert cl in the correct bucket.
* If cl->S >= grp->S we don't need to adjust the
* bucket list and simply go to the insertion phase.
* Otherwise grp->S is decreasing, we must make room
* in the bucket list, and also recompute the group state.
* Finally, if there were no flows in this group and nobody
* was in ER make sure to adjust V.
*/
if (grp->full_slots) {
if (!qfq_gt(grp->S, cl->S))
goto skip_update;
/* create a slot for this cl->S */
qfq_slot_rotate(q, grp, roundedS);
/* group was surely ineligible, remove */
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[IB]);
} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
q->V = roundedS;
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
ND("new state %d 0x%x", s, q->bitmaps[s]);
ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
skip_update:
qfq_slot_insert(grp, cl, roundedS);
return 0;
}
#if 0
static inline void
qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
struct qfq_class *cl, struct qfq_class **pprev)
{
unsigned int i, offset;
uint64_t roundedS;
roundedS = qfq_round_down(cl->S, grp->slot_shift);
offset = (roundedS - grp->S) >> grp->slot_shift;
i = (grp->front + offset) % QFQ_MAX_SLOTS;
#ifdef notyet
if (!pprev) {
pprev = &grp->slots[i];
while (*pprev && *pprev != cl)
pprev = &(*pprev)->next;
}
#endif
*pprev = cl->next;
if (!grp->slots[i])
__clear_bit(offset, &grp->full_slots);
}
/*
* called to forcibly destroy a queue.
* If the queue is not in the front bucket, or if it has
* other queues in the front bucket, we can simply remove
* the queue with no other side effects.
* Otherwise we must propagate the event up.
* XXX description to be completed.
*/
static void
qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
struct qfq_class **pprev)
{
struct qfq_group *grp = &q->groups[cl->index];
unsigned long mask;
uint64_t roundedS;
int s;
cl->F = cl->S; // not needed if the class goes away.
qfq_slot_remove(q, grp, cl, pprev);
if (!grp->full_slots) {
/* nothing left in the group, remove from all sets.
* Do ER last because if we were blocking other groups
* we must unblock them.
*/
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[EB]);
__clear_bit(grp->index, &q->bitmaps[IB]);
if (test_bit(grp->index, &q->bitmaps[ER]) &&
!(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
if (mask)
mask = ~((1UL << __fls(mask)) - 1);
else
mask = ~0UL;
qfq_move_groups(q, mask, EB, ER);
qfq_move_groups(q, mask, IB, IR);
}
__clear_bit(grp->index, &q->bitmaps[ER]);
} else if (!grp->slots[grp->front]) {
cl = qfq_slot_scan(grp);
roundedS = qfq_round_down(cl->S, grp->slot_shift);
if (grp->S != roundedS) {
__clear_bit(grp->index, &q->bitmaps[ER]);
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[EB]);
__clear_bit(grp->index, &q->bitmaps[IB]);
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift);
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
}
}
qfq_update_eligible(q, q->V);
}
#endif
static int
qfq_new_fsk(struct dn_fsk *f)
{
ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
return 0;
}
/*
* initialize a new scheduler instance
*/
static int
qfq_new_sched(struct dn_sch_inst *si)
{
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
struct qfq_group *grp;
int i;
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
grp = &q->groups[i];
grp->index = i;
grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
(QFQ_MAX_INDEX - i);
}
return 0;
}
/*
* QFQ scheduler descriptor
*/
static struct dn_alg qfq_desc = {
_SI( .type = ) DN_SCHED_QFQ,
_SI( .name = ) "QFQ",
_SI( .flags = ) DN_MULTIQUEUE,
_SI( .schk_datalen = ) 0,
_SI( .si_datalen = ) sizeof(struct qfq_sched),
_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
_SI( .enqueue = ) qfq_enqueue,
_SI( .dequeue = ) qfq_dequeue,
_SI( .config = ) NULL,
_SI( .destroy = ) NULL,
_SI( .new_sched = ) qfq_new_sched,
_SI( .free_sched = ) NULL,
_SI( .new_fsk = ) qfq_new_fsk,
_SI( .free_fsk = ) NULL,
_SI( .new_queue = ) qfq_new_queue,
_SI( .free_queue = ) qfq_free_queue,
};
DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
#ifdef QFQ_DEBUG
static void
dump_groups(struct qfq_sched *q, uint32_t mask)
{
int i, j;
for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
struct qfq_group *g = &q->groups[i];
if (0 == (mask & (1<<i)))
continue;
for (j = 0; j < QFQ_MAX_SLOTS; j++) {
if (g->slots[j])
D(" bucket %d %p", j, g->slots[j]);
}
D("full_slots 0x%llx", (_P64)g->full_slots);
D(" %2d S 0x%20llx F 0x%llx %c", i,
(_P64)g->S, (_P64)g->F,
mask & (1<<i) ? '1' : '0');
}
}
static void
dump_sched(struct qfq_sched *q, const char *msg)
{
D("--- in %s: ---", msg);
D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
D(" ER 0x%08x", (unsigned)q->bitmaps[ER]);
D(" EB 0x%08x", (unsigned)q->bitmaps[EB]);
D(" IR 0x%08x", (unsigned)q->bitmaps[IR]);
D(" IB 0x%08x", (unsigned)q->bitmaps[IB]);
dump_groups(q, 0xffffffff);
};
#endif /* QFQ_DEBUG */
|