summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_ule.c
blob: 2a6279865440f51cabc9ba5bf1025c1dc75ccee4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
/*-
 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_hwpmc_hooks.h"
#include "opt_sched.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/turnstile.h>
#include <sys/umtx.h>
#include <sys/vmmeter.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif

#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif

#include <machine/cpu.h>
#include <machine/smp.h>

#ifndef PREEMPTION
#error	"SCHED_ULE requires options PREEMPTION"
#endif

/*
 * TODO:
 *	Pick idle from affinity group or self group first.
 *	Implement pick_score.
 */

#define	KTR_ULE	0x0		/* Enable for pickpri debugging. */

/*
 * Thread scheduler specific section.
 */
struct td_sched {	
	TAILQ_ENTRY(td_sched) ts_procq;	/* (j/z) Run queue. */
	int		ts_flags;	/* (j) TSF_* flags. */
	struct thread	*ts_thread;	/* (*) Active associated thread. */
	u_char		ts_rqindex;	/* (j) Run queue index. */
	int		ts_slptime;
	int		ts_slice;
	struct runq	*ts_runq;
	u_char		ts_cpu;		/* CPU that we have affinity for. */
	/* The following variables are only used for pctcpu calculation */
	int		ts_ltick;	/* Last tick that we were running on */
	int		ts_ftick;	/* First tick that we were running on */
	int		ts_ticks;	/* Tick count */
#ifdef SMP
	int		ts_rltick;	/* Real last tick, for affinity. */
#endif

	/* originally from kg_sched */
	u_int	skg_slptime;		/* Number of ticks we vol. slept */
	u_int	skg_runtime;		/* Number of ticks we were running */
};
/* flags kept in ts_flags */
#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */

static struct td_sched td_sched0;

/*
 * Cpu percentage computation macros and defines.
 *
 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
 */
#define	SCHED_TICK_SECS		10
#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
#define	SCHED_TICK_SHIFT	10
#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))

/*
 * These macros determine priorities for non-interactive threads.  They are
 * assigned a priority based on their recent cpu utilization as expressed
 * by the ratio of ticks to the tick total.  NHALF priorities at the start
 * and end of the MIN to MAX timeshare range are only reachable with negative
 * or positive nice respectively.
 *
 * PRI_RANGE:	Priority range for utilization dependent priorities.
 * PRI_NRESV:	Number of nice values.
 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
 * PRI_NICE:	Determines the part of the priority inherited from nice.
 */
#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
#define	SCHED_PRI_TICKS(ts)						\
    (SCHED_TICK_HZ((ts)) /						\
    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
#define	SCHED_PRI_NICE(nice)	(nice)

/*
 * These determine the interactivity of a process.  Interactivity differs from
 * cpu utilization in that it expresses the voluntary time slept vs time ran
 * while cpu utilization includes all time not running.  This more accurately
 * models the intent of the thread.
 *
 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
 *		before throttling back.
 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
 * INTERACT_THRESH:	Threshhold for placement on the current runq.
 */
#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
#define	SCHED_INTERACT_MAX	(100)
#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
#define	SCHED_INTERACT_THRESH	(30)

/*
 * tickincr:		Converts a stathz tick into a hz domain scaled by
 *			the shift factor.  Without the shift the error rate
 *			due to rounding would be unacceptably high.
 * realstathz:		stathz is sometimes 0 and run off of hz.
 * sched_slice:		Runtime of each thread before rescheduling.
 */
static int sched_interact = SCHED_INTERACT_THRESH;
static int realstathz;
static int tickincr;
static int sched_slice;

/*
 * tdq - per processor runqs and statistics.
 */
struct tdq {
	struct runq	tdq_idle;		/* Queue of IDLE threads. */
	struct runq	tdq_timeshare;		/* timeshare run queue. */
	struct runq	tdq_realtime;		/* real-time run queue. */
	u_char		tdq_idx;		/* Current insert index. */
	u_char		tdq_ridx;		/* Current removal index. */
	short		tdq_flags;		/* Thread queue flags */
	int		tdq_load;		/* Aggregate load. */
#ifdef SMP
	int		tdq_transferable;
	LIST_ENTRY(tdq)	tdq_siblings;		/* Next in tdq group. */
	struct tdq_group *tdq_group;		/* Our processor group. */
#else
	int		tdq_sysload;		/* For loadavg, !ITHD load. */
#endif
};

#define	TDQF_BUSY	0x0001			/* Queue is marked as busy */

#ifdef SMP
/*
 * tdq groups are groups of processors which can cheaply share threads.  When
 * one processor in the group goes idle it will check the runqs of the other
 * processors in its group prior to halting and waiting for an interrupt.
 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
 * In a numa environment we'd want an idle bitmap per group and a two tiered
 * load balancer.
 */
struct tdq_group {
	int	tdg_cpus;		/* Count of CPUs in this tdq group. */
	cpumask_t tdg_cpumask;		/* Mask of cpus in this group. */
	cpumask_t tdg_idlemask;		/* Idle cpus in this group. */
	cpumask_t tdg_mask;		/* Bit mask for first cpu. */
	int	tdg_load;		/* Total load of this group. */
	int	tdg_transferable;	/* Transferable load of this group. */
	LIST_HEAD(, tdq) tdg_members;	/* Linked list of all members. */
};

#define	SCHED_AFFINITY_DEFAULT	(hz / 100)
#define	SCHED_AFFINITY(ts)	((ts)->ts_rltick > ticks - affinity)

/*
 * Run-time tunables.
 */
static int rebalance = 0;
static int pick_pri = 1;
static int affinity;
static int tryself = 1;
static int tryselfidle = 1;
static int ipi_ast = 0;
static int ipi_preempt = 1;
static int ipi_thresh = PRI_MIN_KERN;
static int steal_htt = 1;
static int steal_busy = 1;
static int busy_thresh = 4;

/*
 * One thread queue per processor.
 */
static volatile cpumask_t tdq_idle;
static volatile cpumask_t tdq_busy;
static int tdg_maxid;
static struct tdq	tdq_cpu[MAXCPU];
static struct tdq_group tdq_groups[MAXCPU];
static int bal_tick;
static int gbal_tick;
static int balance_groups;

#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
#define	TDQ_ID(x)	((x) - tdq_cpu)
#define	TDQ_GROUP(x)	(&tdq_groups[(x)])
#else	/* !SMP */
static struct tdq	tdq_cpu;

#define	TDQ_SELF()	(&tdq_cpu)
#define	TDQ_CPU(x)	(&tdq_cpu)
#endif

static void sched_priority(struct thread *);
static void sched_thread_priority(struct thread *, u_char);
static int sched_interact_score(struct thread *);
static void sched_interact_update(struct thread *);
static void sched_interact_fork(struct thread *);
static void sched_pctcpu_update(struct td_sched *);
static inline void sched_pin_td(struct thread *td);
static inline void sched_unpin_td(struct thread *td);

/* Operations on per processor queues */
static struct td_sched * tdq_choose(struct tdq *);
static void tdq_setup(struct tdq *);
static void tdq_load_add(struct tdq *, struct td_sched *);
static void tdq_load_rem(struct tdq *, struct td_sched *);
static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
void tdq_print(int cpu);
static void runq_print(struct runq *rq);
#ifdef SMP
static int tdq_pickidle(struct tdq *, struct td_sched *);
static int tdq_pickpri(struct tdq *, struct td_sched *, int);
static struct td_sched *runq_steal(struct runq *);
static void sched_balance(void);
static void sched_balance_groups(void);
static void sched_balance_group(struct tdq_group *);
static void sched_balance_pair(struct tdq *, struct tdq *);
static void sched_smp_tick(struct thread *);
static void tdq_move(struct tdq *, int);
static int tdq_idled(struct tdq *);
static void tdq_notify(struct td_sched *);
static struct td_sched *tdq_steal(struct tdq *, int);

#define	THREAD_CAN_MIGRATE(td)	 ((td)->td_pinned == 0)
#endif

static void sched_setup(void *dummy);
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)

static void sched_initticks(void *dummy);
SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)

static inline void
sched_pin_td(struct thread *td)
{
	td->td_pinned++;
}

static inline void
sched_unpin_td(struct thread *td)
{
	td->td_pinned--;
}

static void
runq_print(struct runq *rq)
{
	struct rqhead *rqh;
	struct td_sched *ts;
	int pri;
	int j;
	int i;

	for (i = 0; i < RQB_LEN; i++) {
		printf("\t\trunq bits %d 0x%zx\n",
		    i, rq->rq_status.rqb_bits[i]);
		for (j = 0; j < RQB_BPW; j++)
			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
				pri = j + (i << RQB_L2BPW);
				rqh = &rq->rq_queues[pri];
				TAILQ_FOREACH(ts, rqh, ts_procq) {
					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
					    ts->ts_thread, ts->ts_thread->td_proc->p_comm, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
				}
			}
	}
}

void
tdq_print(int cpu)
{
	struct tdq *tdq;

	tdq = TDQ_CPU(cpu);

	printf("tdq:\n");
	printf("\tload:           %d\n", tdq->tdq_load);
	printf("\ttimeshare idx: %d\n", tdq->tdq_idx);
	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
	printf("\trealtime runq:\n");
	runq_print(&tdq->tdq_realtime);
	printf("\ttimeshare runq:\n");
	runq_print(&tdq->tdq_timeshare);
	printf("\tidle runq:\n");
	runq_print(&tdq->tdq_idle);
#ifdef SMP
	printf("\tload transferable: %d\n", tdq->tdq_transferable);
#endif
}

static __inline void
tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
{
#ifdef SMP
	if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
		tdq->tdq_transferable++;
		tdq->tdq_group->tdg_transferable++;
		ts->ts_flags |= TSF_XFERABLE;
		if (tdq->tdq_transferable >= busy_thresh &&
		    (tdq->tdq_flags & TDQF_BUSY) == 0) {
			tdq->tdq_flags |= TDQF_BUSY;
			atomic_set_int(&tdq_busy, 1 << TDQ_ID(tdq));
		}
	}
#endif
	if (ts->ts_runq == &tdq->tdq_timeshare) {
		u_char pri;

		pri = ts->ts_thread->td_priority;
		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
			("Invalid priority %d on timeshare runq", pri));
		/*
		 * This queue contains only priorities between MIN and MAX
		 * realtime.  Use the whole queue to represent these values.
		 */
#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
		if ((flags & SRQ_BORROWING) == 0) {
			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
			pri = (pri + tdq->tdq_idx) % RQ_NQS;
			/*
			 * This effectively shortens the queue by one so we
			 * can have a one slot difference between idx and
			 * ridx while we wait for threads to drain.
			 */
			if (tdq->tdq_ridx != tdq->tdq_idx &&
			    pri == tdq->tdq_ridx)
				pri = (pri - 1) % RQ_NQS;
		} else
			pri = tdq->tdq_ridx;
		runq_add_pri(ts->ts_runq, ts, pri, flags);
	} else
		runq_add(ts->ts_runq, ts, flags);
}

static __inline void
tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
{
#ifdef SMP
	if (ts->ts_flags & TSF_XFERABLE) {
		tdq->tdq_transferable--;
		tdq->tdq_group->tdg_transferable--;
		ts->ts_flags &= ~TSF_XFERABLE;
		if (tdq->tdq_transferable < busy_thresh && 
		    (tdq->tdq_flags & TDQF_BUSY)) {
			atomic_clear_int(&tdq_busy, 1 << TDQ_ID(tdq));
			tdq->tdq_flags &= ~TDQF_BUSY;
		}
	}
#endif
	if (ts->ts_runq == &tdq->tdq_timeshare) {
		if (tdq->tdq_idx != tdq->tdq_ridx)
			runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
		else
			runq_remove_idx(ts->ts_runq, ts, NULL);
		/*
		 * For timeshare threads we update the priority here so
		 * the priority reflects the time we've been sleeping.
		 */
		ts->ts_ltick = ticks;
		sched_pctcpu_update(ts);
		sched_priority(ts->ts_thread);
	} else
		runq_remove(ts->ts_runq, ts);
}

static void
tdq_load_add(struct tdq *tdq, struct td_sched *ts)
{
	int class;
	mtx_assert(&sched_lock, MA_OWNED);
	class = PRI_BASE(ts->ts_thread->td_pri_class);
	tdq->tdq_load++;
	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
	if (class != PRI_ITHD &&
	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
#ifdef SMP
		tdq->tdq_group->tdg_load++;
#else
		tdq->tdq_sysload++;
#endif
}

static void
tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
{
	int class;
	mtx_assert(&sched_lock, MA_OWNED);
	class = PRI_BASE(ts->ts_thread->td_pri_class);
	if (class != PRI_ITHD &&
	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
#ifdef SMP
		tdq->tdq_group->tdg_load--;
#else
		tdq->tdq_sysload--;
#endif
	tdq->tdq_load--;
	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
	ts->ts_runq = NULL;
}

#ifdef SMP
static void
sched_smp_tick(struct thread *td)
{
	struct tdq *tdq;

	tdq = TDQ_SELF();
	if (rebalance) {
		if (ticks >= bal_tick)
			sched_balance();
		if (ticks >= gbal_tick && balance_groups)
			sched_balance_groups();
	}
	td->td_sched->ts_rltick = ticks;
}

/*
 * sched_balance is a simple CPU load balancing algorithm.  It operates by
 * finding the least loaded and most loaded cpu and equalizing their load
 * by migrating some processes.
 *
 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
 * installations will only have 2 cpus.  Secondly, load balancing too much at
 * once can have an unpleasant effect on the system.  The scheduler rarely has
 * enough information to make perfect decisions.  So this algorithm chooses
 * algorithm simplicity and more gradual effects on load in larger systems.
 *
 * It could be improved by considering the priorities and slices assigned to
 * each task prior to balancing them.  There are many pathological cases with
 * any approach and so the semi random algorithm below may work as well as any.
 *
 */
static void
sched_balance(void)
{
	struct tdq_group *high;
	struct tdq_group *low;
	struct tdq_group *tdg;
	int cnt;
	int i;

	bal_tick = ticks + (random() % (hz * 2));
	if (smp_started == 0)
		return;
	low = high = NULL;
	i = random() % (tdg_maxid + 1);
	for (cnt = 0; cnt <= tdg_maxid; cnt++) {
		tdg = TDQ_GROUP(i);
		/*
		 * Find the CPU with the highest load that has some
		 * threads to transfer.
		 */
		if ((high == NULL || tdg->tdg_load > high->tdg_load)
		    && tdg->tdg_transferable)
			high = tdg;
		if (low == NULL || tdg->tdg_load < low->tdg_load)
			low = tdg;
		if (++i > tdg_maxid)
			i = 0;
	}
	if (low != NULL && high != NULL && high != low)
		sched_balance_pair(LIST_FIRST(&high->tdg_members),
		    LIST_FIRST(&low->tdg_members));
}

static void
sched_balance_groups(void)
{
	int i;

	gbal_tick = ticks + (random() % (hz * 2));
	mtx_assert(&sched_lock, MA_OWNED);
	if (smp_started)
		for (i = 0; i <= tdg_maxid; i++)
			sched_balance_group(TDQ_GROUP(i));
}

static void
sched_balance_group(struct tdq_group *tdg)
{
	struct tdq *tdq;
	struct tdq *high;
	struct tdq *low;
	int load;

	if (tdg->tdg_transferable == 0)
		return;
	low = NULL;
	high = NULL;
	LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
		load = tdq->tdq_load;
		if (high == NULL || load > high->tdq_load)
			high = tdq;
		if (low == NULL || load < low->tdq_load)
			low = tdq;
	}
	if (high != NULL && low != NULL && high != low)
		sched_balance_pair(high, low);
}

static void
sched_balance_pair(struct tdq *high, struct tdq *low)
{
	int transferable;
	int high_load;
	int low_load;
	int move;
	int diff;
	int i;

	/*
	 * If we're transfering within a group we have to use this specific
	 * tdq's transferable count, otherwise we can steal from other members
	 * of the group.
	 */
	if (high->tdq_group == low->tdq_group) {
		transferable = high->tdq_transferable;
		high_load = high->tdq_load;
		low_load = low->tdq_load;
	} else {
		transferable = high->tdq_group->tdg_transferable;
		high_load = high->tdq_group->tdg_load;
		low_load = low->tdq_group->tdg_load;
	}
	if (transferable == 0)
		return;
	/*
	 * Determine what the imbalance is and then adjust that to how many
	 * threads we actually have to give up (transferable).
	 */
	diff = high_load - low_load;
	move = diff / 2;
	if (diff & 0x1)
		move++;
	move = min(move, transferable);
	for (i = 0; i < move; i++)
		tdq_move(high, TDQ_ID(low));
	return;
}

static void
tdq_move(struct tdq *from, int cpu)
{
	struct tdq *tdq;
	struct tdq *to;
	struct td_sched *ts;

	tdq = from;
	to = TDQ_CPU(cpu);
	ts = tdq_steal(tdq, 1);
	if (ts == NULL) {
		struct tdq_group *tdg;

		tdg = tdq->tdq_group;
		LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
			if (tdq == from || tdq->tdq_transferable == 0)
				continue;
			ts = tdq_steal(tdq, 1);
			break;
		}
		if (ts == NULL)
			panic("tdq_move: No threads available with a "
			    "transferable count of %d\n", 
			    tdg->tdg_transferable);
	}
	if (tdq == to)
		return;
	sched_rem(ts->ts_thread);
	ts->ts_cpu = cpu;
	sched_pin_td(ts->ts_thread);
	sched_add(ts->ts_thread, SRQ_YIELDING);
	sched_unpin_td(ts->ts_thread);
}

static int
tdq_idled(struct tdq *tdq)
{
	struct tdq_group *tdg;
	struct tdq *steal;
	struct td_sched *ts;

	tdg = tdq->tdq_group;
	/*
	 * If we're in a cpu group, try and steal threads from another cpu in
	 * the group before idling.
	 */
	if (steal_htt && tdg->tdg_cpus > 1 && tdg->tdg_transferable) {
		LIST_FOREACH(steal, &tdg->tdg_members, tdq_siblings) {
			if (steal == tdq || steal->tdq_transferable == 0)
				continue;
			ts = tdq_steal(steal, 0);
			if (ts)
				goto steal;
		}
	}
	if (steal_busy) {
		while (tdq_busy) {
			int cpu;

			cpu = ffs(tdq_busy);
			if (cpu == 0)
				break;
			cpu--;
			steal = TDQ_CPU(cpu);
			if (steal->tdq_transferable == 0)
				continue;
			ts = tdq_steal(steal, 1);
			if (ts == NULL)
				continue;
			CTR5(KTR_ULE,
			    "tdq_idled: stealing td %p(%s) pri %d from %d busy 0x%X",
			    ts->ts_thread, ts->ts_thread->td_proc->p_comm,
			    ts->ts_thread->td_priority, cpu, tdq_busy);
			goto steal;
		}
	}
	/*
	 * We only set the idled bit when all of the cpus in the group are
	 * idle.  Otherwise we could get into a situation where a thread bounces
	 * back and forth between two idle cores on seperate physical CPUs.
	 */
	tdg->tdg_idlemask |= PCPU_GET(cpumask);
	if (tdg->tdg_idlemask == tdg->tdg_cpumask)
		atomic_set_int(&tdq_idle, tdg->tdg_mask);
	return (1);
steal:
	sched_rem(ts->ts_thread);
	ts->ts_cpu = PCPU_GET(cpuid);
	sched_pin_td(ts->ts_thread);
	sched_add(ts->ts_thread, SRQ_YIELDING);
	sched_unpin_td(ts->ts_thread);

	return (0);
}

static void
tdq_notify(struct td_sched *ts)
{
	struct thread *ctd;
	struct pcpu *pcpu;
	int cpri;
	int pri;
	int cpu;

	cpu = ts->ts_cpu;
	pri = ts->ts_thread->td_priority;
	pcpu = pcpu_find(cpu);
	ctd = pcpu->pc_curthread;
	cpri = ctd->td_priority;

	/*
	 * If our priority is not better than the current priority there is
	 * nothing to do.
	 */
	if (pri > cpri)
		return;
	/*
	 * Always IPI idle.
	 */
	if (cpri > PRI_MIN_IDLE)
		goto sendipi;
	/*
	 * If we're realtime or better and there is timeshare or worse running
	 * send an IPI.
	 */
	if (pri < PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
		goto sendipi;
	/*
	 * Otherwise only IPI if we exceed the threshold.
	 */
	if (pri > ipi_thresh)
		return;
sendipi:
	ctd->td_flags |= TDF_NEEDRESCHED;
	if (cpri < PRI_MIN_IDLE) {
		if (ipi_ast)
			ipi_selected(1 << cpu, IPI_AST);
		else if (ipi_preempt)
			ipi_selected(1 << cpu, IPI_PREEMPT);
	} else 
		ipi_selected(1 << cpu, IPI_PREEMPT);
}

static struct td_sched *
runq_steal(struct runq *rq)
{
	struct rqhead *rqh;
	struct rqbits *rqb;
	struct td_sched *ts;
	int word;
	int bit;

	mtx_assert(&sched_lock, MA_OWNED);
	rqb = &rq->rq_status;
	for (word = 0; word < RQB_LEN; word++) {
		if (rqb->rqb_bits[word] == 0)
			continue;
		for (bit = 0; bit < RQB_BPW; bit++) {
			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
				continue;
			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
			TAILQ_FOREACH(ts, rqh, ts_procq) {
				if (THREAD_CAN_MIGRATE(ts->ts_thread))
					return (ts);
			}
		}
	}
	return (NULL);
}

static struct td_sched *
tdq_steal(struct tdq *tdq, int stealidle)
{
	struct td_sched *ts;

	/*
	 * Steal from next first to try to get a non-interactive task that
	 * may not have run for a while.
	 * XXX Need to effect steal order for timeshare threads.
	 */
	if ((ts = runq_steal(&tdq->tdq_realtime)) != NULL)
		return (ts);
	if ((ts = runq_steal(&tdq->tdq_timeshare)) != NULL)
		return (ts);
	if (stealidle)
		return (runq_steal(&tdq->tdq_idle));
	return (NULL);
}

int
tdq_pickidle(struct tdq *tdq, struct td_sched *ts)
{
	struct tdq_group *tdg;
	int self;
	int cpu;

	self = PCPU_GET(cpuid);
	if (smp_started == 0)
		return (self);
	/*
	 * If the current CPU has idled, just run it here.
	 */
	if ((tdq->tdq_group->tdg_idlemask & PCPU_GET(cpumask)) != 0)
		return (self);
	/*
	 * Try the last group we ran on.
	 */
	tdg = TDQ_CPU(ts->ts_cpu)->tdq_group;
	cpu = ffs(tdg->tdg_idlemask);
	if (cpu)
		return (cpu - 1);
	/*
	 * Search for an idle group.
	 */
	cpu = ffs(tdq_idle);
	if (cpu) 
		return (cpu - 1);
	/*
	 * XXX If there are no idle groups, check for an idle core.
	 */
	/*
	 * No idle CPUs?
	 */
	return (self);
}

static int
tdq_pickpri(struct tdq *tdq, struct td_sched *ts, int flags)
{
	struct pcpu *pcpu;
	int lowpri;
	int lowcpu;
	int lowload;
	int load;
	int self;
	int pri;
	int cpu;

	self = PCPU_GET(cpuid);
	if (smp_started == 0)
		return (self);

	pri = ts->ts_thread->td_priority;
	/*
	 * Regardless of affinity, if the last cpu is idle send it there.
	 */
	pcpu = pcpu_find(ts->ts_cpu);
	if (pcpu->pc_curthread->td_priority > PRI_MIN_IDLE) {
		CTR5(KTR_ULE,
		    "ts_cpu %d idle, ltick %d ticks %d pri %d curthread %d",
		    ts->ts_cpu, ts->ts_rltick, ticks, pri,
		    pcpu->pc_curthread->td_priority);
		return (ts->ts_cpu);
	}
	/*
	 * If we have affinity, try to place it on the cpu we last ran on.
	 */
	if (SCHED_AFFINITY(ts) && pcpu->pc_curthread->td_priority > pri) {
		CTR5(KTR_ULE,
		    "affinity for %d, ltick %d ticks %d pri %d curthread %d",
		    ts->ts_cpu, ts->ts_rltick, ticks, pri,
		    pcpu->pc_curthread->td_priority);
		return (ts->ts_cpu);
	}
	/*
	 * Try ourself first; If we're running something lower priority this
	 * may have some locality with the waking thread and execute faster
	 * here.
	 */
	if (tryself) {
		/*
		 * If we're being awoken by an interrupt thread or the waker
		 * is going right to sleep run here as well.
		 */
		if ((TDQ_SELF()->tdq_load == 1) && (flags & SRQ_YIELDING ||
		    curthread->td_pri_class == PRI_ITHD)) {
			CTR2(KTR_ULE, "tryself load %d flags %d",
			    TDQ_SELF()->tdq_load, flags);
			return (self);
		}
	}
	/*
	 * Look for an idle group.
	 */
	CTR1(KTR_ULE, "tdq_idle %X", tdq_idle);
	cpu = ffs(tdq_idle);
	if (cpu)
		return (cpu - 1);
	if (tryselfidle && pri < curthread->td_priority) {
		CTR1(KTR_ULE, "tryself %d",
		    curthread->td_priority);
		return (self);
	}
	/*
 	 * Now search for the cpu running the lowest priority thread with
	 * the least load.
	 */
	lowload = 0;
	lowpri = lowcpu = 0;
	for (cpu = 0; cpu <= mp_maxid; cpu++) {
		if (CPU_ABSENT(cpu))
			continue;
		pcpu = pcpu_find(cpu);
		pri = pcpu->pc_curthread->td_priority;
		CTR4(KTR_ULE,
		    "cpu %d pri %d lowcpu %d lowpri %d",
		    cpu, pri, lowcpu, lowpri);
		if (pri < lowpri)
			continue;
		load = TDQ_CPU(cpu)->tdq_load;
		if (lowpri && lowpri == pri && load > lowload)
			continue;
		lowpri = pri;
		lowcpu = cpu;
		lowload = load;
	}

	return (lowcpu);
}

#endif	/* SMP */

/*
 * Pick the highest priority task we have and return it.
 */

static struct td_sched *
tdq_choose(struct tdq *tdq)
{
	struct td_sched *ts;

	mtx_assert(&sched_lock, MA_OWNED);

	ts = runq_choose(&tdq->tdq_realtime);
	if (ts != NULL) {
		KASSERT(ts->ts_thread->td_priority <= PRI_MAX_REALTIME,
		    ("tdq_choose: Invalid priority on realtime queue %d",
		    ts->ts_thread->td_priority));
		return (ts);
	}
	ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
	if (ts != NULL) {
		KASSERT(ts->ts_thread->td_priority <= PRI_MAX_TIMESHARE &&
		    ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
		    ("tdq_choose: Invalid priority on timeshare queue %d",
		    ts->ts_thread->td_priority));
		return (ts);
	}

	ts = runq_choose(&tdq->tdq_idle);
	if (ts != NULL) {
		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
		    ("tdq_choose: Invalid priority on idle queue %d",
		    ts->ts_thread->td_priority));
		return (ts);
	}

	return (NULL);
}

static void
tdq_setup(struct tdq *tdq)
{
	runq_init(&tdq->tdq_realtime);
	runq_init(&tdq->tdq_timeshare);
	runq_init(&tdq->tdq_idle);
	tdq->tdq_load = 0;
}

static void
sched_setup(void *dummy)
{
#ifdef SMP
	int i;
#endif

	/*
	 * To avoid divide-by-zero, we set realstathz a dummy value
	 * in case which sched_clock() called before sched_initticks().
	 */
	realstathz = hz;
	sched_slice = (realstathz/10);	/* ~100ms */
	tickincr = 1 << SCHED_TICK_SHIFT;

#ifdef SMP
	balance_groups = 0;
	/*
	 * Initialize the tdqs.
	 */
	for (i = 0; i < MAXCPU; i++) {
		struct tdq *tdq;

		tdq = &tdq_cpu[i];
		tdq_setup(&tdq_cpu[i]);
	}
	if (1) {
		struct tdq_group *tdg;
		struct tdq *tdq;
		int cpus;

		for (cpus = 0, i = 0; i < MAXCPU; i++) {
			if (CPU_ABSENT(i))
				continue;
			tdq = &tdq_cpu[i];
			tdg = &tdq_groups[cpus];
			/*
			 * Setup a tdq group with one member.
			 */
			tdq->tdq_transferable = 0;
			tdq->tdq_group = tdg;
			tdg->tdg_cpus = 1;
			tdg->tdg_idlemask = 0;
			tdg->tdg_cpumask = tdg->tdg_mask = 1 << i;
			tdg->tdg_load = 0;
			tdg->tdg_transferable = 0;
			LIST_INIT(&tdg->tdg_members);
			LIST_INSERT_HEAD(&tdg->tdg_members, tdq, tdq_siblings);
			cpus++;
		}
		tdg_maxid = cpus - 1;
	} else {
		struct tdq_group *tdg;
		struct cpu_group *cg;
		int j;

		for (i = 0; i < smp_topology->ct_count; i++) {
			cg = &smp_topology->ct_group[i];
			tdg = &tdq_groups[i];
			/*
			 * Initialize the group.
			 */
			tdg->tdg_idlemask = 0;
			tdg->tdg_load = 0;
			tdg->tdg_transferable = 0;
			tdg->tdg_cpus = cg->cg_count;
			tdg->tdg_cpumask = cg->cg_mask;
			LIST_INIT(&tdg->tdg_members);
			/*
			 * Find all of the group members and add them.
			 */
			for (j = 0; j < MAXCPU; j++) {
				if ((cg->cg_mask & (1 << j)) != 0) {
					if (tdg->tdg_mask == 0)
						tdg->tdg_mask = 1 << j;
					tdq_cpu[j].tdq_transferable = 0;
					tdq_cpu[j].tdq_group = tdg;
					LIST_INSERT_HEAD(&tdg->tdg_members,
					    &tdq_cpu[j], tdq_siblings);
				}
			}
			if (tdg->tdg_cpus > 1)
				balance_groups = 1;
		}
		tdg_maxid = smp_topology->ct_count - 1;
	}
	/*
	 * Stagger the group and global load balancer so they do not
	 * interfere with each other.
	 */
	bal_tick = ticks + hz;
	if (balance_groups)
		gbal_tick = ticks + (hz / 2);
#else
	tdq_setup(TDQ_SELF());
#endif
	mtx_lock_spin(&sched_lock);
	tdq_load_add(TDQ_SELF(), &td_sched0);
	mtx_unlock_spin(&sched_lock);
}

/* ARGSUSED */
static void
sched_initticks(void *dummy)
{
	mtx_lock_spin(&sched_lock);
	realstathz = stathz ? stathz : hz;
	sched_slice = (realstathz/10);	/* ~100ms */

	/*
	 * tickincr is shifted out by 10 to avoid rounding errors due to
	 * hz not being evenly divisible by stathz on all platforms.
	 */
	tickincr = (hz << SCHED_TICK_SHIFT) / realstathz;
	/*
	 * This does not work for values of stathz that are more than
	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
	 */
	if (tickincr == 0)
		tickincr = 1;
#ifdef SMP
	affinity = SCHED_AFFINITY_DEFAULT;
#endif
	mtx_unlock_spin(&sched_lock);
}


/*
 * Scale the scheduling priority according to the "interactivity" of this
 * process.
 */
static void
sched_priority(struct thread *td)
{
	int score;
	int pri;

	if (td->td_pri_class != PRI_TIMESHARE)
		return;
	/*
	 * If the score is interactive we place the thread in the realtime
	 * queue with a priority that is less than kernel and interrupt
	 * priorities.  These threads are not subject to nice restrictions.
	 *
	 * Scores greater than this are placed on the normal realtime queue
	 * where the priority is partially decided by the most recent cpu
	 * utilization and the rest is decided by nice value.
	 */
	score = sched_interact_score(td);
	if (score < sched_interact) {
		pri = PRI_MIN_REALTIME;
		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
		    * score;
		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
		    ("sched_priority: invalid interactive priority %d score %d",
		    pri, score));
	} else {
		pri = SCHED_PRI_MIN;
		if (td->td_sched->ts_ticks)
			pri += SCHED_PRI_TICKS(td->td_sched);
		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
		if (!(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE)) {
			static int once = 1;
			if (once) {
				printf("sched_priority: invalid priority %d",
				    pri);
				printf("nice %d, ticks %d ftick %d ltick %d tick pri %d\n",
				    td->td_proc->p_nice,
				    td->td_sched->ts_ticks,
				    td->td_sched->ts_ftick,
				    td->td_sched->ts_ltick,
				    SCHED_PRI_TICKS(td->td_sched));
				once = 0;
			}
			pri = min(max(pri, PRI_MIN_TIMESHARE),
			    PRI_MAX_TIMESHARE);
		}
	}
	sched_user_prio(td, pri);

	return;
}

/*
 * This routine enforces a maximum limit on the amount of scheduling history
 * kept.  It is called after either the slptime or runtime is adjusted.
 */
static void
sched_interact_update(struct thread *td)
{
	struct td_sched *ts;
	u_int sum;

	ts = td->td_sched;
	sum = ts->skg_runtime + ts->skg_slptime;
	if (sum < SCHED_SLP_RUN_MAX)
		return;
	/*
	 * This only happens from two places:
	 * 1) We have added an unusual amount of run time from fork_exit.
	 * 2) We have added an unusual amount of sleep time from sched_sleep().
	 */
	if (sum > SCHED_SLP_RUN_MAX * 2) {
		if (ts->skg_runtime > ts->skg_slptime) {
			ts->skg_runtime = SCHED_SLP_RUN_MAX;
			ts->skg_slptime = 1;
		} else {
			ts->skg_slptime = SCHED_SLP_RUN_MAX;
			ts->skg_runtime = 1;
		}
		return;
	}
	/*
	 * If we have exceeded by more than 1/5th then the algorithm below
	 * will not bring us back into range.  Dividing by two here forces
	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
	 */
	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
		ts->skg_runtime /= 2;
		ts->skg_slptime /= 2;
		return;
	}
	ts->skg_runtime = (ts->skg_runtime / 5) * 4;
	ts->skg_slptime = (ts->skg_slptime / 5) * 4;
}

static void
sched_interact_fork(struct thread *td)
{
	int ratio;
	int sum;

	sum = td->td_sched->skg_runtime + td->td_sched->skg_slptime;
	if (sum > SCHED_SLP_RUN_FORK) {
		ratio = sum / SCHED_SLP_RUN_FORK;
		td->td_sched->skg_runtime /= ratio;
		td->td_sched->skg_slptime /= ratio;
	}
}

static int
sched_interact_score(struct thread *td)
{
	int div;

	if (td->td_sched->skg_runtime > td->td_sched->skg_slptime) {
		div = max(1, td->td_sched->skg_runtime / SCHED_INTERACT_HALF);
		return (SCHED_INTERACT_HALF +
		    (SCHED_INTERACT_HALF - (td->td_sched->skg_slptime / div)));
	} if (td->td_sched->skg_slptime > td->td_sched->skg_runtime) {
		div = max(1, td->td_sched->skg_slptime / SCHED_INTERACT_HALF);
		return (td->td_sched->skg_runtime / div);
	}

	/*
	 * This can happen if slptime and runtime are 0.
	 */
	return (0);

}

/*
 * Called from proc0_init() to bootstrap the scheduler.
 */
void
schedinit(void)
{

	/*
	 * Set up the scheduler specific parts of proc0.
	 */
	proc0.p_sched = NULL; /* XXX */
	thread0.td_sched = &td_sched0;
	td_sched0.ts_ltick = ticks;
	td_sched0.ts_ftick = ticks;
	td_sched0.ts_thread = &thread0;
}

/*
 * This is only somewhat accurate since given many processes of the same
 * priority they will switch when their slices run out, which will be
 * at most sched_slice stathz ticks.
 */
int
sched_rr_interval(void)
{

	/* Convert sched_slice to hz */
	return (hz/(realstathz/sched_slice));
}

static void
sched_pctcpu_update(struct td_sched *ts)
{

	if (ts->ts_ticks == 0)
		return;
	if (ticks - (hz / 10) < ts->ts_ltick &&
	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
		return;
	/*
	 * Adjust counters and watermark for pctcpu calc.
	 */
	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
			    SCHED_TICK_TARG;
	else
		ts->ts_ticks = 0;
	ts->ts_ltick = ticks;
	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
}

static void
sched_thread_priority(struct thread *td, u_char prio)
{
	struct td_sched *ts;

	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
	    curthread->td_proc->p_comm);
	ts = td->td_sched;
	mtx_assert(&sched_lock, MA_OWNED);
	if (td->td_priority == prio)
		return;

	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
		/*
		 * If the priority has been elevated due to priority
		 * propagation, we may have to move ourselves to a new
		 * queue.  This could be optimized to not re-add in some
		 * cases.
		 */
		sched_rem(td);
		td->td_priority = prio;
		sched_add(td, SRQ_BORROWING);
	} else
		td->td_priority = prio;
}

/*
 * Update a thread's priority when it is lent another thread's
 * priority.
 */
void
sched_lend_prio(struct thread *td, u_char prio)
{

	td->td_flags |= TDF_BORROWING;
	sched_thread_priority(td, prio);
}

/*
 * Restore a thread's priority when priority propagation is
 * over.  The prio argument is the minimum priority the thread
 * needs to have to satisfy other possible priority lending
 * requests.  If the thread's regular priority is less
 * important than prio, the thread will keep a priority boost
 * of prio.
 */
void
sched_unlend_prio(struct thread *td, u_char prio)
{
	u_char base_pri;

	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
	    td->td_base_pri <= PRI_MAX_TIMESHARE)
		base_pri = td->td_user_pri;
	else
		base_pri = td->td_base_pri;
	if (prio >= base_pri) {
		td->td_flags &= ~TDF_BORROWING;
		sched_thread_priority(td, base_pri);
	} else
		sched_lend_prio(td, prio);
}

void
sched_prio(struct thread *td, u_char prio)
{
	u_char oldprio;

	/* First, update the base priority. */
	td->td_base_pri = prio;

	/*
	 * If the thread is borrowing another thread's priority, don't
	 * ever lower the priority.
	 */
	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
		return;

	/* Change the real priority. */
	oldprio = td->td_priority;
	sched_thread_priority(td, prio);

	/*
	 * If the thread is on a turnstile, then let the turnstile update
	 * its state.
	 */
	if (TD_ON_LOCK(td) && oldprio != prio)
		turnstile_adjust(td, oldprio);
}

void
sched_user_prio(struct thread *td, u_char prio)
{
	u_char oldprio;

	td->td_base_user_pri = prio;
	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
                return;
	oldprio = td->td_user_pri;
	td->td_user_pri = prio;

	if (TD_ON_UPILOCK(td) && oldprio != prio)
		umtx_pi_adjust(td, oldprio);
}

void
sched_lend_user_prio(struct thread *td, u_char prio)
{
	u_char oldprio;

	td->td_flags |= TDF_UBORROWING;

	oldprio = td->td_user_pri;
	td->td_user_pri = prio;

	if (TD_ON_UPILOCK(td) && oldprio != prio)
		umtx_pi_adjust(td, oldprio);
}

void
sched_unlend_user_prio(struct thread *td, u_char prio)
{
	u_char base_pri;

	base_pri = td->td_base_user_pri;
	if (prio >= base_pri) {
		td->td_flags &= ~TDF_UBORROWING;
		sched_user_prio(td, base_pri);
	} else
		sched_lend_user_prio(td, prio);
}

void
sched_switch(struct thread *td, struct thread *newtd, int flags)
{
	struct tdq *tdq;
	struct td_sched *ts;
	int preempt;

	mtx_assert(&sched_lock, MA_OWNED);

	preempt = flags & SW_PREEMPT;
	tdq = TDQ_SELF();
	ts = td->td_sched;
	td->td_lastcpu = td->td_oncpu;
	td->td_oncpu = NOCPU;
	td->td_flags &= ~TDF_NEEDRESCHED;
	td->td_owepreempt = 0;
	/*
	 * If the thread has been assigned it may be in the process of switching
	 * to the new cpu.  This is the case in sched_bind().
	 */
	if (TD_IS_IDLETHREAD(td)) {
		TD_SET_CAN_RUN(td);
	} else {
		tdq_load_rem(tdq, ts);
		if (TD_IS_RUNNING(td)) {
			/*
			 * Don't allow the thread to migrate
			 * from a preemption.
			 */
			if (preempt)
				sched_pin_td(td);
			sched_add(td, preempt ?
			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
			    SRQ_OURSELF|SRQ_YIELDING);
			if (preempt)
				sched_unpin_td(td);
		}
	}
	if (newtd != NULL) {
		/*
		 * If we bring in a thread account for it as if it had been
		 * added to the run queue and then chosen.
		 */
		TD_SET_RUNNING(newtd);
		tdq_load_add(TDQ_SELF(), newtd->td_sched);
	} else
		newtd = choosethread();
	if (td != newtd) {
#ifdef	HWPMC_HOOKS
		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
#endif

		cpu_switch(td, newtd);
#ifdef	HWPMC_HOOKS
		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
#endif
	}
	sched_lock.mtx_lock = (uintptr_t)td;
	td->td_oncpu = PCPU_GET(cpuid);
}

void
sched_nice(struct proc *p, int nice)
{
	struct thread *td;

	PROC_LOCK_ASSERT(p, MA_OWNED);
	mtx_assert(&sched_lock, MA_OWNED);

	p->p_nice = nice;
	FOREACH_THREAD_IN_PROC(p, td) {
		sched_priority(td);
		sched_prio(td, td->td_base_user_pri);
	}
}

void
sched_sleep(struct thread *td)
{

	mtx_assert(&sched_lock, MA_OWNED);

	td->td_sched->ts_slptime = ticks;
}

void
sched_wakeup(struct thread *td)
{
	struct td_sched *ts;
	int slptime;

	mtx_assert(&sched_lock, MA_OWNED);
	ts = td->td_sched;
	/*
	 * If we slept for more than a tick update our interactivity and
	 * priority.
	 */
	slptime = ts->ts_slptime;
	ts->ts_slptime = 0;
	if (slptime && slptime != ticks) {
		u_int hzticks;

		hzticks = (ticks - slptime) << SCHED_TICK_SHIFT;
		ts->skg_slptime += hzticks;
		sched_interact_update(td);
		sched_pctcpu_update(ts);
		sched_priority(td);
	}
	/* Reset the slice value after we sleep. */
	ts->ts_slice = sched_slice;
	sched_add(td, SRQ_BORING);
}

/*
 * Penalize the parent for creating a new child and initialize the child's
 * priority.
 */
void
sched_fork(struct thread *td, struct thread *child)
{
	mtx_assert(&sched_lock, MA_OWNED);
	sched_fork_thread(td, child);
	/*
	 * Penalize the parent and child for forking.
	 */
	sched_interact_fork(child);
	sched_priority(child);
	td->td_sched->skg_runtime += tickincr;
	sched_interact_update(td);
	sched_priority(td);
}

void
sched_fork_thread(struct thread *td, struct thread *child)
{
	struct td_sched *ts;
	struct td_sched *ts2;

	/*
	 * Initialize child.
	 */
	sched_newthread(child);
	ts = td->td_sched;
	ts2 = child->td_sched;
	ts2->ts_cpu = ts->ts_cpu;
	ts2->ts_runq = NULL;
	/*
	 * Grab our parents cpu estimation information and priority.
	 */
	ts2->ts_ticks = ts->ts_ticks;
	ts2->ts_ltick = ts->ts_ltick;
	ts2->ts_ftick = ts->ts_ftick;
	child->td_user_pri = td->td_user_pri;
	child->td_base_user_pri = td->td_base_user_pri;
	/*
	 * And update interactivity score.
	 */
	ts2->skg_slptime = ts->skg_slptime;
	ts2->skg_runtime = ts->skg_runtime;
	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
}

void
sched_class(struct thread *td, int class)
{

	mtx_assert(&sched_lock, MA_OWNED);
	if (td->td_pri_class == class)
		return;

#ifdef SMP
	/*
	 * On SMP if we're on the RUNQ we must adjust the transferable
	 * count because could be changing to or from an interrupt
	 * class.
	 */
	if (TD_ON_RUNQ(td)) {
		struct tdq *tdq;

		tdq = TDQ_CPU(td->td_sched->ts_cpu);
		if (THREAD_CAN_MIGRATE(td)) {
			tdq->tdq_transferable--;
			tdq->tdq_group->tdg_transferable--;
		}
		td->td_pri_class = class;
		if (THREAD_CAN_MIGRATE(td)) {
			tdq->tdq_transferable++;
			tdq->tdq_group->tdg_transferable++;
		}
	}
#endif
	td->td_pri_class = class;
}

/*
 * Return some of the child's priority and interactivity to the parent.
 */
void
sched_exit(struct proc *p, struct thread *child)
{
	struct thread *td;
	
	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
	    child, child->td_proc->p_comm, child->td_priority);

	td = FIRST_THREAD_IN_PROC(p);
	sched_exit_thread(td, child);
}

void
sched_exit_thread(struct thread *td, struct thread *child)
{

	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
	    child, child->td_proc->p_comm, child->td_priority);

	tdq_load_rem(TDQ_CPU(child->td_sched->ts_cpu), child->td_sched);
#ifdef KSE
	/*
	 * KSE forks and exits so often that this penalty causes short-lived
	 * threads to always be non-interactive.  This causes mozilla to
	 * crawl under load.
	 */
	if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
		return;
#endif
	/*
	 * Give the child's runtime to the parent without returning the
	 * sleep time as a penalty to the parent.  This causes shells that
	 * launch expensive things to mark their children as expensive.
	 */
	td->td_sched->skg_runtime += child->td_sched->skg_runtime;
	sched_interact_update(td);
	sched_priority(td);
}

void
sched_userret(struct thread *td)
{
	/*
	 * XXX we cheat slightly on the locking here to avoid locking in  
	 * the usual case.  Setting td_priority here is essentially an
	 * incomplete workaround for not setting it properly elsewhere.
	 * Now that some interrupt handlers are threads, not setting it
	 * properly elsewhere can clobber it in the window between setting
	 * it here and returning to user mode, so don't waste time setting
	 * it perfectly here.
	 */
	KASSERT((td->td_flags & TDF_BORROWING) == 0,
	    ("thread with borrowed priority returning to userland"));
	if (td->td_priority != td->td_user_pri) {
		mtx_lock_spin(&sched_lock);
		td->td_priority = td->td_user_pri;
		td->td_base_pri = td->td_user_pri;
		mtx_unlock_spin(&sched_lock);
        }
}

void
sched_clock(struct thread *td)
{
	struct tdq *tdq;
	struct td_sched *ts;

	mtx_assert(&sched_lock, MA_OWNED);
#ifdef SMP
	sched_smp_tick(td);
#endif
	tdq = TDQ_SELF();
	/*
	 * Advance the insert index once for each tick to ensure that all
	 * threads get a chance to run.
	 */
	if (tdq->tdq_idx == tdq->tdq_ridx) {
		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
			tdq->tdq_ridx = tdq->tdq_idx;
	}
	ts = td->td_sched;
	/*
	 * We only do slicing code for TIMESHARE threads.
	 */
	if (td->td_pri_class != PRI_TIMESHARE)
		return;
	/*
	 * We used a tick; charge it to the thread so that we can compute our
	 * interactivity.
	 */
	td->td_sched->skg_runtime += tickincr;
	sched_interact_update(td);
	/*
	 * We used up one time slice.
	 */
	if (--ts->ts_slice > 0)
		return;
	/*
	 * We're out of time, recompute priorities and requeue.
	 */
	sched_priority(td);
	td->td_flags |= TDF_NEEDRESCHED;
}

int
sched_runnable(void)
{
	struct tdq *tdq;
	int load;

	load = 1;

	tdq = TDQ_SELF();
#ifdef SMP
	if (tdq_busy)
		goto out;
#endif
	if ((curthread->td_flags & TDF_IDLETD) != 0) {
		if (tdq->tdq_load > 0)
			goto out;
	} else
		if (tdq->tdq_load - 1 > 0)
			goto out;
	load = 0;
out:
	return (load);
}

struct thread *
sched_choose(void)
{
	struct tdq *tdq;
	struct td_sched *ts;

	mtx_assert(&sched_lock, MA_OWNED);
	tdq = TDQ_SELF();
#ifdef SMP
restart:
#endif
	ts = tdq_choose(tdq);
	if (ts) {
#ifdef SMP
		if (ts->ts_thread->td_priority > PRI_MIN_IDLE)
			if (tdq_idled(tdq) == 0)
				goto restart;
#endif
		tdq_runq_rem(tdq, ts);
		return (ts->ts_thread);
	}
#ifdef SMP
	if (tdq_idled(tdq) == 0)
		goto restart;
#endif
	return (PCPU_GET(idlethread));
}

static int
sched_preempt(struct thread *td)
{
	struct thread *ctd;
	int cpri;
	int pri;

	ctd = curthread;
	pri = td->td_priority;
	cpri = ctd->td_priority;
	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
		return (0);
	/*
	 * Always preempt IDLE threads.  Otherwise only if the preempting
	 * thread is an ithread.
	 */
	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
		return (0);
	if (ctd->td_critnest > 1) {
		CTR1(KTR_PROC, "sched_preempt: in critical section %d",
		    ctd->td_critnest);
		ctd->td_owepreempt = 1;
		return (0);
	}
	/*
	 * Thread is runnable but not yet put on system run queue.
	 */
	MPASS(TD_ON_RUNQ(td));
	TD_SET_RUNNING(td);
	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
	    td->td_proc->p_pid, td->td_proc->p_comm);
	mi_switch(SW_INVOL|SW_PREEMPT, td);
	return (1);
}

void
sched_add(struct thread *td, int flags)
{
	struct tdq *tdq;
	struct td_sched *ts;
	int preemptive;
	int class;
#ifdef SMP
	int cpuid;
	int cpumask;
#endif
	ts = td->td_sched;

	mtx_assert(&sched_lock, MA_OWNED);
	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
	    td, td->td_proc->p_comm, td->td_priority, curthread,
	    curthread->td_proc->p_comm);
	KASSERT((td->td_inhibitors == 0),
	    ("sched_add: trying to run inhibited thread"));
	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
	    ("sched_add: bad thread state"));
	KASSERT(td->td_proc->p_sflag & PS_INMEM,
	    ("sched_add: process swapped out"));
	KASSERT(ts->ts_runq == NULL,
	    ("sched_add: thread %p is still assigned to a run queue", td));
        TD_SET_RUNQ(td);
	tdq = TDQ_SELF();
	class = PRI_BASE(td->td_pri_class);
	preemptive = !(flags & SRQ_YIELDING);
	/*
	 * Recalculate the priority before we select the target cpu or
	 * run-queue.
	 */
	if (class == PRI_TIMESHARE)
		sched_priority(td);
	if (ts->ts_slice == 0)
		ts->ts_slice = sched_slice;
#ifdef SMP
	cpuid = PCPU_GET(cpuid);
	/*
	 * Pick the destination cpu and if it isn't ours transfer to the
	 * target cpu.
	 */
	if (THREAD_CAN_MIGRATE(td)) {
		if (td->td_priority <= PRI_MAX_ITHD) {
			CTR2(KTR_ULE, "ithd %d < %d",
			    td->td_priority, PRI_MAX_ITHD);
			ts->ts_cpu = cpuid;
		}
		if (pick_pri)
			ts->ts_cpu = tdq_pickpri(tdq, ts, flags);
		else
			ts->ts_cpu = tdq_pickidle(tdq, ts);
	} else
		CTR1(KTR_ULE, "pinned %d", td->td_pinned);
	if (ts->ts_cpu != cpuid)
		preemptive = 0;
	tdq = TDQ_CPU(ts->ts_cpu);
	cpumask = 1 << ts->ts_cpu;
	/*
	 * If we had been idle, clear our bit in the group and potentially
	 * the global bitmap.
	 */
	if ((class != PRI_IDLE && class != PRI_ITHD) &&
	    (tdq->tdq_group->tdg_idlemask & cpumask) != 0) {
		/*
		 * Check to see if our group is unidling, and if so, remove it
		 * from the global idle mask.
		 */
		if (tdq->tdq_group->tdg_idlemask ==
		    tdq->tdq_group->tdg_cpumask)
			atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask);
		/*
		 * Now remove ourselves from the group specific idle mask.
		 */
		tdq->tdq_group->tdg_idlemask &= ~cpumask;
	}
#endif
	/*
	 * Pick the run queue based on priority.
	 */
	if (td->td_priority <= PRI_MAX_REALTIME)
		ts->ts_runq = &tdq->tdq_realtime;
	else if (td->td_priority <= PRI_MAX_TIMESHARE)
		ts->ts_runq = &tdq->tdq_timeshare;
	else
		ts->ts_runq = &tdq->tdq_idle;
	if (preemptive && sched_preempt(td))
		return;
	tdq_runq_add(tdq, ts, flags);
	tdq_load_add(tdq, ts);
#ifdef SMP
	if (ts->ts_cpu != cpuid) {
		tdq_notify(ts);
		return;
	}
#endif
	if (td->td_priority < curthread->td_priority)
		curthread->td_flags |= TDF_NEEDRESCHED;
}

void
sched_rem(struct thread *td)
{
	struct tdq *tdq;
	struct td_sched *ts;

	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
	    td, td->td_proc->p_comm, td->td_priority, curthread,
	    curthread->td_proc->p_comm);
	mtx_assert(&sched_lock, MA_OWNED);
	ts = td->td_sched;
	KASSERT(TD_ON_RUNQ(td),
	    ("sched_rem: thread not on run queue"));

	tdq = TDQ_CPU(ts->ts_cpu);
	tdq_runq_rem(tdq, ts);
	tdq_load_rem(tdq, ts);
	TD_SET_CAN_RUN(td);
}

fixpt_t
sched_pctcpu(struct thread *td)
{
	fixpt_t pctcpu;
	struct td_sched *ts;

	pctcpu = 0;
	ts = td->td_sched;
	if (ts == NULL)
		return (0);

	mtx_lock_spin(&sched_lock);
	if (ts->ts_ticks) {
		int rtick;

		sched_pctcpu_update(ts);
		/* How many rtick per second ? */
		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
	}
	td->td_proc->p_swtime = ts->ts_ltick - ts->ts_ftick;
	mtx_unlock_spin(&sched_lock);

	return (pctcpu);
}

void
sched_bind(struct thread *td, int cpu)
{
	struct td_sched *ts;

	mtx_assert(&sched_lock, MA_OWNED);
	ts = td->td_sched;
	if (ts->ts_flags & TSF_BOUND)
		sched_unbind(td);
	ts->ts_flags |= TSF_BOUND;
#ifdef SMP
	sched_pin();
	if (PCPU_GET(cpuid) == cpu)
		return;
	ts->ts_cpu = cpu;
	/* When we return from mi_switch we'll be on the correct cpu. */
	mi_switch(SW_VOL, NULL);
#endif
}

void
sched_unbind(struct thread *td)
{
	struct td_sched *ts;

	mtx_assert(&sched_lock, MA_OWNED);
	ts = td->td_sched;
	if ((ts->ts_flags & TSF_BOUND) == 0)
		return;
	ts->ts_flags &= ~TSF_BOUND;
#ifdef SMP
	sched_unpin();
#endif
}

int
sched_is_bound(struct thread *td)
{
	mtx_assert(&sched_lock, MA_OWNED);
	return (td->td_sched->ts_flags & TSF_BOUND);
}

void
sched_relinquish(struct thread *td)
{
	mtx_lock_spin(&sched_lock);
	if (td->td_pri_class == PRI_TIMESHARE)
		sched_prio(td, PRI_MAX_TIMESHARE);
	mi_switch(SW_VOL, NULL);
	mtx_unlock_spin(&sched_lock);
}

int
sched_load(void)
{
#ifdef SMP
	int total;
	int i;

	total = 0;
	for (i = 0; i <= tdg_maxid; i++)
		total += TDQ_GROUP(i)->tdg_load;
	return (total);
#else
	return (TDQ_SELF()->tdq_sysload);
#endif
}

int
sched_sizeof_proc(void)
{
	return (sizeof(struct proc));
}

int
sched_sizeof_thread(void)
{
	return (sizeof(struct thread) + sizeof(struct td_sched));
}

void
sched_tick(void)
{
	struct td_sched *ts;

	ts = curthread->td_sched;
	/* Adjust ticks for pctcpu */
	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
	ts->ts_ltick = ticks;
	/*
	 * Update if we've exceeded our desired tick threshhold by over one
	 * second.
	 */
	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
		sched_pctcpu_update(ts);
}

/*
 * The actual idle process.
 */
void
sched_idletd(void *dummy)
{
	struct proc *p;
	struct thread *td;

	td = curthread;
	p = td->td_proc;
	mtx_assert(&Giant, MA_NOTOWNED);
	/* ULE Relies on preemption for idle interruption. */
	for (;;)
		cpu_idle();
}

static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
    "Scheduler name");
SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, tickincr, CTLFLAG_RD, &tickincr, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, realstathz, CTLFLAG_RD, &realstathz, 0, "");
#ifdef SMP
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri, CTLFLAG_RW, &pick_pri, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_affinity, CTLFLAG_RW,
    &affinity, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryself, CTLFLAG_RW,
    &tryself, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryselfidle, CTLFLAG_RW,
    &tryselfidle, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_preempt, CTLFLAG_RW, &ipi_preempt, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_ast, CTLFLAG_RW, &ipi_ast, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_thresh, CTLFLAG_RW, &ipi_thresh, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, steal_busy, CTLFLAG_RW, &steal_busy, 0, "");
SYSCTL_INT(_kern_sched, OID_AUTO, busy_thresh, CTLFLAG_RW, &busy_thresh, 0, "");
#endif

/* ps compat */
static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");


#define KERN_SWITCH_INCLUDE 1
#include "kern/kern_switch.c"
OpenPOWER on IntegriCloud