summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_ule.c
blob: e3c5a8eb1f0e4a8d5d02f7729315ae2314f860c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/*-
 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif

#include <machine/cpu.h>

#define KTR_ULE         KTR_NFS

/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
/* XXX This is bogus compatability crap for ps */
static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

static void sched_setup(void *dummy);
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)

static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");

static int sched_strict;
SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");

static int slice_min = 1;
SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");

static int slice_max = 2;
SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");

int realstathz;
int tickincr = 1;

/*
 * These datastructures are allocated within their parent datastructure but
 * are scheduler specific.
 */

struct ke_sched {
	int		ske_slice;
	struct runq	*ske_runq;
	/* The following variables are only used for pctcpu calculation */
	int		ske_ltick;	/* Last tick that we were running on */
	int		ske_ftick;	/* First tick that we were running on */
	int		ske_ticks;	/* Tick count */
	/* CPU that we have affinity for. */
	u_char		ske_cpu;
};
#define	ke_slice	ke_sched->ske_slice
#define	ke_runq		ke_sched->ske_runq
#define	ke_ltick	ke_sched->ske_ltick
#define	ke_ftick	ke_sched->ske_ftick
#define	ke_ticks	ke_sched->ske_ticks
#define	ke_cpu		ke_sched->ske_cpu

struct kg_sched {
	int	skg_slptime;		/* Number of ticks we vol. slept */
	int	skg_runtime;		/* Number of ticks we were running */
};
#define	kg_slptime	kg_sched->skg_slptime
#define	kg_runtime	kg_sched->skg_runtime

struct td_sched {
	int	std_slptime;
};
#define	td_slptime	td_sched->std_slptime

struct td_sched td_sched;
struct ke_sched ke_sched;
struct kg_sched kg_sched;

struct ke_sched *kse0_sched = &ke_sched;
struct kg_sched *ksegrp0_sched = &kg_sched;
struct p_sched *proc0_sched = NULL;
struct td_sched *thread0_sched = &td_sched;

/*
 * This priority range has 20 priorities on either end that are reachable
 * only through nice values.
 *
 * PRI_RANGE:	Total priority range for timeshare threads.
 * PRI_NRESV:	Reserved priorities for nice.
 * PRI_BASE:	The start of the dynamic range.
 * DYN_RANGE:	Number of priorities that are available int the dynamic
 *		priority range.
 */
#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
#define	SCHED_PRI_NRESV		PRIO_TOTAL
#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
#define	SCHED_PRI_BASE		((SCHED_PRI_NRESV / 2) + PRI_MIN_TIMESHARE)
#define	SCHED_DYN_RANGE		(SCHED_PRI_RANGE - SCHED_PRI_NRESV)
#define	SCHED_PRI_INTERACT(score)					\
    ((score) * SCHED_DYN_RANGE / SCHED_INTERACT_RANGE)

/*
 * These determine the interactivity of a process.
 *
 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
 *		before throttling back.
 * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time.
 * INTERACT_RANGE:	Range of interactivity values.  Smaller is better.
 * INTERACT_HALF:	Convenience define, half of the interactivity range.
 * INTERACT_THRESH:	Threshhold for placement on the current runq.
 */
#define	SCHED_SLP_RUN_MAX	((hz / 10) << 10)
#define	SCHED_SLP_RUN_THROTTLE	(10)
#define	SCHED_INTERACT_RANGE	(100)
#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_RANGE / 2)
#define	SCHED_INTERACT_THRESH	(10)

/*
 * These parameters and macros determine the size of the time slice that is
 * granted to each thread.
 *
 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
 * SLICE_MAX:	Maximum time slice granted.
 * SLICE_RANGE:	Range of available time slices scaled by hz.
 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
 */
#define	SCHED_SLICE_MIN			(slice_min)
#define	SCHED_SLICE_MAX			(slice_max)
#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
#define	SCHED_SLICE_NICE(nice)						\
    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))

/*
 * This macro determines whether or not the kse belongs on the current or
 * next run queue.
 * 
 * XXX nice value should effect how interactive a kg is.
 */
#define	SCHED_INTERACTIVE(kg)						\
    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
#define	SCHED_CURR(kg, ke)						\
    (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))

/*
 * Cpu percentage computation macros and defines.
 *
 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
 */

#define	SCHED_CPU_TIME	10
#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)

/*
 * kseq - per processor runqs and statistics.
 */

#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */

struct kseq {
	struct runq	ksq_idle;		/* Queue of IDLE threads. */
	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
	struct runq	*ksq_next;		/* Next timeshare queue. */
	struct runq	*ksq_curr;		/* Current queue. */
	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
	int		ksq_load;		/* Aggregate load. */
	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
	short		ksq_nicemin;		/* Least nice. */
#ifdef SMP
	unsigned int	ksq_rslices;	/* Slices on run queue */
#endif
};

/*
 * One kse queue per processor.
 */
#ifdef SMP
struct kseq	kseq_cpu[MAXCPU];
#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
#else
struct kseq	kseq_cpu;
#define	KSEQ_SELF()	(&kseq_cpu)
#define	KSEQ_CPU(x)	(&kseq_cpu)
#endif

static void sched_slice(struct kse *ke);
static void sched_priority(struct ksegrp *kg);
static int sched_interact_score(struct ksegrp *kg);
void sched_pctcpu_update(struct kse *ke);
int sched_pickcpu(void);

/* Operations on per processor queues */
static struct kse * kseq_choose(struct kseq *kseq);
static void kseq_setup(struct kseq *kseq);
static void kseq_add(struct kseq *kseq, struct kse *ke);
static void kseq_rem(struct kseq *kseq, struct kse *ke);
static void kseq_nice_add(struct kseq *kseq, int nice);
static void kseq_nice_rem(struct kseq *kseq, int nice);
void kseq_print(int cpu);
#ifdef SMP
struct kseq * kseq_load_highest(void);
#endif

void
kseq_print(int cpu)
{
	struct kseq *kseq;
	int i;

	kseq = KSEQ_CPU(cpu);

	printf("kseq:\n");
	printf("\tload:           %d\n", kseq->ksq_load);
	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
	printf("\tnice counts:\n");
	for (i = 0; i < PRIO_TOTAL + 1; i++)
		if (kseq->ksq_nice[i])
			printf("\t\t%d = %d\n",
			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
}

static void
kseq_add(struct kseq *kseq, struct kse *ke)
{
	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
	kseq->ksq_load++;
	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
#ifdef SMP
	kseq->ksq_rslices += ke->ke_slice;
#endif
}

static void
kseq_rem(struct kseq *kseq, struct kse *ke)
{
	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
	kseq->ksq_load--;
	ke->ke_runq = NULL;
	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
#ifdef SMP
	kseq->ksq_rslices -= ke->ke_slice;
#endif
}

static void
kseq_nice_add(struct kseq *kseq, int nice)
{
	/* Normalize to zero. */
	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 0)
		kseq->ksq_nicemin = nice;
}

static void
kseq_nice_rem(struct kseq *kseq, int nice) 
{
	int n;

	/* Normalize to zero. */
	n = nice + SCHED_PRI_NHALF;
	kseq->ksq_nice[n]--;
	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));

	/*
	 * If this wasn't the smallest nice value or there are more in
	 * this bucket we can just return.  Otherwise we have to recalculate
	 * the smallest nice.
	 */
	if (nice != kseq->ksq_nicemin ||
	    kseq->ksq_nice[n] != 0 ||
	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
		return;

	for (; n < SCHED_PRI_NRESV + 1; n++)
		if (kseq->ksq_nice[n]) {
			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
			return;
		}
}

#ifdef SMP
struct kseq *
kseq_load_highest(void)
{
	struct kseq *kseq;
	int load;
	int cpu;
	int i;

	cpu = 0;
	load = 0;

	for (i = 0; i < mp_maxid; i++) {
		if (CPU_ABSENT(i))
			continue;
		kseq = KSEQ_CPU(i);
		if (kseq->ksq_load > load) {
			load = kseq->ksq_load;
			cpu = i;
		}
	}
	if (load > 1)
		return (KSEQ_CPU(cpu));

	return (NULL);
}
#endif

struct kse *
kseq_choose(struct kseq *kseq)
{
	struct kse *ke;
	struct runq *swap;

	swap = NULL;

	for (;;) {
		ke = runq_choose(kseq->ksq_curr);
		if (ke == NULL) {
			/*
			 * We already swaped once and didn't get anywhere.
			 */
			if (swap)
				break;
			swap = kseq->ksq_curr;
			kseq->ksq_curr = kseq->ksq_next;
			kseq->ksq_next = swap;
			continue;
		}
		/*
		 * If we encounter a slice of 0 the kse is in a
		 * TIMESHARE kse group and its nice was too far out
		 * of the range that receives slices. 
		 */
		if (ke->ke_slice == 0) {
			runq_remove(ke->ke_runq, ke);
			sched_slice(ke);
			ke->ke_runq = kseq->ksq_next;
			runq_add(ke->ke_runq, ke);
			continue;
		}
		return (ke);
	}

	return (runq_choose(&kseq->ksq_idle));
}

static void
kseq_setup(struct kseq *kseq)
{
	runq_init(&kseq->ksq_timeshare[0]);
	runq_init(&kseq->ksq_timeshare[1]);
	runq_init(&kseq->ksq_idle);

	kseq->ksq_curr = &kseq->ksq_timeshare[0];
	kseq->ksq_next = &kseq->ksq_timeshare[1];

	kseq->ksq_loads[PRI_ITHD] = 0;
	kseq->ksq_loads[PRI_REALTIME] = 0;
	kseq->ksq_loads[PRI_TIMESHARE] = 0;
	kseq->ksq_loads[PRI_IDLE] = 0;
	kseq->ksq_load = 0;
#ifdef SMP
	kseq->ksq_rslices = 0;
#endif
}

static void
sched_setup(void *dummy)
{
	int i;

	slice_min = (hz/100);
	slice_max = (hz/10);

	mtx_lock_spin(&sched_lock);
	/* init kseqs */
	for (i = 0; i < MAXCPU; i++)
		kseq_setup(KSEQ_CPU(i));

	kseq_add(KSEQ_SELF(), &kse0);
	mtx_unlock_spin(&sched_lock);
}

/*
 * Scale the scheduling priority according to the "interactivity" of this
 * process.
 */
static void
sched_priority(struct ksegrp *kg)
{
	int pri;

	if (kg->kg_pri_class != PRI_TIMESHARE)
		return;

	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
	pri += SCHED_PRI_BASE;
	pri += kg->kg_nice;

	if (pri > PRI_MAX_TIMESHARE)
		pri = PRI_MAX_TIMESHARE;
	else if (pri < PRI_MIN_TIMESHARE)
		pri = PRI_MIN_TIMESHARE;

	kg->kg_user_pri = pri;

	return;
}

/*
 * Calculate a time slice based on the properties of the kseg and the runq
 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
 */
static void
sched_slice(struct kse *ke)
{
	struct kseq *kseq;
	struct ksegrp *kg;

	kg = ke->ke_ksegrp;
	kseq = KSEQ_CPU(ke->ke_cpu);

	/*
	 * Rationale:
	 * KSEs in interactive ksegs get the minimum slice so that we
	 * quickly notice if it abuses its advantage.
	 *
	 * KSEs in non-interactive ksegs are assigned a slice that is
	 * based on the ksegs nice value relative to the least nice kseg
	 * on the run queue for this cpu.
	 *
	 * If the KSE is less nice than all others it gets the maximum
	 * slice and other KSEs will adjust their slice relative to
	 * this when they first expire.
	 *
	 * There is 20 point window that starts relative to the least
	 * nice kse on the run queue.  Slice size is determined by
	 * the kse distance from the last nice ksegrp.
	 *
	 * If you are outside of the window you will get no slice and
	 * you will be reevaluated each time you are selected on the
	 * run queue.
	 *	
	 */

	if (!SCHED_INTERACTIVE(kg)) {
		int nice;

		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
		    kg->kg_nice < kseq->ksq_nicemin)
			ke->ke_slice = SCHED_SLICE_MAX;
		else if (nice <= SCHED_PRI_NTHRESH)
			ke->ke_slice = SCHED_SLICE_NICE(nice);
		else
			ke->ke_slice = 0;
	} else
		ke->ke_slice = SCHED_SLICE_MIN;

	CTR6(KTR_ULE,
	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));

	/*
	 * Check to see if we need to scale back the slp and run time
	 * in the kg.  This will cause us to forget old interactivity
	 * while maintaining the current ratio.
	 */
	CTR4(KTR_ULE, "Slp vs Run %p (Slp %d, Run %d, Score %d)",
	    ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
	    sched_interact_score(kg));

	if ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
		kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
		kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
	}
	CTR4(KTR_ULE, "Slp vs Run(2) %p (Slp %d, Run %d, Score %d)",
	    ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
	    sched_interact_score(kg));

	return;
}

static int
sched_interact_score(struct ksegrp *kg)
{
	int big;
	int small;
	int base;

	if (kg->kg_runtime > kg->kg_slptime) {
		big = kg->kg_runtime;
		small = kg->kg_slptime;
		base = SCHED_INTERACT_HALF;
	} else {
		big = kg->kg_slptime;
		small = kg->kg_runtime;
		base = 0;
	}

	big /= SCHED_INTERACT_HALF;
	if (big != 0)
		small /= big;
	else
		small = 0;

	small += base;
	/* XXX Factor in nice */
	return (small);
}

/*
 * This is only somewhat accurate since given many processes of the same
 * priority they will switch when their slices run out, which will be
 * at most SCHED_SLICE_MAX.
 */
int
sched_rr_interval(void)
{
	return (SCHED_SLICE_MAX);
}

void
sched_pctcpu_update(struct kse *ke)
{
	/*
	 * Adjust counters and watermark for pctcpu calc.
	 *
	 * Shift the tick count out so that the divide doesn't round away
	 * our results.
	 */
	ke->ke_ticks <<= 10;
	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
		    SCHED_CPU_TICKS;
	ke->ke_ticks >>= 10;
	ke->ke_ltick = ticks;
	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
}

#ifdef SMP
/* XXX Should be changed to kseq_load_lowest() */
int
sched_pickcpu(void)
{
	struct kseq *kseq;
	int load;
	int cpu;
	int i;

	if (!smp_started)
		return (0);

	load = 0;
	cpu = 0;

	for (i = 0; i < mp_maxid; i++) {
		if (CPU_ABSENT(i))
			continue;
		kseq = KSEQ_CPU(i);
		if (kseq->ksq_load < load) {
			cpu = i;
			load = kseq->ksq_load;
		}
	}

	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
	return (cpu);
}
#else
int
sched_pickcpu(void)
{
	return (0);
}
#endif

void
sched_prio(struct thread *td, u_char prio)
{
	struct kse *ke;
	struct runq *rq;

	mtx_assert(&sched_lock, MA_OWNED);
	ke = td->td_kse;
	td->td_priority = prio;

	if (TD_ON_RUNQ(td)) {
		rq = ke->ke_runq;

		runq_remove(rq, ke);
		runq_add(rq, ke);
	}
}

void
sched_switchout(struct thread *td)
{
	struct kse *ke;

	mtx_assert(&sched_lock, MA_OWNED);

	ke = td->td_kse;

	td->td_last_kse = ke;
        td->td_lastcpu = td->td_oncpu;
	td->td_oncpu = NOCPU;
        td->td_flags &= ~TDF_NEEDRESCHED;

	if (TD_IS_RUNNING(td)) {
		runq_add(ke->ke_runq, ke);
		/* setrunqueue(td); */
		return;
	}
	if (ke->ke_runq)
		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
	/*
	 * We will not be on the run queue. So we must be
	 * sleeping or similar.
	 */
	if (td->td_proc->p_flag & P_THREADED)
		kse_reassign(ke);
}

void
sched_switchin(struct thread *td)
{
	/* struct kse *ke = td->td_kse; */
	mtx_assert(&sched_lock, MA_OWNED);

	td->td_oncpu = PCPU_GET(cpuid);

	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
	    td->td_priority != td->td_ksegrp->kg_user_pri)
		curthread->td_flags |= TDF_NEEDRESCHED;
}

void
sched_nice(struct ksegrp *kg, int nice)
{
	struct kse *ke;
	struct thread *td;
	struct kseq *kseq;

	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
	mtx_assert(&sched_lock, MA_OWNED);
	/*
	 * We need to adjust the nice counts for running KSEs.
	 */
	if (kg->kg_pri_class == PRI_TIMESHARE)
		FOREACH_KSE_IN_GROUP(kg, ke) {
			if (ke->ke_state != KES_ONRUNQ &&
			    ke->ke_state != KES_THREAD)
				continue;
			kseq = KSEQ_CPU(ke->ke_cpu);
			kseq_nice_rem(kseq, kg->kg_nice);
			kseq_nice_add(kseq, nice);
		}
	kg->kg_nice = nice;
	sched_priority(kg);
	FOREACH_THREAD_IN_GROUP(kg, td)
		td->td_flags |= TDF_NEEDRESCHED;
}

void
sched_sleep(struct thread *td, u_char prio)
{
	mtx_assert(&sched_lock, MA_OWNED);

	td->td_slptime = ticks;
	td->td_priority = prio;

	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
	    td->td_kse, td->td_slptime);
}

void
sched_wakeup(struct thread *td)
{
	mtx_assert(&sched_lock, MA_OWNED);

	/*
	 * Let the kseg know how long we slept for.  This is because process
	 * interactivity behavior is modeled in the kseg.
	 */
	if (td->td_slptime) {
		struct ksegrp *kg;
		int hzticks;

		kg = td->td_ksegrp;
		hzticks = ticks - td->td_slptime;
		kg->kg_slptime += hzticks << 10;
		sched_priority(kg);
		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
		    td->td_kse, hzticks);
		td->td_slptime = 0;
	}
	setrunqueue(td);
        if (td->td_priority < curthread->td_priority)
                curthread->td_flags |= TDF_NEEDRESCHED;
}

/*
 * Penalize the parent for creating a new child and initialize the child's
 * priority.
 */
void
sched_fork(struct proc *p, struct proc *p1)
{

	mtx_assert(&sched_lock, MA_OWNED);

	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
}

void
sched_fork_kse(struct kse *ke, struct kse *child)
{

	child->ke_slice = ke->ke_slice;
	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
	child->ke_runq = NULL;

	/*
	 * Claim that we've been running for one second for statistical
	 * purposes.
	 */
	child->ke_ticks = 0;
	child->ke_ltick = ticks;
	child->ke_ftick = ticks - hz;
}

void
sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
{

	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
	/* XXX Need something better here */
	if (kg->kg_slptime > kg->kg_runtime) {
		child->kg_slptime = SCHED_DYN_RANGE;
		child->kg_runtime = kg->kg_slptime / SCHED_DYN_RANGE;
	} else {
		child->kg_runtime = SCHED_DYN_RANGE;
		child->kg_slptime = kg->kg_runtime / SCHED_DYN_RANGE;
	}

	child->kg_user_pri = kg->kg_user_pri;
	child->kg_nice = kg->kg_nice;
}

void
sched_fork_thread(struct thread *td, struct thread *child)
{
}

void
sched_class(struct ksegrp *kg, int class)
{
	struct kseq *kseq;
	struct kse *ke;

	mtx_assert(&sched_lock, MA_OWNED);
	if (kg->kg_pri_class == class)
		return;

	FOREACH_KSE_IN_GROUP(kg, ke) {
		if (ke->ke_state != KES_ONRUNQ &&
		    ke->ke_state != KES_THREAD)
			continue;
		kseq = KSEQ_CPU(ke->ke_cpu);

		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
		kseq->ksq_loads[PRI_BASE(class)]++;

		if (kg->kg_pri_class == PRI_TIMESHARE)
			kseq_nice_rem(kseq, kg->kg_nice);
		else if (class == PRI_TIMESHARE)
			kseq_nice_add(kseq, kg->kg_nice);
	}

	kg->kg_pri_class = class;
}

/*
 * Return some of the child's priority and interactivity to the parent.
 */
void
sched_exit(struct proc *p, struct proc *child)
{
	/* XXX Need something better here */
	mtx_assert(&sched_lock, MA_OWNED);
	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
}

void
sched_exit_kse(struct kse *ke, struct kse *child)
{
	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
}

void
sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
{
}

void
sched_exit_thread(struct thread *td, struct thread *child)
{
}

void
sched_clock(struct kse *ke)
{
	struct kseq *kseq;
	struct ksegrp *kg;
	struct thread *td;
#if 0
	struct kse *nke;
#endif

	/*
	 * sched_setup() apparently happens prior to stathz being set.  We
	 * need to resolve the timers earlier in the boot so we can avoid
	 * calculating this here.
	 */
	if (realstathz == 0) {
		realstathz = stathz ? stathz : hz;
		tickincr = hz / realstathz;
		/*
		 * XXX This does not work for values of stathz that are much
		 * larger than hz.
		 */
		if (tickincr == 0)
			tickincr = 1;
	}

	td = ke->ke_thread;
	kg = ke->ke_ksegrp;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((td != NULL), ("schedclock: null thread pointer"));

	/* Adjust ticks for pctcpu */
	ke->ke_ticks++;
	ke->ke_ltick = ticks;

	/* Go up to one second beyond our max and then trim back down */
	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
		sched_pctcpu_update(ke);

	if (td->td_kse->ke_flags & KEF_IDLEKSE)
		return;

	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);

	/*
	 * We only do slicing code for TIMESHARE ksegrps.
	 */
	if (kg->kg_pri_class != PRI_TIMESHARE)
		return;
	/*
	 * Check for a higher priority task on the run queue.  This can happen
	 * on SMP if another processor woke up a process on our runq.
	 */
	kseq = KSEQ_SELF();
#if 0
	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq)) != NULL) {
		if (sched_strict &&
		    nke->ke_thread->td_priority < td->td_priority)
			td->td_flags |= TDF_NEEDRESCHED;
		else if (nke->ke_thread->td_priority <
		    td->td_priority SCHED_PRIO_SLOP)
		    
		if (nke->ke_thread->td_priority < td->td_priority)
			td->td_flags |= TDF_NEEDRESCHED;
	}
#endif
	/*
	 * We used a tick charge it to the ksegrp so that we can compute our
	 * interactivity.
	 */
	kg->kg_runtime += tickincr << 10;

	/*
	 * We used up one time slice.
	 */
	ke->ke_slice--;
#ifdef SMP
	kseq->ksq_rslices--;
#endif

	if (ke->ke_slice > 0)
		return;
	/*
	 * We're out of time, recompute priorities and requeue.
	 */
	kseq_rem(kseq, ke);
	sched_priority(kg);
	sched_slice(ke);
	if (SCHED_CURR(kg, ke))
		ke->ke_runq = kseq->ksq_curr;
	else
		ke->ke_runq = kseq->ksq_next;
	kseq_add(kseq, ke);
	td->td_flags |= TDF_NEEDRESCHED;
}

int
sched_runnable(void)
{
	struct kseq *kseq;

	kseq = KSEQ_SELF();

	if (kseq->ksq_load)
		return (1);
#ifdef SMP
	/*
	 * For SMP we may steal other processor's KSEs.  Just search until we
	 * verify that at least on other cpu has a runnable task.
	 */
	if (smp_started) {
		int i;

		for (i = 0; i < mp_maxid; i++) {
			if (CPU_ABSENT(i))
				continue;
			kseq = KSEQ_CPU(i);
			if (kseq->ksq_load > 1)
				return (1);
		}
	}
#endif
	return (0);
}

void
sched_userret(struct thread *td)
{
	struct ksegrp *kg;
	
	kg = td->td_ksegrp;

	if (td->td_priority != kg->kg_user_pri) {
		mtx_lock_spin(&sched_lock);
		td->td_priority = kg->kg_user_pri;
		mtx_unlock_spin(&sched_lock);
	}
}

struct kse *
sched_choose(void)
{
	struct kseq *kseq;
	struct kse *ke;

#ifdef SMP
retry:
#endif
	kseq = KSEQ_SELF();
	ke = kseq_choose(kseq);
	if (ke) {
		runq_remove(ke->ke_runq, ke);
		ke->ke_state = KES_THREAD;

		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
			    ke, ke->ke_runq, ke->ke_slice,
			    ke->ke_thread->td_priority);
		}
		return (ke);
	}

#ifdef SMP
	if (smp_started) {
		/*
		 * Find the cpu with the highest load and steal one proc.
		 */
		if ((kseq = kseq_load_highest()) == NULL)
			return (NULL);

		/*
		 * Remove this kse from this kseq and runq and then requeue
		 * on the current processor.  Then we will dequeue it
		 * normally above.
		 */
		ke = kseq_choose(kseq);
		runq_remove(ke->ke_runq, ke);
		ke->ke_state = KES_THREAD;
		kseq_rem(kseq, ke);

		ke->ke_cpu = PCPU_GET(cpuid);
		sched_add(ke);
		goto retry;
	}
#endif

	return (NULL);
}

void
sched_add(struct kse *ke)
{
	struct kseq *kseq;
	struct ksegrp *kg;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
	KASSERT((ke->ke_thread->td_kse != NULL),
	    ("sched_add: No KSE on thread"));
	KASSERT(ke->ke_state != KES_ONRUNQ,
	    ("sched_add: kse %p (%s) already in run queue", ke,
	    ke->ke_proc->p_comm));
	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
	    ("sched_add: process swapped out"));
	KASSERT(ke->ke_runq == NULL,
	    ("sched_add: KSE %p is still assigned to a run queue", ke));

	kg = ke->ke_ksegrp;

	switch (PRI_BASE(kg->kg_pri_class)) {
	case PRI_ITHD:
	case PRI_REALTIME:
		kseq = KSEQ_SELF();
		ke->ke_runq = kseq->ksq_curr;
		ke->ke_slice = SCHED_SLICE_MAX;
		ke->ke_cpu = PCPU_GET(cpuid);
		break;
	case PRI_TIMESHARE:
		kseq = KSEQ_CPU(ke->ke_cpu);
		if (SCHED_CURR(kg, ke))
			ke->ke_runq = kseq->ksq_curr;
		else
			ke->ke_runq = kseq->ksq_next;
		break;
	case PRI_IDLE:
		kseq = KSEQ_CPU(ke->ke_cpu);
		/*
		 * This is for priority prop.
		 */
		if (ke->ke_thread->td_priority < PRI_MAX_TIMESHARE)
			ke->ke_runq = kseq->ksq_curr;
		else
			ke->ke_runq = &kseq->ksq_idle;
		ke->ke_slice = SCHED_SLICE_MIN;
		break;
	default:
		panic("Unknown pri class.\n");
		break;
	}

	ke->ke_ksegrp->kg_runq_kses++;
	ke->ke_state = KES_ONRUNQ;

	runq_add(ke->ke_runq, ke);
	kseq_add(kseq, ke);
}

void
sched_rem(struct kse *ke)
{
	struct kseq *kseq;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));

	ke->ke_state = KES_THREAD;
	ke->ke_ksegrp->kg_runq_kses--;
	kseq = KSEQ_CPU(ke->ke_cpu);
	runq_remove(ke->ke_runq, ke);
	kseq_rem(kseq, ke);
}

fixpt_t
sched_pctcpu(struct kse *ke)
{
	fixpt_t pctcpu;

	pctcpu = 0;

	if (ke->ke_ticks) {
		int rtick;

		/* Update to account for time potentially spent sleeping */
		ke->ke_ltick = ticks;
		sched_pctcpu_update(ke);

		/* How many rtick per second ? */
		rtick = ke->ke_ticks / SCHED_CPU_TIME;
		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
	}

	mtx_lock_spin(&sched_lock);
	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
	mtx_unlock_spin(&sched_lock);

	return (pctcpu);
}

int
sched_sizeof_kse(void)
{
	return (sizeof(struct kse) + sizeof(struct ke_sched));
}

int
sched_sizeof_ksegrp(void)
{
	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
}

int
sched_sizeof_proc(void)
{
	return (sizeof(struct proc));
}

int
sched_sizeof_thread(void)
{
	return (sizeof(struct thread) + sizeof(struct td_sched));
}
OpenPOWER on IntegriCloud