summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_time.c
blob: c434b937401079afbea4bd5d80abb3b48319970e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
/*-
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/limits.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysproto.h>
#include <sys/eventhandler.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/posix4.h>
#include <sys/time.h>
#include <sys/timers.h>
#include <sys/timetc.h>
#include <sys/vnode.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>

#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)

static struct kclock	posix_clocks[MAX_CLOCKS];
static uma_zone_t	itimer_zone = NULL;

/*
 * Time of day and interval timer support.
 *
 * These routines provide the kernel entry points to get and set
 * the time-of-day and per-process interval timers.  Subroutines
 * here provide support for adding and subtracting timeval structures
 * and decrementing interval timers, optionally reloading the interval
 * timers when they expire.
 */

static int	settime(struct thread *, struct timeval *);
static void	timevalfix(struct timeval *);
static void	no_lease_updatetime(int);

static void	itimer_start(void);
static int	itimer_init(void *, int, int);
static void	itimer_fini(void *, int);
static void	itimer_enter(struct itimer *);
static void	itimer_leave(struct itimer *);
static struct itimer *itimer_find(struct proc *, int);
static void	itimers_alloc(struct proc *);
static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
static void	itimers_event_hook_exit(void *arg, struct proc *p);
static int	realtimer_create(struct itimer *);
static int	realtimer_gettime(struct itimer *, struct itimerspec *);
static int	realtimer_settime(struct itimer *, int,
			struct itimerspec *, struct itimerspec *);
static int	realtimer_delete(struct itimer *);
static void	realtimer_clocktime(clockid_t, struct timespec *);
static void	realtimer_expire(void *);
static int	kern_timer_create(struct thread *, clockid_t,
			struct sigevent *, int *, int);
static int	kern_timer_delete(struct thread *, int);

int		register_posix_clock(int, struct kclock *);
void		itimer_fire(struct itimer *it);
int		itimespecfix(struct timespec *ts);

#define CLOCK_CALL(clock, call, arglist)		\
	((*posix_clocks[clock].call) arglist)

SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);


static void 
no_lease_updatetime(deltat)
	int deltat;
{
}

void (*lease_updatetime)(int)  = no_lease_updatetime;

static int
settime(struct thread *td, struct timeval *tv)
{
	struct timeval delta, tv1, tv2;
	static struct timeval maxtime, laststep;
	struct timespec ts;
	int s;

	s = splclock();
	microtime(&tv1);
	delta = *tv;
	timevalsub(&delta, &tv1);

	/*
	 * If the system is secure, we do not allow the time to be 
	 * set to a value earlier than 1 second less than the highest
	 * time we have yet seen. The worst a miscreant can do in
	 * this circumstance is "freeze" time. He couldn't go
	 * back to the past.
	 *
	 * We similarly do not allow the clock to be stepped more
	 * than one second, nor more than once per second. This allows
	 * a miscreant to make the clock march double-time, but no worse.
	 */
	if (securelevel_gt(td->td_ucred, 1) != 0) {
		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
			/*
			 * Update maxtime to latest time we've seen.
			 */
			if (tv1.tv_sec > maxtime.tv_sec)
				maxtime = tv1;
			tv2 = *tv;
			timevalsub(&tv2, &maxtime);
			if (tv2.tv_sec < -1) {
				tv->tv_sec = maxtime.tv_sec - 1;
				printf("Time adjustment clamped to -1 second\n");
			}
		} else {
			if (tv1.tv_sec == laststep.tv_sec) {
				splx(s);
				return (EPERM);
			}
			if (delta.tv_sec > 1) {
				tv->tv_sec = tv1.tv_sec + 1;
				printf("Time adjustment clamped to +1 second\n");
			}
			laststep = *tv;
		}
	}

	ts.tv_sec = tv->tv_sec;
	ts.tv_nsec = tv->tv_usec * 1000;
	mtx_lock(&Giant);
	tc_setclock(&ts);
	(void) splsoftclock();
	lease_updatetime(delta.tv_sec);
	splx(s);
	resettodr();
	mtx_unlock(&Giant);
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_gettime_args {
	clockid_t clock_id;
	struct	timespec *tp;
};
#endif
/* ARGSUSED */
int
clock_gettime(struct thread *td, struct clock_gettime_args *uap)
{
	struct timespec ats;
	int error;

	error = kern_clock_gettime(td, uap->clock_id, &ats);
	if (error == 0)
		error = copyout(&ats, uap->tp, sizeof(ats));

	return (error);
}

int
kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
{
	struct timeval sys, user;
	struct proc *p;

	p = td->td_proc;
	switch (clock_id) {
	case CLOCK_REALTIME:		/* Default to precise. */
	case CLOCK_REALTIME_PRECISE:
		nanotime(ats);
		break;
	case CLOCK_REALTIME_FAST:
		getnanotime(ats);
		break;
	case CLOCK_VIRTUAL:
		PROC_LOCK(p);
		calcru(p, &user, &sys);
		PROC_UNLOCK(p);
		TIMEVAL_TO_TIMESPEC(&user, ats);
		break;
	case CLOCK_PROF:
		PROC_LOCK(p);
		calcru(p, &user, &sys);
		PROC_UNLOCK(p);
		timevaladd(&user, &sys);
		TIMEVAL_TO_TIMESPEC(&user, ats);
		break;
	case CLOCK_MONOTONIC:		/* Default to precise. */
	case CLOCK_MONOTONIC_PRECISE:
	case CLOCK_UPTIME:
	case CLOCK_UPTIME_PRECISE:
		nanouptime(ats);
		break;
	case CLOCK_UPTIME_FAST:
	case CLOCK_MONOTONIC_FAST:
		getnanouptime(ats);
		break;
	case CLOCK_SECOND:
		ats->tv_sec = time_second;
		ats->tv_nsec = 0;
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_settime_args {
	clockid_t clock_id;
	const struct	timespec *tp;
};
#endif
/* ARGSUSED */
int
clock_settime(struct thread *td, struct clock_settime_args *uap)
{
	struct timespec ats;
	int error;

	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
		return (error);
	return (kern_clock_settime(td, uap->clock_id, &ats));
}

int
kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
{
	struct timeval atv;
	int error;

	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
		return (error);
	if (clock_id != CLOCK_REALTIME)
		return (EINVAL);
	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
		return (EINVAL);
	/* XXX Don't convert nsec->usec and back */
	TIMESPEC_TO_TIMEVAL(&atv, ats);
	error = settime(td, &atv);
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_getres_args {
	clockid_t clock_id;
	struct	timespec *tp;
};
#endif
int
clock_getres(struct thread *td, struct clock_getres_args *uap)
{
	struct timespec ts;
	int error;

	if (uap->tp == NULL)
		return (0);

	error = kern_clock_getres(td, uap->clock_id, &ts);
	if (error == 0)
		error = copyout(&ts, uap->tp, sizeof(ts));
	return (error);
}

int
kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
{

	ts->tv_sec = 0;
	switch (clock_id) {
	case CLOCK_REALTIME:
	case CLOCK_REALTIME_FAST:
	case CLOCK_REALTIME_PRECISE:
	case CLOCK_MONOTONIC:
	case CLOCK_MONOTONIC_FAST:
	case CLOCK_MONOTONIC_PRECISE:
	case CLOCK_UPTIME:
	case CLOCK_UPTIME_FAST:
	case CLOCK_UPTIME_PRECISE:
		/*
		 * Round up the result of the division cheaply by adding 1.
		 * Rounding up is especially important if rounding down
		 * would give 0.  Perfect rounding is unimportant.
		 */
		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
		break;
	case CLOCK_VIRTUAL:
	case CLOCK_PROF:
		/* Accurately round up here because we can do so cheaply. */
		ts->tv_nsec = (1000000000 + hz - 1) / hz;
		break;
	case CLOCK_SECOND:
		ts->tv_sec = 1;
		ts->tv_nsec = 0;
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int nanowait;

int
kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
{
	struct timespec ts, ts2, ts3;
	struct timeval tv;
	int error;

	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
		return (EINVAL);
	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
		return (0);
	getnanouptime(&ts);
	timespecadd(&ts, rqt);
	TIMESPEC_TO_TIMEVAL(&tv, rqt);
	for (;;) {
		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
		    tvtohz(&tv));
		getnanouptime(&ts2);
		if (error != EWOULDBLOCK) {
			if (error == ERESTART)
				error = EINTR;
			if (rmt != NULL) {
				timespecsub(&ts, &ts2);
				if (ts.tv_sec < 0)
					timespecclear(&ts);
				*rmt = ts;
			}
			return (error);
		}
		if (timespeccmp(&ts2, &ts, >=))
			return (0);
		ts3 = ts;
		timespecsub(&ts3, &ts2);
		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
	}
}

#ifndef _SYS_SYSPROTO_H_
struct nanosleep_args {
	struct	timespec *rqtp;
	struct	timespec *rmtp;
};
#endif
/* ARGSUSED */
int
nanosleep(struct thread *td, struct nanosleep_args *uap)
{
	struct timespec rmt, rqt;
	int error;

	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
	if (error)
		return (error);

	if (uap->rmtp &&
	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
			return (EFAULT);
	error = kern_nanosleep(td, &rqt, &rmt);
	if (error && uap->rmtp) {
		int error2;

		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
		if (error2)
			error = error2;
	}
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct gettimeofday_args {
	struct	timeval *tp;
	struct	timezone *tzp;
};
#endif
/* ARGSUSED */
int
gettimeofday(struct thread *td, struct gettimeofday_args *uap)
{
	struct timeval atv;
	struct timezone rtz;
	int error = 0;

	if (uap->tp) {
		microtime(&atv);
		error = copyout(&atv, uap->tp, sizeof (atv));
	}
	if (error == 0 && uap->tzp != NULL) {
		rtz.tz_minuteswest = tz_minuteswest;
		rtz.tz_dsttime = tz_dsttime;
		error = copyout(&rtz, uap->tzp, sizeof (rtz));
	}
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct settimeofday_args {
	struct	timeval *tv;
	struct	timezone *tzp;
};
#endif
/* ARGSUSED */
int
settimeofday(struct thread *td, struct settimeofday_args *uap)
{
	struct timeval atv, *tvp;
	struct timezone atz, *tzp;
	int error;

	if (uap->tv) {
		error = copyin(uap->tv, &atv, sizeof(atv));
		if (error)
			return (error);
		tvp = &atv;
	} else
		tvp = NULL;
	if (uap->tzp) {
		error = copyin(uap->tzp, &atz, sizeof(atz));
		if (error)
			return (error);
		tzp = &atz;
	} else
		tzp = NULL;
	return (kern_settimeofday(td, tvp, tzp));
}

int
kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
{
	int error;

	error = priv_check(td, PRIV_SETTIMEOFDAY);
	if (error)
		return (error);
	/* Verify all parameters before changing time. */
	if (tv) {
		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
			return (EINVAL);
		error = settime(td, tv);
	}
	if (tzp && error == 0) {
		tz_minuteswest = tzp->tz_minuteswest;
		tz_dsttime = tzp->tz_dsttime;
	}
	return (error);
}

/*
 * Get value of an interval timer.  The process virtual and profiling virtual
 * time timers are kept in the p_stats area, since they can be swapped out.
 * These are kept internally in the way they are specified externally: in
 * time until they expire.
 *
 * The real time interval timer is kept in the process table slot for the
 * process, and its value (it_value) is kept as an absolute time rather than
 * as a delta, so that it is easy to keep periodic real-time signals from
 * drifting.
 *
 * Virtual time timers are processed in the hardclock() routine of
 * kern_clock.c.  The real time timer is processed by a timeout routine,
 * called from the softclock() routine.  Since a callout may be delayed in
 * real time due to interrupt processing in the system, it is possible for
 * the real time timeout routine (realitexpire, given below), to be delayed
 * in real time past when it is supposed to occur.  It does not suffice,
 * therefore, to reload the real timer .it_value from the real time timers
 * .it_interval.  Rather, we compute the next time in absolute time the timer
 * should go off.
 */
#ifndef _SYS_SYSPROTO_H_
struct getitimer_args {
	u_int	which;
	struct	itimerval *itv;
};
#endif
int
getitimer(struct thread *td, struct getitimer_args *uap)
{
	struct itimerval aitv;
	int error;

	error = kern_getitimer(td, uap->which, &aitv);
	if (error != 0)
		return (error);
	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
}

int
kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
{
	struct proc *p = td->td_proc;
	struct timeval ctv;

	if (which > ITIMER_PROF)
		return (EINVAL);

	if (which == ITIMER_REAL) {
		/*
		 * Convert from absolute to relative time in .it_value
		 * part of real time timer.  If time for real time timer
		 * has passed return 0, else return difference between
		 * current time and time for the timer to go off.
		 */
		PROC_LOCK(p);
		*aitv = p->p_realtimer;
		PROC_UNLOCK(p);
		if (timevalisset(&aitv->it_value)) {
			getmicrouptime(&ctv);
			if (timevalcmp(&aitv->it_value, &ctv, <))
				timevalclear(&aitv->it_value);
			else
				timevalsub(&aitv->it_value, &ctv);
		}
	} else {
		mtx_lock_spin(&sched_lock);
		*aitv = p->p_stats->p_timer[which];
		mtx_unlock_spin(&sched_lock);
	}
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct setitimer_args {
	u_int	which;
	struct	itimerval *itv, *oitv;
};
#endif
int
setitimer(struct thread *td, struct setitimer_args *uap)
{
	struct itimerval aitv, oitv;
	int error;

	if (uap->itv == NULL) {
		uap->itv = uap->oitv;
		return (getitimer(td, (struct getitimer_args *)uap));
	}

	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
		return (error);
	error = kern_setitimer(td, uap->which, &aitv, &oitv);
	if (error != 0 || uap->oitv == NULL)
		return (error);
	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
}

int
kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
    struct itimerval *oitv)
{
	struct proc *p = td->td_proc;
	struct timeval ctv;

	if (aitv == NULL)
		return (kern_getitimer(td, which, oitv));

	if (which > ITIMER_PROF)
		return (EINVAL);
	if (itimerfix(&aitv->it_value))
		return (EINVAL);
	if (!timevalisset(&aitv->it_value))
		timevalclear(&aitv->it_interval);
	else if (itimerfix(&aitv->it_interval))
		return (EINVAL);

	if (which == ITIMER_REAL) {
		PROC_LOCK(p);
		if (timevalisset(&p->p_realtimer.it_value))
			callout_stop(&p->p_itcallout);
		getmicrouptime(&ctv);
		if (timevalisset(&aitv->it_value)) {
			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
			    realitexpire, p);
			timevaladd(&aitv->it_value, &ctv);
		}
		*oitv = p->p_realtimer;
		p->p_realtimer = *aitv;
		PROC_UNLOCK(p);
		if (timevalisset(&oitv->it_value)) {
			if (timevalcmp(&oitv->it_value, &ctv, <))
				timevalclear(&oitv->it_value);
			else
				timevalsub(&oitv->it_value, &ctv);
		}
	} else {
		mtx_lock_spin(&sched_lock);
		*oitv = p->p_stats->p_timer[which];
		p->p_stats->p_timer[which] = *aitv;
		mtx_unlock_spin(&sched_lock);
	}
	return (0);
}

/*
 * Real interval timer expired:
 * send process whose timer expired an alarm signal.
 * If time is not set up to reload, then just return.
 * Else compute next time timer should go off which is > current time.
 * This is where delay in processing this timeout causes multiple
 * SIGALRM calls to be compressed into one.
 * tvtohz() always adds 1 to allow for the time until the next clock
 * interrupt being strictly less than 1 clock tick, but we don't want
 * that here since we want to appear to be in sync with the clock
 * interrupt even when we're delayed.
 */
void
realitexpire(void *arg)
{
	struct proc *p;
	struct timeval ctv, ntv;

	p = (struct proc *)arg;
	PROC_LOCK(p);
	psignal(p, SIGALRM);
	if (!timevalisset(&p->p_realtimer.it_interval)) {
		timevalclear(&p->p_realtimer.it_value);
		if (p->p_flag & P_WEXIT)
			wakeup(&p->p_itcallout);
		PROC_UNLOCK(p);
		return;
	}
	for (;;) {
		timevaladd(&p->p_realtimer.it_value,
		    &p->p_realtimer.it_interval);
		getmicrouptime(&ctv);
		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
			ntv = p->p_realtimer.it_value;
			timevalsub(&ntv, &ctv);
			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
			    realitexpire, p);
			PROC_UNLOCK(p);
			return;
		}
	}
	/*NOTREACHED*/
}

/*
 * Check that a proposed value to load into the .it_value or
 * .it_interval part of an interval timer is acceptable, and
 * fix it to have at least minimal value (i.e. if it is less
 * than the resolution of the clock, round it up.)
 */
int
itimerfix(struct timeval *tv)
{

	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
		return (EINVAL);
	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
		tv->tv_usec = tick;
	return (0);
}

/*
 * Decrement an interval timer by a specified number
 * of microseconds, which must be less than a second,
 * i.e. < 1000000.  If the timer expires, then reload
 * it.  In this case, carry over (usec - old value) to
 * reduce the value reloaded into the timer so that
 * the timer does not drift.  This routine assumes
 * that it is called in a context where the timers
 * on which it is operating cannot change in value.
 */
int
itimerdecr(struct itimerval *itp, int usec)
{

	if (itp->it_value.tv_usec < usec) {
		if (itp->it_value.tv_sec == 0) {
			/* expired, and already in next interval */
			usec -= itp->it_value.tv_usec;
			goto expire;
		}
		itp->it_value.tv_usec += 1000000;
		itp->it_value.tv_sec--;
	}
	itp->it_value.tv_usec -= usec;
	usec = 0;
	if (timevalisset(&itp->it_value))
		return (1);
	/* expired, exactly at end of interval */
expire:
	if (timevalisset(&itp->it_interval)) {
		itp->it_value = itp->it_interval;
		itp->it_value.tv_usec -= usec;
		if (itp->it_value.tv_usec < 0) {
			itp->it_value.tv_usec += 1000000;
			itp->it_value.tv_sec--;
		}
	} else
		itp->it_value.tv_usec = 0;		/* sec is already 0 */
	return (0);
}

/*
 * Add and subtract routines for timevals.
 * N.B.: subtract routine doesn't deal with
 * results which are before the beginning,
 * it just gets very confused in this case.
 * Caveat emptor.
 */
void
timevaladd(struct timeval *t1, const struct timeval *t2)
{

	t1->tv_sec += t2->tv_sec;
	t1->tv_usec += t2->tv_usec;
	timevalfix(t1);
}

void
timevalsub(struct timeval *t1, const struct timeval *t2)
{

	t1->tv_sec -= t2->tv_sec;
	t1->tv_usec -= t2->tv_usec;
	timevalfix(t1);
}

static void
timevalfix(struct timeval *t1)
{

	if (t1->tv_usec < 0) {
		t1->tv_sec--;
		t1->tv_usec += 1000000;
	}
	if (t1->tv_usec >= 1000000) {
		t1->tv_sec++;
		t1->tv_usec -= 1000000;
	}
}

/*
 * ratecheck(): simple time-based rate-limit checking.
 */
int
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
{
	struct timeval tv, delta;
	int rv = 0;

	getmicrouptime(&tv);		/* NB: 10ms precision */
	delta = tv;
	timevalsub(&delta, lasttime);

	/*
	 * check for 0,0 is so that the message will be seen at least once,
	 * even if interval is huge.
	 */
	if (timevalcmp(&delta, mininterval, >=) ||
	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
		*lasttime = tv;
		rv = 1;
	}

	return (rv);
}

/*
 * ppsratecheck(): packets (or events) per second limitation.
 *
 * Return 0 if the limit is to be enforced (e.g. the caller
 * should drop a packet because of the rate limitation).
 *
 * maxpps of 0 always causes zero to be returned.  maxpps of -1
 * always causes 1 to be returned; this effectively defeats rate
 * limiting.
 *
 * Note that we maintain the struct timeval for compatibility
 * with other bsd systems.  We reuse the storage and just monitor
 * clock ticks for minimal overhead.  
 */
int
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
{
	int now;

	/*
	 * Reset the last time and counter if this is the first call
	 * or more than a second has passed since the last update of
	 * lasttime.
	 */
	now = ticks;
	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
		lasttime->tv_sec = now;
		*curpps = 1;
		return (maxpps != 0);
	} else {
		(*curpps)++;		/* NB: ignore potential overflow */
		return (maxpps < 0 || *curpps < maxpps);
	}
}

static void
itimer_start(void)
{
	struct kclock rt_clock = {
		.timer_create  = realtimer_create,
		.timer_delete  = realtimer_delete,
		.timer_settime = realtimer_settime,
		.timer_gettime = realtimer_gettime,
		.event_hook    = NULL
	};

	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
}

int
register_posix_clock(int clockid, struct kclock *clk)
{
	if ((unsigned)clockid >= MAX_CLOCKS) {
		printf("%s: invalid clockid\n", __func__);
		return (0);
	}
	posix_clocks[clockid] = *clk;
	return (1);
}

static int
itimer_init(void *mem, int size, int flags)
{
	struct itimer *it;

	it = (struct itimer *)mem;
	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
	return (0);
}

static void
itimer_fini(void *mem, int size)
{
	struct itimer *it;

	it = (struct itimer *)mem;
	mtx_destroy(&it->it_mtx);
}

static void
itimer_enter(struct itimer *it)
{

	mtx_assert(&it->it_mtx, MA_OWNED);
	it->it_usecount++;
}

static void
itimer_leave(struct itimer *it)
{

	mtx_assert(&it->it_mtx, MA_OWNED);
	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));

	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
		wakeup(it);
}

#ifndef _SYS_SYSPROTO_H_
struct ktimer_create_args {
	clockid_t clock_id;
	struct sigevent * evp;
	int * timerid;
};
#endif
int
ktimer_create(struct thread *td, struct ktimer_create_args *uap)
{
	struct sigevent *evp1, ev;
	int id;
	int error;

	if (uap->evp != NULL) {
		error = copyin(uap->evp, &ev, sizeof(ev));
		if (error != 0)
			return (error);
		evp1 = &ev;
	} else
		evp1 = NULL;

	error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);

	if (error == 0) {
		error = copyout(&id, uap->timerid, sizeof(int));
		if (error != 0)
			kern_timer_delete(td, id);
	}
	return (error);
}

static int
kern_timer_create(struct thread *td, clockid_t clock_id,
	struct sigevent *evp, int *timerid, int preset_id)
{
	struct proc *p = td->td_proc;
	struct itimer *it;
	int id;
	int error;

	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
		return (EINVAL);

	if (posix_clocks[clock_id].timer_create == NULL)
		return (EINVAL);

	if (evp != NULL) {
		if (evp->sigev_notify != SIGEV_NONE &&
		    evp->sigev_notify != SIGEV_SIGNAL &&
		    evp->sigev_notify != SIGEV_THREAD_ID)
			return (EINVAL);
		if ((evp->sigev_notify == SIGEV_SIGNAL ||
		     evp->sigev_notify == SIGEV_THREAD_ID) &&
			!_SIG_VALID(evp->sigev_signo))
			return (EINVAL);
	}
	
	if (p->p_itimers == NULL)
		itimers_alloc(p);
	
	it = uma_zalloc(itimer_zone, M_WAITOK);
	it->it_flags = 0;
	it->it_usecount = 0;
	it->it_active = 0;
	timespecclear(&it->it_time.it_value);
	timespecclear(&it->it_time.it_interval);
	it->it_overrun = 0;
	it->it_overrun_last = 0;
	it->it_clockid = clock_id;
	it->it_timerid = -1;
	it->it_proc = p;
	ksiginfo_init(&it->it_ksi);
	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
	error = CLOCK_CALL(clock_id, timer_create, (it));
	if (error != 0)
		goto out;

	PROC_LOCK(p);
	if (preset_id != -1) {
		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
		id = preset_id;
		if (p->p_itimers->its_timers[id] != NULL) {
			PROC_UNLOCK(p);
			error = 0;
			goto out;
		}
	} else {
		/*
		 * Find a free timer slot, skipping those reserved
		 * for setitimer().
		 */
		for (id = 3; id < TIMER_MAX; id++)
			if (p->p_itimers->its_timers[id] == NULL)
				break;
		if (id == TIMER_MAX) {
			PROC_UNLOCK(p);
			error = EAGAIN;
			goto out;
		}
	}
	it->it_timerid = id;
	p->p_itimers->its_timers[id] = it;
	if (evp != NULL)
		it->it_sigev = *evp;
	else {
		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
		switch (clock_id) {
		default:
		case CLOCK_REALTIME:
			it->it_sigev.sigev_signo = SIGALRM;
			break;
		case CLOCK_VIRTUAL:
 			it->it_sigev.sigev_signo = SIGVTALRM;
			break;
		case CLOCK_PROF:
			it->it_sigev.sigev_signo = SIGPROF;
			break;
		}
		it->it_sigev.sigev_value.sival_int = id;
	}

	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
		it->it_ksi.ksi_code = SI_TIMER;
		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
		it->it_ksi.ksi_timerid = id;
	}
	PROC_UNLOCK(p);
	*timerid = id;
	return (0);

out:
	ITIMER_LOCK(it);
	CLOCK_CALL(it->it_clockid, timer_delete, (it));
	ITIMER_UNLOCK(it);
	uma_zfree(itimer_zone, it);
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct ktimer_delete_args {
	int timerid;
};
#endif
int
ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
{
	return (kern_timer_delete(td, uap->timerid));
}

static struct itimer *
itimer_find(struct proc *p, int timerid)
{
	struct itimer *it;

	PROC_LOCK_ASSERT(p, MA_OWNED);
	if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) ||
	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
		return (NULL);
	}
	ITIMER_LOCK(it);
	if ((it->it_flags & ITF_DELETING) != 0) {
		ITIMER_UNLOCK(it);
		it = NULL;
	}
	return (it);
}

static int
kern_timer_delete(struct thread *td, int timerid)
{
	struct proc *p = td->td_proc;
	struct itimer *it;

	PROC_LOCK(p);
	it = itimer_find(p, timerid);
	if (it == NULL) {
		PROC_UNLOCK(p);
		return (EINVAL);
	}
	PROC_UNLOCK(p);

	it->it_flags |= ITF_DELETING;
	while (it->it_usecount > 0) {
		it->it_flags |= ITF_WANTED;
		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
	}
	it->it_flags &= ~ITF_WANTED;
	CLOCK_CALL(it->it_clockid, timer_delete, (it));
	ITIMER_UNLOCK(it);

	PROC_LOCK(p);
	if (KSI_ONQ(&it->it_ksi))
		sigqueue_take(&it->it_ksi);
	p->p_itimers->its_timers[timerid] = NULL;
	PROC_UNLOCK(p);
	uma_zfree(itimer_zone, it);
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct ktimer_settime_args {
	int timerid;
	int flags;
	const struct itimerspec * value;
	struct itimerspec * ovalue;
};
#endif
int
ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
{
	struct proc *p = td->td_proc;
	struct itimer *it;
	struct itimerspec val, oval, *ovalp;
	int error;

	error = copyin(uap->value, &val, sizeof(val));
	if (error != 0)
		return (error);
	
	if (uap->ovalue != NULL)
		ovalp = &oval;
	else
		ovalp = NULL;

	PROC_LOCK(p);
	if (uap->timerid < 3 ||
	    (it = itimer_find(p, uap->timerid)) == NULL) {
		PROC_UNLOCK(p);
		error = EINVAL;
	} else {
		PROC_UNLOCK(p);
		itimer_enter(it);
		error = CLOCK_CALL(it->it_clockid, timer_settime,
				(it, uap->flags, &val, ovalp));
		itimer_leave(it);
		ITIMER_UNLOCK(it);
	}
	if (error == 0 && uap->ovalue != NULL)
		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct ktimer_gettime_args {
	int timerid;
	struct itimerspec * value;
};
#endif
int
ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
{
	struct proc *p = td->td_proc;
	struct itimer *it;
	struct itimerspec val;
	int error;

	PROC_LOCK(p);
	if (uap->timerid < 3 ||
	   (it = itimer_find(p, uap->timerid)) == NULL) {
		PROC_UNLOCK(p);
		error = EINVAL;
	} else {
		PROC_UNLOCK(p);
		itimer_enter(it);
		error = CLOCK_CALL(it->it_clockid, timer_gettime,
				(it, &val));
		itimer_leave(it);
		ITIMER_UNLOCK(it);
	}
	if (error == 0)
		error = copyout(&val, uap->value, sizeof(val));
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct timer_getoverrun_args {
	int timerid;
};
#endif
int
ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
{
	struct proc *p = td->td_proc;
	struct itimer *it;
	int error ;

	PROC_LOCK(p);
	if (uap->timerid < 3 ||
	    (it = itimer_find(p, uap->timerid)) == NULL) {
		PROC_UNLOCK(p);
		error = EINVAL;
	} else {
		td->td_retval[0] = it->it_overrun_last;
		ITIMER_UNLOCK(it);
		PROC_UNLOCK(p);
		error = 0;
	}
	return (error);
}

static int
realtimer_create(struct itimer *it)
{
	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
	return (0);
}

static int
realtimer_delete(struct itimer *it)
{
	mtx_assert(&it->it_mtx, MA_OWNED);
	
	ITIMER_UNLOCK(it);
	callout_drain(&it->it_callout);
	ITIMER_LOCK(it);
	return (0);
}

static int
realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
{
	struct timespec cts;

	mtx_assert(&it->it_mtx, MA_OWNED);

	realtimer_clocktime(it->it_clockid, &cts);
	*ovalue = it->it_time;
	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
		timespecsub(&ovalue->it_value, &cts);
		if (ovalue->it_value.tv_sec < 0 ||
		    (ovalue->it_value.tv_sec == 0 &&
		     ovalue->it_value.tv_nsec == 0)) {
			ovalue->it_value.tv_sec  = 0;
			ovalue->it_value.tv_nsec = 1;
		}
	}
	return (0);
}

static int
realtimer_settime(struct itimer *it, int flags,
	struct itimerspec *value, struct itimerspec *ovalue)
{
	struct timespec cts, ts;
	struct timeval tv;
	struct itimerspec val;

	mtx_assert(&it->it_mtx, MA_OWNED);

	val = *value;
	if (itimespecfix(&val.it_value))
		return (EINVAL);

	if (timespecisset(&val.it_value)) {
		if (itimespecfix(&val.it_interval))
			return (EINVAL);
	} else {
		timespecclear(&val.it_interval);
	}
	
	if (ovalue != NULL)
		realtimer_gettime(it, ovalue);

	it->it_time = val;
	if (timespecisset(&val.it_value)) {
		realtimer_clocktime(it->it_clockid, &cts);
		ts = val.it_value;
		if ((flags & TIMER_ABSTIME) == 0) {
			/* Convert to absolute time. */
			timespecadd(&it->it_time.it_value, &cts);
		} else {
			timespecsub(&ts, &cts);
			/*
			 * We don't care if ts is negative, tztohz will
			 * fix it.
			 */
		}
		TIMESPEC_TO_TIMEVAL(&tv, &ts);
		callout_reset(&it->it_callout, tvtohz(&tv),
			realtimer_expire, it);
	} else {
		callout_stop(&it->it_callout);
	}

	return (0);
}

static void
realtimer_clocktime(clockid_t id, struct timespec *ts)
{
	if (id == CLOCK_REALTIME)
		getnanotime(ts);
	else	/* CLOCK_MONOTONIC */
		getnanouptime(ts);
}

int
itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
{
	struct itimer *it;

	PROC_LOCK_ASSERT(p, MA_OWNED);
	it = itimer_find(p, timerid);
	if (it != NULL) {
		ksi->ksi_overrun = it->it_overrun;
		it->it_overrun_last = it->it_overrun;
		it->it_overrun = 0;
		ITIMER_UNLOCK(it);
		return (0);
	}
	return (EINVAL);
}

int
itimespecfix(struct timespec *ts)
{

	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
		return (EINVAL);
	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
		ts->tv_nsec = tick * 1000;
	return (0);
}

/* Timeout callback for realtime timer */
static void
realtimer_expire(void *arg)
{
	struct timespec cts, ts;
	struct timeval tv;
	struct itimer *it;
	struct proc *p;

	it = (struct itimer *)arg;
	p = it->it_proc;

	realtimer_clocktime(it->it_clockid, &cts);
	/* Only fire if time is reached. */
	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
		if (timespecisset(&it->it_time.it_interval)) {
			timespecadd(&it->it_time.it_value,
				    &it->it_time.it_interval);
			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
				if (it->it_overrun < INT_MAX)
					it->it_overrun++;
				else
					it->it_ksi.ksi_errno = ERANGE;
				timespecadd(&it->it_time.it_value,
					    &it->it_time.it_interval);
			}
		} else {
			/* single shot timer ? */
			timespecclear(&it->it_time.it_value);
		}
		if (timespecisset(&it->it_time.it_value)) {
			ts = it->it_time.it_value;
			timespecsub(&ts, &cts);
			TIMESPEC_TO_TIMEVAL(&tv, &ts);
			callout_reset(&it->it_callout, tvtohz(&tv),
				 realtimer_expire, it);
		}
		ITIMER_UNLOCK(it);
		itimer_fire(it);
		ITIMER_LOCK(it);
	} else if (timespecisset(&it->it_time.it_value)) {
		ts = it->it_time.it_value;
		timespecsub(&ts, &cts);
		TIMESPEC_TO_TIMEVAL(&tv, &ts);
		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 			it);
	}
}

void
itimer_fire(struct itimer *it)
{
	struct proc *p = it->it_proc;
	int ret;

	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
		PROC_LOCK(p);
		if (!KSI_ONQ(&it->it_ksi)) {
			it->it_ksi.ksi_errno = 0;
			ret = psignal_event(p, &it->it_sigev, &it->it_ksi);
			if (__predict_false(ret != 0)) {
				it->it_overrun++;
				/*
				 * Broken userland code, thread went
				 * away, disarm the timer.
				 */
				if (ret == ESRCH) {
					ITIMER_LOCK(it);
					timespecclear(&it->it_time.it_value);
					timespecclear(&it->it_time.it_interval);
					callout_stop(&it->it_callout);
					ITIMER_UNLOCK(it);
				}
			}
		} else {
			if (it->it_overrun < INT_MAX)
				it->it_overrun++;
			else
				it->it_ksi.ksi_errno = ERANGE;
		}
		PROC_UNLOCK(p);
	}
}

static void
itimers_alloc(struct proc *p)
{
	struct itimers *its;
	int i;

	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
	LIST_INIT(&its->its_virtual);
	LIST_INIT(&its->its_prof);
	TAILQ_INIT(&its->its_worklist);
	for (i = 0; i < TIMER_MAX; i++)
		its->its_timers[i] = NULL;
	PROC_LOCK(p);
	if (p->p_itimers == NULL) {
		p->p_itimers = its;
		PROC_UNLOCK(p);
	}
	else {
		PROC_UNLOCK(p);
		free(its, M_SUBPROC);
	}
}

static void
itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
{
	itimers_event_hook_exit(arg, p);
}

/* Clean up timers when some process events are being triggered. */
static void
itimers_event_hook_exit(void *arg, struct proc *p)
{
	struct itimers *its;
	struct itimer *it;
	int event = (int)(intptr_t)arg;
	int i;

	if (p->p_itimers != NULL) {
		its = p->p_itimers;
		for (i = 0; i < MAX_CLOCKS; ++i) {
			if (posix_clocks[i].event_hook != NULL)
				CLOCK_CALL(i, event_hook, (p, i, event));
		}
		/*
		 * According to susv3, XSI interval timers should be inherited
		 * by new image.
		 */
		if (event == ITIMER_EV_EXEC)
			i = 3;
		else if (event == ITIMER_EV_EXIT)
			i = 0;
		else
			panic("unhandled event");
		for (; i < TIMER_MAX; ++i) {
			if ((it = its->its_timers[i]) != NULL)
				kern_timer_delete(curthread, i);
		}
		if (its->its_timers[0] == NULL &&
		    its->its_timers[1] == NULL &&
		    its->its_timers[2] == NULL) {
			free(its, M_SUBPROC);
			p->p_itimers = NULL;
		}
	}
}
OpenPOWER on IntegriCloud